Tensor trains and moment conservation for multivariate aggregation in population balance modeling Robin Ahrens¹ Sabine Le Borne²

We consider the numerical solution of the multivariate aggregation population balance equation on a uniform tensor grid. This class of equations is numerically challenging to solve - the computational complexity of "straightforward" algorithms grows exponentially with respect to the number of internal coordinates describing particle properties.

Here, we develop algorithms which reduce the storage and computational complexity to almost linear order, $\mathcal{O}(dn)$ and $\mathcal{O}(dn \log(n))$, respectively, where d denotes the number of internal coordinates and n the number of pivots per internal coordinate. In particular, we develop fast algorithms in tensor train format to evaluate the multidimensional aggregation integral exploiting fast Fourier transformation for the underlying convolution. A further significant result lies in the conservation of the first 2^d moments for our proposed method. Numerical tests confirm the favorable theoretical results concerning computational complexity and conservation of moments.

[1] https://epubs.siam.org/doi/abs/10.1137/090752286

[2] https://www.sciencedirect.com/science/article/pii/S0377042718300840

[3] R Ahrens, S. Le Borne "Tensor trains and moment conservation for mul-

tivariate aggregation in population balance modelingSSubmitted 2019

¹Hamburg University of Technology, Institute of Mathematics ²Hamburg University of Technology, Institute of Mathematics