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O. Steinbach (Graz), M. Stoll (Chemnitz), M. Winkler (Chemnitz)
Organising Committee:

G. Haase, M. Winkler, F. Caforio,
T. Grandits
https://mathematik.uni-graz.at

https://www.unige.ch/~gander/
https://wwwu.uni-klu.ac.at/bkaltenb/index.html
http://www.agmg.eu/YvanNotay/
https://www.kaust.edu.sa/en/about/administration/kaust-leadership/senior-associate-president
https://www.unibw.de/imcs/team/apel
https://www.tu-chemnitz.de/mathematik/numapde/
https://www.ifam.uni-hannover.de/beuchler.html
http://www.tu-chemnitz.de/mathematik/numa/people/ernst/
http://homepage.uni-graz.at/de/gundolf.haase/
https://dmi.unibas.ch/de/personen/helmut-harbrecht/
https://scoop.iwr.uni-heidelberg.de/author/prof.-dr.-roland-herzog/
http://www.informatik.htw-dresden.de/~mjung/
http://www.numa.uni-linz.ac.at/~ulanger/langer.html
https://www.tu-chemnitz.de/~amey
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach/
http://www.uni-due.de/mathematik/agroesch/roesch
http://www.numerik.math.tugraz.at/~steinbach/
https://www.tu-chemnitz.de/mathematik/wire/prof.php
https://www.tu-chemnitz.de/mathematik/wire/people/winkler.php
https://mathematik.uni-graz.at


Additional Organisational Hints

Internet Access

Schloß Seggau offers free internet access. Details will be obtained at the reception.
The Wi-Fi in the seminar rooms can be accessed using the password seminar18.

Food

The conference fee includes:

• Lunch around 12:00 on all three days of the symposium

• Tea and coffee during breaks

• Dinner on Monday and conference dinner on Tuesday.

For participants staying at the Schloß Seggau there is a breakfast buffet from 7:00 up to
10:00.

Conference Dinner

The conference dinner will start on Tuesday at 18:30 at the dining hall in Schloß Seggau.

Excursion to Kogelberg

The excursion will take place on Tuesday. We will meet at 14:00 in front of the conference
venue.
We will hike through the vinyards to the hill Kreuzkogel (6.5km and 280m difference in al-
titude, 2 hours). Sports shoes or good walking shoes are suggested. Further information
on the route can be obtained using the QR-code, or link:

https://tinyurl.com/2p9arezs

https://tinyurl.com/2p9arezs
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Programme for Monday, September 11, 2023

09:00 Opening Room: 1

Solvers
Chair: Ulrich Langer Room: 1

09:10 David Keyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Nonlinear Preconditioning for Implicit Solution of Discretized PDEs

10:00 Coffee Break -10:30

Solvers CFD/DG
Chair: Ulrich Langer Room: 1 Chair: Roland Herzog Room: 2

10:30 Christian Döding . . . . . . . . . . . . . . . . . 10
Numerical approximation of nonlinear
Schrödinger equations by localized
orthogonal decomposition

Ernesto Castillo . . . . . . . . . . . . . . . . . . 15
Reduced order modeling of
time-dependent generalized
Newtonian fluid flows

10:55 Peter Munch . . . . . . . . . . . . . . . . . . . . . 11
Optimizing multigrid smoothers for
high-order matrix-free FEM
computations

Gert Lube . . . . . . . . . . . . . . . . . . . . . . . . 16
H(div)-conforming dGFEM for
turbulent incompressible
wall-bounded Navier-Stokes flows

11:20 Tim Haubold . . . . . . . . . . . . . . . . . . . . . 12
High order biorthogonal basis
functions

Gunar Matthies . . . . . . . . . . . . . . . . . . . 17
Higher order discontinuous Galerkin
methods in time and pressure-robust
finite element discretizations applied
to time-dependent Stokes problems

11:45 Douglas Ramalho Queiroz Pacheco . 13
IMEX methods for incompressible
flows with variable viscosity

Marwa Zainelabdeen . . . . . . . . . . . . . . 18
An Optimally Convergent
Convection-Stabilized Taylor–Hood
Finite Element Method for the Oseen
Equations

12:10 Lunch Break -13:30
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Programme for Monday, September 11, 2023 (continued)

Parallel in Time
Chair: Gundolf Haase Room: 1

13:30 Martin J. Gander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Good Parallel in Time Methods for Hyperbolic Problems

14:20 Poster Set-Up / Room Change

Poster Pitches
Chair: Fleurianne Bertrand Room: 1

14:31 Lina Fesefeldt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Choosing starting vectors for Newton’s method in nonlinear elasticity

14:32 Daniel Bauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Multigrid in H(curl) on Hybrid Tetrahedral Grids

14:33 Fabian Böhm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Matrix-free Implementation and Evaluation of the Enriched Galerkin Finite
Element Method for the Stokes Problem with Varying Viscosity

14:34 Goulm Pierre-Alain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Pairing Raviart-Thomas elements with conforming nodal elments in mixed
finite element dicretizations

14:35 Nils Margenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/A
Optimal Control in Nonlinear Optics by Hybrid Finite Element and Neural
Network Techniques

14:36 Engertsberger Felix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
The scalar potential approach in nonlinear magnetostatics

14:40 Coffee Break + Poster Discussion -15:10

Applications & Optimal Control Space-Time
Chair: Barbara Kaltenbacher Room: 1 Chair: Martin J. Gander Room: 2

15:10 Roland Herzog . . . . . . . . . . . . . . . . . . . 28
Total Generalized Variation with Finite
Elements and Applications

Günther Of . . . . . . . . . . . . . . . . . . . . . . 34
A Space-Time Fast Boundary Element
Method for the Heat Equation with
Temporal Nearfield Compression

15:35 Richard Schussnig . . . . . . . . . . . . . . . 29
Matrix-free Discontinuous Galerkin
Solvers for the Cardiovascular System

Bernhard Endtmayer . . . . . . . . . . . . . . 35
Space Time Dual Weighted Residual
Error Estimation

16:00 Max Winkler . . . . . . . . . . . . . . . . . . . . . 31
A finite volume method for transport
induced neurite growth

Janosch Preuss . . . . . . . . . . . . . . . . . . 36
Unique continuation for the wave
equation using a discontinuous
Galerkin time discretization
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Programme for Monday, September 11, 2023 (continued)

16:25 Mahima Yadav . . . . . . . . . . . . . . . . . . . 32
On discrete ground states of rotating
Bose–Einstein condensates

Sebastian Franz . . . . . . . . . . . . . . . . . . 37
Post-processing and improved error
estimates of numerical methods for
evolutionary systems

17:00 Guided Tour of the Wine Cellar

18:30 Dinner

20:00 Meeting Scientific Committee
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Programme for Tuesday, September 12, 2023

Inverse Problems
Chair: Helmut Harbrecht Room: 1

09:00 Barbara Kaltenbacher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Optimization based formulation and solution of inverse problems

09:50 Coffee Break -10:20

Machine Learning / Optimal Control Solvers / FEM-BEM
Chair: Olaf Steinbach Room: 1 Chair: Gunar Matthies Room: 2

10:20 Nils Margenberg . . . . . . . . . . . . . . . . . 41
Benchmarking Hybrid Finite
Element/Deep Neural Networks and
Classical Finite Element Methods

Stephan Köhler . . . . . . . . . . . . . . . . . . 48
Nonlinear FETI-DP and Quasi-Newton
Methods

10:45 Reza Mokhtari . . . . . . . . . . . . . . . . . . . 42
Deep learning approaches based on
HDG method for solving some
nonlinear elliptic equations

Helmut Harbrecht . . . . . . . . . . . . . . . . 49
Isogeometric multilevel quadrature for
forward and inverse random acoustic
scattering

11:10 Philipp Zilk . . . . . . . . . . . . . . . . . . . . . . 44
Identifying cracks in membranes via
their eigenfrequencies - A theoretical
and practical approach

Max Brockmann . . . . . . . . . . . . . . . . . . 50
Solving Elliptic Partial Differential
Equations on Metric Graphs using
Multigrid Methods

11:35 Thomas Apel . . . . . . . . . . . . . . . . . . . . 45
Non-coercive boundary value
problems

Muhammad Tayyab Bin Saghir . . . . . 51
Finite Element Simulation for Elastic
and Plastic Fluids

12:00 Ulrich Langer . . . . . . . . . . . . . . . . . . . . 46
Mass-lumping discretization and
solvers for distributed elliptic optimal
control problems with L2 -
regularization

Joachim Schöberl . . . . . . . . . . . . . . . . 52
Finite Element Methods for Curvature
Computation

12:25 Group Photo

12:35 Lunch Break -14:00

14:00 Excursion to Kogelberg

17:00 Return

18:30 Conference Dinner
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Programme for Wednesday, September 13, 2023

Algebraic Multigrid Methods
Chair: Joachim Schöberl Room: 1

09:00 Yvan Notay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Algebraic multigrid for finite element discretizations

09:50 Coffee Break -10:20

Numerical Analysis Scientific Computing
Chair: Thomas Apel Room: 1 Chair: Yvan Notay Room: 2

10:20 Olaf Steinbach . . . . . . . . . . . . . . . . . . . 56
Adaptive least-squares space-time
finite element methods

Max Firmbach . . . . . . . . . . . . . . . . . . . . 61
Physics-based block preconditioning
for mixed dimensional beam/solid
coupling

10:45 Fleurianne Bertrand . . . . . . . . . . . . . . 57
On the necessity of the inf-sup
condition for a mixed finite element
formulation

Mohadese Ramezani . . . . . . . . . . . . . 62
Solving fractional Burgers equations
using the Hopf-Cole transformation
and local discontinuous Galerkin
method

11:10 Harald Monsuur . . . . . . . . . . . . . . . . . . 58
A pollution-free ultra-weak FOSLS
discretization of the Helmholtz
equation

Deepika Garg . . . . . . . . . . . . . . . . . . . . 64
Implicit-explicit time discretization for
Oseen’s equation at high Reynolds
number with application to fractional
step methods

11:35 Johanna Beier . . . . . . . . . . . . . . . . . . . 59
Derivation and simulation of
thermoelastic Kirchhoff plates

Henrik Schneider . . . . . . . . . . . . . . . . . 65
Least-Squares Finite Element
Methode for a non-linear Sea-Ice
problem

12:00 Closing Room: 1

12:15 Lunch

13:30 Conference End
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Nonlinear Preconditioning for Implicit Solution of Discretized
PDEs

David Keyes1

Abstract Nonlinear preconditioning refers to transforming a nonlinear algebraic system
to a form for which Newton-type algorithms have improved success through quicker ad-
vance to the domain of quadratic convergence. We place these methods, which go back
at least as far as the Additive Schwarz Preconditioned Inexact Newton (ASPIN, 2002),
in the context of a proliferation distinguished by being left- or right-sided, multiplicative
or additive, non-overlapping or overlapping, and partitioned by field, subdomain, or other
criteria. We present the Nonlinear Elimination Preconditioned Inexact Newton (NEPIN,
2021), which is based on a heuristic bad/good heuristic splitting of equations and cor-
responding degrees of freedom. We augment basic forms of nonlinear precondition-
ing with three features of practical interest: a cascadic identification of the bad discrete
equation set, an adaptive switchover to ordinary Newton as the domain of convergence
is approached, and error bounds on output functionals of the solution. Various nonlin-
early stiff algebraic and model PDE problems are considered for insight and we illustrate
performance advantage and scaling potential on challenging two-phase flows in porous
media.

1King Abdullah University of Science and Technology
david.keyes@kaust.edu.sa
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Notes on session “Solvers”
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Numerical approximation of nonlinear Schrödinger equations by
localized orthogonal decomposition

Christian Döding1 Patrick Henning2 Johan Wärnegard3

The Gross-Pitaevskii equation (GPE) is a nonlinear Schrödinger equation which is used
in quantum physics to model the dynamics of Bose-Einstein condensates (BECs). It is
well known that this equation has important time invariants such as the total energy of
the system. Preserving the energy under numerical discretization can be of great signifi-
cance in many practical situations. In this talk we consider numerical approximations of
the GPE based on multiscale approaches. To be more precise, we choose a generalized
finite element space which is based on the localized orthogonal decomposition method
and which allows to capture the energy with high accuracy. Paired with energy-preserving
time integrators we demonstrate how such an approach can lead to an efficient solver
for the GPE and thus for the simulation of the dynamics of BECs on larger time scales.

1Ruhr-University Bochum, Department of Mathematics
christian.doeding@rub.de

2Ruhr-University Bochum, Department of Mathematics
patrick.henning@rub.de

3Columbia University, Department of Applied Physics and Applied Mathematics
jpw2176@columbia.edu
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Optimizing multigrid smoothers for high-order matrix-free FEM
computations

Peter Munch1 Martin Kronbichler2

Multigrid methods are among the most competitive solvers for linear systems arising
upon discretization of second-order partial differential equations, which occur as sub-
problems in many application fields in computational science. Within the multigrid al-
gorithm, the most crucial component is usually the smoother, which aims to reduce the
high-frequency content in the iteration errors. The observed performance of a smoother
depends on the error reduction rate, the possibility for high-performance implementa-
tions, and the properties of the underlying hardware itself.
In this presentation, we investigate, in the context of high-order matrix-free FEM compu-
tations, point-Jacobi preconditioners and additive Schwarz methods (ASM) based on the
fast diagonalization method (FDM) defined on overlapping cell-centered and vertex-star
patches. We embed both preconditioners into classical relaxation schemes as well as a
Chebyshev iteration and use them as smoothers in the context of p-multigrid. We present
novel, highly optimized implementations, which leverage the caches of modern proces-
sors by interleaving the work done on the cells in the finite-element discretization and
vector operations. We have developed an infrastructure that allows such interleaving in
the context of preconditioned conjugate gradient methods [4] and made the implemen-
tation freely available via the library deal.II. Here, we show a new application case of this
infrastructure.
We conclude our presentation by embedding the developed smoothers into a multigrid
scheme to solve Poisson problems on anisotropic meshes. We summarize the results
of extensive parameter studies, where we investigate the influence of the number of
smoothing steps, the type of decreasing the polynomial degree, the type of precondi-
tioner, the type of Chebyshev polynomials (first or fourth kind), and the type of V-cycle
(one- or two-sided). Our results indicate that ASM with FDM, when using the proposed op-
timizations, can outperform point- Jacobi smoothers on modern CPU-based hardware,
especially for meshes with lower-quality and anisotropic elements.

References:

[1] M. Kronbichler and K. Kormann, 2012
[2] RE. Lynch et. al, 1964
[3] JW. Lottes and PF. Fischer, 2005
[4] M. Kronbichler et. al., 2022
[5] M. Phillips and PF. Fischer, 2022

1High-Performance Scientific Computing, Institute of Mathematics, University of Augsburg
peter.muench@uni-a.de

2High-Performance Scientific Computing, Institute of Mathematics, University of Augsburg
martin.kronbichler@uni-a.de
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High order biorthogonal basis functions

Tim Haubold1 Sven Beuchler2 Joachim Schöberl3

Dual basis function are used to define (high order) interpolation operators. We consider
high order basis functions based on Legendre and Jacobi polynomials. In this case the
dual functions are biorthogonal to our chosen basis. In this talk we will consider this
property in 2D and 3D.Moreover we derive biorthogonal basis functions for vector valued
functions in H(Curl).

1Leibniz University Hannover, Institute for Applied Mathematics
haubold@ifam.uni-hannover.de

2Leibniz University Hannover, Institute for Applied Mathematics
beuchler@ifam.uni-hannover.de

3TU Wien, Institute of Analysis and Scientific Computing
joachim.schoeberl@tuwien.ac.at
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IMEX methods for incompressible flows with variable viscosity

Douglas Ramalho Queiroz Pacheco1 Ernesto Castillo2 Gabriel Barrenechea3

In implicit-explicit (IMEX) temporal discretisations of the Navier-Stokes equations, the vis-
cous term is kept implicit, while convection is treated either explicitly or semi- implicitly.
Such methods are very popular, as they simplify implementation, improve computational
efficiency and retain good numerical stability. For flows with non-constant viscosity, as
arising in various practical applications, it can be attractive to treat also the viscous term
in a semi-implicit manner. That allows us, for instance, to use simpler solvers by avoiding
additional terms that would otherwise couple the velocity components. In this talk, we
consider different IMEX treatments of the viscous term and discuss the implications of
such approaches. This includes deriving, for first-order schemes in time, stability esti-
mates that do not incur a CFL-like condition. Both monolithic and fractional-step meth-
ods are considered, with numerical examples corroborating our theory.

1Norwegian University of Science and Technology, Department of Mathematical Sciences
douglas.r.q.pacheco@ntnu.no

2Universidad de Santiago de Chile
ernesto.castillode@usach.cl

3University of Strathclyde
gabriel.barrenechea@strath.ac.uk
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Notes on session “Solvers”
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Reduced order modeling of time-dependent generalized
Newtonian fluid flows

Ernesto Castillo1

This work numerically evaluates the accuracy and performance of a stabilized finite el-
ement Reduced Order Modelling (ROM) approach designed to simulate time-dependent
generalized Newtonian fluid flows. The method estimates off-trained parametric scenar-
ios not included in the training data set composing the ROM basis and can adopt arbitrary
values from other specific fluid and flow conditions. Also, a mesh-based hyper-reduction
technique is included. The numerical testing includes approximating well- established
benchmark solutions of shear-thinning and shear-thickening fluid flows to demonstrate
the method’s robustness. Furthermore, the application of the method in two engineering
problems related to hemodynamic and conjugate thermally coupled flows is presented.
Numerical results evidence the method’s capability, accuracy, and performance to ap-
proximate complex flow conditions of generalized Newtonian fluids.
This work is partially founded by ANID Chile through the project FONDECYT 1210156.

1University of Santiago de Chile
ernesto.castillode@usach.cl
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H(div)-conforming dGFEM for turbulent incompressible
wall-bounded Navier-Stokes flows

Gert Lube1

Three basic problems are relevant for the numerical simulation of turbulent incompress-
ible Navier-Stokes flows: i) ”curse of resolution” in space-time for direct numerical simu-
lation (DNS) which critically depends on the Reynolds number, ii) regularity and intermit-
tency of the solution in space-time, iii) occurence of anomalous diffusion in the inviscid
limit stemming from the action of fluctuations via the Reynolds stress tensor. These
problems call for good solutions w.r.t. computational ressources. We discuss some vari-
ants for the numerical modelling of turbulent wall-bounded flows.
H(div)-conforming discontinuous Galerkin-FEM ensure pointwise divergence-free discrete
velocities together with pressure-robustness, convection semi-robustness and structure
preservation. Moreover they allow a weak imposition of the tangential velocities at a wall
and act as implicit large-eddy simulation (ILES). This will be demonstrated for the basic
channel flow at bulk Reynolds numbers of 103 ... 105 for the mean streamwise veloc-
ity component and the averaged Reynolds stress tensor on slightly anisotropic meshes
with less than 106 unknowns, see Schroeder, PhD. Thesis, Goettingen 2019, as opposed
to DNS results with up to 109 unknowns.
For very large Reynolds numbers, Hoffman et al. in J. Math. Fluid Mech. (2016) replace
the no-slip condition by a Navier-with-slip/friction condition. For a friction coefficient
tending to zero, one obtains in the inviscid limit a slip condition. In aviation applications
they show that a relatively coarse resolution (with up to 106 ... 107 nodes) is sufficient
to obtain reasonable averaged values of lift and drag. We discuss and argue why such
approach can be questionable for very large Reynolds numbers. A proper combination
of H(div)-conforming dGFEM with Navier-with-slip/friction condition at the wall deserves
a stronger consideration. In the inviscid limi, such method with appropriate stabilization
can cope with anomalous diffusion, e.g. for the inviscid Taylor-Green vortex, see Fehn,
PhD. Thesis, TU Munich 2021.

1Georg-August University Goettingen, Dep. Math. and Comput. Sc.
lube@math.uni-goettingen.de
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Higher order discontinuous Galerkin methods in time and
pressure-robust finite element discretizations applied to

time-dependent Stokes problems

Gunar Matthies1 Naveed Ahmed2 Simon Becher3

We analyze finite element discretizations of the time-dependent Stokes equations that
are based on discontinuous Galerkin time stepping schemes in combination with pressure-
robust inf-sup stable finite element methods in space. The pressure-robustness enables
error estimates for the velocity that are completely independent of the pressure. We
prove optimal convergence orders in space and time for both velocity and pressure.
Moreover, a cheap postprocessing allows to improve the temporal accuracy of the ve-
locity, again with error constants independent of the pressure. Numerical examples illus-
trate our theoretical findings.

1Technische Universität Dresden, Institut für Numerische Mathematik
gunar.matthies@tu-dresden.de

2Gulf University for Science and Technology, Mubarak Al-Abdullah Area/West Mishref, Kuwait
Ahmed.N@gust.edu.kw

3Technische Universität Dresden, Institut für Numerische Mathematik
simon.becher@tu-dresden.de
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An Optimally Convergent Convection-Stabilized Taylor–Hood
Finite Element Method for the Oseen Equations

Marwa Zainelabdeen1 Volker John2 Christian Merdon3

We consider the finite element discretization of the Oseen equations. The LSVS convec-
tion stabilization proposed in [1], which is motivated by the underlying vorticity equation
(obtained by applying the curl operator to the momentum equation) has the advantage
that it leads for the Scott-Vogelius finite element to a pressure-robust method. We ex-
tended the LSVS method to the classical Taylor-Hood finite element space which is not
pressure-robust. We added the grad-div stabilization to improve the mass conservation.
The theoretical result in [2] stating that for large grad-div parameter γ the Taylor-Hood
method converges to the Scott–Vogelius method is carried over to the LSVS grad-div
stabilized scheme. In addition, by utilizing the already proved O(hk+ 1

2 ) Scott-Vogelius er-
ror estimate from [1], we proved an error estimate for the velocity of the same order for
Taylor-Hood finite elements. Numerical studies are performed to test the method and
investigate the optimal choice of the LSVS and the grad-div stabilization parameters.

References:

[1] https://epubs.siam.org/doi/10.1137/20M1351230
[2] https://epubs.siam.org/doi/10.1137/100794250

1Freie Universität Berlin / Berlin Mathematical School
marwazinabdeen@gmail.com

2Freie Universität Berlin / Weierstrass Institute for Applied Analysis and Stochastics, Numerical Mathe-
matics and Scientific Computing
john@wias-berlin.de

3Weierstrass Institute for Applied Analysis and Stochastics, Numerical Mathematics and Scientific Com-
puting
Christian.Merdon@wias-berlin.de
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Notes on session “CFD/DG”
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Good Parallel in Time Methods for Hyperbolic Problems

Martin J. Gander1

Parallel in Time (PinT) methods have received a lot of attention over the past years, and
there is an annual conference now dedicated to these techniques. Parallelizing a large
scale computation in the time direction appears to be rather unusual at first sight, since
time dependent problems obey a causality principle: the solution later in time is depend-
ing on the solution earlier in time, and never the other way round, so there does not seem
to by any natural parallelism. Nevertheless, when parallelization in space for such prob-
lems saturates, parallelization in time appears tempting.
I will first show in my talk why for parabolic problems, parallelization in time is rather nat-
ural. This explains why there are in the meantime many successful PinT algorithms for
such problems, like Parareal, Parareal-Schwarz-Waveform-Relaxation and Space-Time-
Multigrid. In contrast, for hyperbolic problems, parallelization in time is much more chal-
lenging. This is because solutions of hyperbolic problems depend on their history in a
much more stringent and detailed way than for parabolic problems that forget details
over time. Nevertheless, several successful PinT algorithms have been developed for
hyperbolic problems over the past decade, and I will explain three of them in my lecture:
ParaExp, ParaDiag, and (Un)mapped Tent Pitching.

1Université de Genève
Martin.Gander@unige.ch
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Notes on session “Parallel in Time”
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Choosing starting vectors for Newton’s method in nonlinear
elasticity

Lina Fesefeldt1 Sabine Le Borne2

In nonlinear elasticity, Newton’s method is used to find a deformation that satisfies the
equilibrium of external and internal forces. The convergence of Newton’s method highly
depends on the choice of the initial guess of the solution. In case of divergence, load
steps can be used to stabilize the method: The force acting on the body is applied in
increments, and each solution to the sub-problems serves as a new starting vector for
the next load step. While this method is intuitive and established, it is also costly in com-
putation time and memory. When the p-Version of FEM is used in combination with a
hierarchical basis for the shape functions, a deformation always contains solutions for
a lower maximum polynomial degree. We analyse the effect of using lower polynomial
degrees on intermediate load steps on the convergence behaviour and overall computa-
tional costs.
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Multigrid in H(curl) on Hybrid Tetrahedral Grids

Daniel Bauer1

This work presents theory and algorithms relevant to the solution of Maxwell’s equa-
tions as well as their implementation in the massively scalable finite element framework
HyTeG. We focus on multigrid methods for the curl-curl-problem which arises from the
time-harmonic formulation of Maxwell’s equations:

α curl curlu+ βu = f , (1)

where α, β > 0. This problem is not elliptic, rendering standard multigrid smoothers
ineffective.
We resort to finite element exterior calculus (FEEC) to explain our choice of discretization:
linear Nédélec edge elements of the first kind. Furthermore, FEEC directly leads to the
Hodge decomposition, which is pivotal for the design of effective multigrid smoothers
in H(curl). These were pioneered by Hiptmair, who proposed smoothing both in the
Nédélec finite element space and the space of scalar potentials approximated by piece-
wise Lagrangian polynomials.
Novel is our implementation of the Nédélec space and associated grid transfer operators
from/to the space of piecewise Lagrangian polynomials in HyTeG. The code makes use
of code generation techniques to go from a mathematical description of operators and
bilinear forms to efficient compute kernels automatically. This enables us to perform
certain optimizations like common subexpression elimination on the symbolic level.
HyTeG is a finite element framework designed for massively parallel compute architec-
tures. It supersedes the HHG framework which was already capable of solving sys-
tems with 1013 unknowns. The key building block to achieve these impressive results
is a matrix-free implementation of geometric multigrid on hybrid tetrahedral grids. Using
successive uniform refinement of a coarse mesh, we obtain a hierarchy of nested grids
for multigrid and fast, indirection-free code. At the same time, the flexibility of unstruc-
tured topology is recovered by transforming the grid on all refinement levels to the actual
domain yielding a curvilinear mesh.
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Matrix-free Implementation and Evaluation of the Enriched
Galerkin Finite Element Method for the Stokes Problem with

Varying Viscosity

Fabian Böhm1

The simulation of earth mantle convection with the Finite Element method (FEM) is
a challenging task for computational engineers. In the discretization of the underly-
ing mathematical model, the Stokes equation, large numbers of degrees of freedom
(DoFs) are involved, which makes matrix-free codes necessary. Furthermore, strong
variations and even discontinuities in the viscosity cause the linear system to be highly
ill-conditioned, and FEM tend to produce unphysical oscillations. It is unclear, which par-
ticular FEM is the single best suited one to use for such problems. Higher order meth-
ods offer better approximation properties, like a faster convergence rate but also have a
computationally more expensive operator application due to more DoFs and non-zeros.
Lower order methods are cheaper in that regard but converge slower. Another criterium
is inf-sup stability, which some candidates lack. The classical Taylor-Hood method (P2-
P1) is a relevant candidate. A second candidate is the enriched Galerkin method (EG-
P0), which uses linear polynomials and a vectorial enrichment for the velocity. It has the
fewest DoFs per element of all mixed FEM while being inf-sup stable. In this work, EG-
P0 is implemented for the first time with a matrix-free operator application. Additionally,
the discrete operator is analyzed regarding the block structure, number of non-zeros per
row, and the impact of the enrichment. Furthermore, the computational work for assem-
bling the local matrix and stencil application is quantified. EG-P0 is compared with P2-P1
for analytical 2D and 3D test cases with smoothly varying viscosity, the so called SolVi
and MultiSinker test cases. The criteria are how much computational work in flops must
be invested to reach a certain error, the convergence rate of the discretization and the
solution quality.
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Pairing Raviart-Thomas elements with conforming nodal elments
in mixed finite element dicretizations

Goulm Pierre-Alain1 2 3 4

The mixed finite element method has been widely utilized for solving elasticity problems,
encompassing the development of several element pairs and various formulation types.
In particular, mixed finite elements were introduce to allow for the robust implementation
of constraints. Traditionally, an inf-sup condition is required to guarantee compatibility
between finite element spaces. However, the recent contribution [1] shows existence
and uniqueness of the solution can be obtained even though the numerical schemes
is inf-sup unstable. This poster aims to investigate the stability of the corresponding
elasticity problem by closely examining the inf-sup condition for the continuous element
pair (RT0)

2 × (P1)
2 introduced in [2]. By analyzing this specific combination of elements,

we can shed light on the stability aspects of the problem at hand.
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The scalar potential approach in nonlinear magnetostatics

Felix Engertsberger1 Herbert Egger2

This talk covers the analysis of the scalar potential approach in the non-linear magneto-
static setting. First, the physical model is presented and the potential approach is mo-
tivated. In this master thesis, a very general form of the nonlinear constitutive equation
is considered, which simplifies the analysis dramatically. Next, we derive the variational
problem and state equivalent minimization and Lagrange multiplier problems. Existence
& uniqueness is shown and a stability estimate is given. For the discretization standard
courant elements are considered and the usage of numerical integration is justified with
a nonlinear variation of the Strang lemma. Finally, first numerical results of an iron circuit
in 2D are presented.
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Total Generalized Variation with Finite Elements and Applications

Roland Herzog1

The total variation (TV) semi-norm is popular as a regularizing functional in inverse prob-
lems and imaging, favoring piecewise constant functions with few jumps. As an exten-
sion, Bredies, Kunisch and Pock introduced the total generalized variation (TGV) which
favors piecewise linear (or higher-order polynomials). In this presentation, we address
the discretization of second-order TGV with appropriate families of finite element func-
tions. Moreover, we discuss algorithms for the numerical solution of associated imaging
problems and show numerical results.
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Matrix-free Discontinuous Galerkin Solvers for the Cardiovascular
System

Richard Schussnig1 Martin Kronbichler2

The coupling of incompressible fluid and solid phases remains a challenging application
especially in the medical context. Such problems frequently arise in medical device de-
sign, surgery planning or clinical support, but similar difficulties are encountered in more
general settings as well, when the density of the involved fluid and structure are similar.
Standard fluid-structure interaction algorithms suffer from a high added-mass effect in
addition to the large number of spatial and temporal unknowns to accurately represent
the physical processes. Hence, robust and efficient numerical tools reducing the com-
putational burden and the required time to solution are urgently needed.
Adopting monolithic solvers, which are traditionally applied in this field, preconditioning
the linear system presents major difficulties. Following the partitioned approach, on the
other side, a strong added-mass effect leads to increased iteration counts in the coupling
algorithm. However, recently developed methods [1] combining Robin coupling condi-
tions, interface quasi-Newton methods and semi-implicit coupling strategies offer an at-
tractive alternative to monolithic schemes. Within this contribution, we present recent
developments combining matrix-free Discontinuous Galerkin solvers within the open-
source software framework ExaDG [2] with accelerated partitioned schemes in practical
applications to patient-specific cardiovascular models. Higher-order discretizations for
the three-dimensional structure and fluid are considered, comparing various alternative
formulations of the fluid subproblem leading to monolithic velocity-pressure systems or,
as an alternative, pressure-correction schemes splitting the problems governing fluid ve-
locity and pressure, see, e.g., Kronbichler et al. [3].
We present results demonstrating the robustness of the solution with respect to the
Robin parameter and investigate its interplay with the semi-implicit variants of the strongly
coupled and accelerated partitioned solver. Practical relevance is demonstrated in a clin-
ical scenario of blood flow through an iliac bifurcation, including relevant modeling as-
pects such as physiological boundary conditions and realistic problem parameters.
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A finite volume method for transport induced neurite growth

Max Winkler1 Greta Marino2 Jan-Frederick Pietschmann3

In this talk we study a free boundary model for vesicle transport on neurites taking into
account neurite growth and shrinkage as well. The model consists of two PDEs describ-
ing bidirectional transport of retrograde and anterograde vesicles, ODEs describing the
concentrations in the soma and the growth cones at the end of the neurites, as well as
an ODE encoding a growth and shrinkage of the neurite. We give some existence and
uniqueness results for the equation system, discuss steady state solutions, present a
numerical computation scheme based on a finite volume discretization and compare
the simulation results with biological experiments.
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On discrete ground states of rotating Bose–Einstein condensates

Mahima Yadav1 Patrick Henning2

The talk focuses on the study of ground states of Bose–Einstein condensates in a ro-
tating frame. The ground states are described as the constrained minimizers of the
Gross-Pitaevskii energy functional with an angular momentum term. The problem is dis-
cretized using Lagrange finite element spaces of arbitrary polynomial order. The approx-
imation properties of discrete ground states are presented, taking into account the miss-
ing uniqueness of ground states which is mainly caused by the invariance of the energy
functional under complex phase shifts. The error analysis is based on an Euler–Lagrange
functional that we restrict to certain tangent spaces in which we have local uniqueness
of ground states. Error estimates of optimal order are shown for the L2- and H1-norm, as
well as for the ground state energy and chemical potential. We also present numerical
experiments to illustrate various aspects of the problem structure.
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A Space-Time Fast Boundary Element Method for the Heat
Equation with Temporal Nearfield Compression

Günther Of1 Raphael Watschinger2

We consider a space-time boundary element method for the solution of initial boundary
value problems of the heat equation in three spatial dimensions. In particular we deal with
tensor product meshes with adaptive decompositions of the considered time interval and
adaptive spatial meshes. We apply a space-time fast multipole method as well as shared
and distributed memory parallelization with respect to space and time.
We present a novel temporal nearfield compression technique which enables efficient
computations for fine spatial mesh resolutions related to the considered adaptive tensor
product meshes. In particular, we introduce a version of the adaptive cross approxima-
tion tailored to the nature of the considered heat kernel. Finally, we present numerical
experiments that demonstrate the great benefits of the new method for tensor product
meshes with spatially fine meshes and adaptive spatial meshes.

1Graz University of Technology, Institute of Applied Mathematics, Austria
of@tugraz.at

2Graz University of Technology, Institute of Applied Mathematics, Austria
watschinger@math.tugraz.at



36th Chemnitz FE Symposium 2023 on tour 35

Space Time Dual Weighted Residual Error Estimation

Bernhard Endtmayer1 Ulrich Langer2 Andreas Schafelner3

In this talk, we derive goal oriented error estimation based on the dual weighted residual
method for Space-time problems. For this error estimator, we require either a soltion in
an enriched space or an interpolation of the solution. Under a saturation assumption
based on the enriched space or the interpolation the resulting error estimator is efficient
and reliable. Finally, we will conclude the talk with numerical results, featuring a time-
dependent p-Laplace equation in 2D and 3D.
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Unique continuation for the wave equation using a discontinuous
Galerkin time discretization

Janosch Preuss1 Erik Burman2

We revisit a unique continuation problem for the wave equation in the time domain which
has previously been considered in [1]. In the latter publication this problem has been
solved using a full space time discretization. For computational efficiency it would be
highly desirable if the time discretization could instead be realized by a discontinuous
Galerkin method. This is known to allow for time-marching procedures provided only
upwind-type couplings are present in the time discretization. Unfortunately, our investi-
gations show that some stronger couplings in time appear to be necessary to preserve
the optimal error estimates shown in [1]. However, by identifying which of those cou-
plings are essential and dropping the others we managed to relax the scheme to an ex-
tent where time-marching is at least applicable as a preconditioner. The performance of
this preconditioner, which may be interpreted as a forward sweep in the time domain, is
illustrated in numerical experiments.
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Post-processing and improved error estimates of numerical
methods for evolutionary systems

Sebastian Franz1

We consider evolutionary systems, i.e. systems of linear partial differential equations
arising from the mathematical physics, in the form

(∂M0 +M1 + A)U = F

where M0, M1 are bounded linear self-adjoint operators on a Hilbert space H = H(Ω)
and A is a skew self-adjoint operator on H . Suppose further that there are constants ρ0
and γ > 0, such that

ρM0 +M1 ≥ γ

for all ρ ≥ ρ0. For these systems there exists a general solution theory, see [1, Solu-
tion Theory] in exponentially weighted spaces which can be exploited in the analysis of
numerical methods.
The numerical method considered is a discontinuous Galerkin method in time combined
with a conforming Galerkin method in space. Building on our recent paper [2], we im-
prove some of the results, study the dependence of the numerical solution on the weight-
parameter, and consider a reformulation and post-processing of its numerical solution.
Numerical simulations support the theoretical findings.
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Optimization based formulation and solution of inverse problems

Barbara Kaltenbacher1

The probably most well-known and most widely used approach to solving inverse prob-
lems is by combined minimization of data misfit and some regularization term, usually
referred to as Tikhonov-Philips regularization. Still, this relies on the use of some forward
operator, which is the concatenation of the observation operator with the parameter-to-
state-map for the underlying model. Recently, all-at-once formulations have been con-
sidered as an alternative to this reduced formulation, avoiding the use of a parameter-
to-state map, which would sometimes lead to too restrictive conditions. Here the model
and the observation are considered simultaneously as one large system with the state
and the parameter as unknowns. A still more general formulation of inverse problems,
containing both the reduced and the all-at-once formulation, but also the well-known
and highly versatile so-called variational approach (not to be mistaken with variational
regularization) as special cases, is to formulate the inverse problem as a minimization
problem (instead of an equation) for the state and parameter. Regularization can be in-
corporated via imposing constraints and/or adding regularization terms to the objective.
In this talk, after providing the general setting with convergence results, we will discuss
some examples and in particular dwell on some applications in (nonlinear) acoustics.
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Benchmarking Hybrid Finite Element/Deep Neural Networks and
Classical Finite Element Methods

Nils Margenberg1 Robert Jendersie2 Christian Lessig3 Thomas Richter4

Accurate flow simulations remain a challenging task. Combining classical finite ele-
ment approximation techniques with deep neural neworks adds new aspects to the pure
numerics-oriented approach and offers potential for further innovations. In this talk we
discuss the use of deep neural networks for augmenting classical finite element simula-
tions in fluid-dynamics.
We first establish new benchmark results for the classical DFG-benchmark in 3D us-
ing classical finite element simulations with high accuracy. We extend these settings
to higher Reynolds numbers and compare two different FEM libraries: Gascoigne3D and
deal.II. We compare the computation of drag and lift forces across the two software plat-
forms and show that they are in good agreement.
At high Reynolds numbers, accurate simulations in 3D settings become increasingly dif-
ficult, and the classical methods reach their limits. To address this issue, we discuss
approaches to connect the finite element method with neural networks. We propose the
Deep Neural Network Multigrid Solver, which combines a geometric multigrid solver with
a deep neural network to overcome limitations of classical methods. This approach uses
classical simulation techniques where their strengths are eminent, such as the efficient
representation of a coarse, large-scale flow field. Neural networks are used when a full
resolution of the effects does not seem possible or efficient.
We demonstrate the efficiency, generalizability, and scalability of our proposed approach
using 3D simulations. Our focus is particularly on issues of stability, generalizability, and
error accuracy, and we establish the error accuracy of our proposed method by compar-
ing it with the newly established benchmark results. Overall, our approach offers potential
for further innovations in accurate flow simulations.
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Deep learning approaches based on HDG method for solving some
nonlinear elliptic equations

Reza Mokhtari1 Shima Baharlouei2

This talk aims to introduce and analyze two deep neural networks (DNNs) approaches
based on the hybridized discontinuous Galerkin (HDG) method for solving some nonlin-
ear elliptic equations. Many known robust numerical methods such as different types
of HDG methods have a high dependency on mesh- grid points that makes serious dif-
ficulties in problems with complex geometry, especially in high dimensions. Recently,
we have constructed two approaches that use artificial neural network approaches to
overcome this defect of the classical methods, especially HDG methods. In the first ap-
proach, which we called DNN-HDG, after applying the HDG method with a suitable defini-
tion of numerical flux and trace, the variational form solutions are approximated directly
using the neural networks idea. The second approach, known as DNN-HDG-II, is more
compatible with the classical HDG method, in the sense that solutions are considered as
linear combinations of the trial functions and then coefficients are approximated using
the neural network technique. In this talk, we intend to extend these two efficient and
robust methods for solving the following nonlinear elliptic problem

−∇ · (κ(u,x)∇u(x)) = f(u,x), x ∈ Ω ⊂ Rd,

u(x) = g
D
(x), x ∈ ∂ΩD,

−κ(u,x)∇u(x) · n = g
N
(x), x ∈ ∂ΩN ,

(1)

where d ∈ N is the spatial dimension, x = (x1, . . . , xd)
T , n is the outward unit normal

vector, and ∂ΩD and ∂ΩN are parts of the boundary with Dirichlet and Neumann bound-
ary conditions, respectively. Also, functions κ and f are nonlinear terms that are assumed
to be in suitable function spaces. We prove that the loss function corresponding to the
proposed DNN-HDG methods for solving (1) converges to zero as the mesh step size
reduces. Moreover, through some examples, we show that the DNN-HDG methods can
efficiently and accurately extract the pattern of the solutions in one, two, and three di-
mensions. Also, some precious advantages of the DNN-HDG methods compared to the
classical HDG methods will be demonstrated, especially for problems with noisy data.
Likewise, we demonstrate the ability of the DNN-HDG methods in problems whose exact
solutions are not accessible.
AMS 2010: 65N20, 68T07.
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Identifying cracks in membranes via their eigenfrequencies - A
theoretical and practical approach

Philipp Zilk1 Thomas Apel2

The eigenfrequencies of a vibrating membrane generally depend on its shape. The asso-
ciated inverse problem which became famous through the work of Kac has been widely
discussed in the literature. We look at this problem in the context of cracks. Is it possible
to identify a crack in a membrane when its eigenfrequencies are known?
First, we show a theoretical approach to see that it is indeed possible to do so under
certain conditions. Then, we present a practical method to confirm our theoretical find-
ings. Concretely, we train a neural network using simulated data to predict the shape of
a crack from the corresponding eigenfrequencies. For the simulations we use Isogeo-
metric Analysis, which is well known for its excellent spectral approximation properties.
Some of the resulting eigenfunctions have a singularity of type rν , thus the corresponding
eigenvalues can not be approximated well with uniform refinement procedures. There-
fore, we introduce a mesh grading approach based on a singular isogeometric mapping
and illustrate optimal convergence order for the eigenfunctions and eigenvalues.
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Non-coercive boundary value problems

Thomas Apel1 Mariano Mateos2 Arnd Rösch3

Standard tools like the Lax–Milgram lemma or the Céa lemma are based on the coercivity
of the bilinear form. A typical assumption for a scalar partial differential equation of
second order is c− 1

2
div b > 0 to ensure coercivity. However, this assumption can be too

restrictive when div b is large.
In this contribution the solution and its finite element approximation are examined for
the Neumann boundary value problem in such a case: existence and regularity of the
solution in weighted Sobolev spaces, discretization with graded meshes, error estimates
in the domain and on the boundary, numerical tests.
The application of these insights to a Neumann optimal control problem is discussed as
well. Note that for the analysis of optimal control problems the adjoint problem is used,
and the problem under consideration is not self-adjoint.
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Mass-lumping discretization and solvers for distributed elliptic
optimal control problems with L2 - regularization

Ulrich Langer1 Richard Löscher2 Olaf Steinbach3 Huidong Yang4

The purpose of this talk is to investigate the effects of the use of mass-lumping in the
finite element discretization of the reduced first-order optimality system arising from a
standard tracking-type, distributed elliptic optimal control problem withL2 regularization.
We show that mass-lumping will not affect the L2 error between the desired state and
the computed state, but will lead to a Schur-complement system that allows for a fast
matrix-by-vector multiplication. We show that the use of the Schur-Complement Precon-
ditioned Conjugate Gradient method in a nested iteration setting leads to an asymptoti-
cally optimal solver with respect to the complexity. Moreover, it is easy to parallelize this
solver.
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Nonlinear FETI-DP and Quasi-Newton Methods

Stephan Köhler1 Oliver Rheinbach2

Nonlinear FETI-DP (Finite Element Tearing and Interconnecting − Dual-Primal) methods
are domain decomposition methods for the solution of nonlinear finite element prob-
lems. In the classical Newton-Krylov-Domain-Decomposition approach, the problem of
interest is linearized first and then a domain decomposition method, such as Balancing
Domain Decomposition (BDD), Balancing Domain Decomposition by Constraints (BDDC),
Finite Element Tearing and Interconnecting (FETI-1), FETI–DP or overlapping Schwarz
methods, is used for the solution of the Newton system. In nonlinear domain decomposi-
tion method, this order is interchanged. In a first step a nonlinear domain decomposition
is built, this provides nonlinear subproblems and, possibly, a nonlinear coarse problem.
Afterwards the nonlinear decomposition is linearized.
Quasi-Newton methods compute a solution of the discretized problem by using quadratic
subproblems. These subproblems are obtained by updating some initial approxima-
tion of the Hessian with the gradient of the objective. This provides superlinear con-
vergence and, by the Sherman-Morrison-Woodbury formula, a fast computation of the
quasi-Newton update for the current iterate.,
This talk discusses the combination of Nonlinear FETI-DP and quasi-Newton methods.
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Isogeometric multilevel quadrature for forward and inverse
random acoustic scattering

Helmut Harbrecht1 Jürgen Dölz2 Carlos Jerez-Hanckes3 Michael Multerer4

This talk is concerned with the numerical solution of forward and inverse acoustic scat-
tering problems by randomly shaped obstacles in three-dimensional space using a fast
isogeometric boundary element method. Within the isogeometric framework, realiza-
tions of the random scatterer can efficiently be computed by simply updating the NURBS
mappings which represent the scatterer. This way, we end up with a random deformation
field. In particular, we show that the knowledge of the deformation field’s expectation and
covariance at the surface of the scatterer are already sufficient to compute the surface
Karhunen-Loève expansion. Leveraging on the isogeometric framework, we utilize mul-
tilevel quadrature methods for the efficient approximation of quantities of interest, such
as the scattered wave’s expectation and variance. Computing the wave’s Cauchy data
at an artificial, fixed interface enclosing the random obstacle, we can also directly infer
quantities of interest in free space. Adopting the Bayesian paradigm, we finally compute
the expected shape and the variance of the scatterer from noisy measurements of the
scattered wave at the artificial interface. Numerical results for the forward and inverse
problem are given to demonstrate the feasibility of the proposed approach.
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Solving Elliptic Partial Differential Equations on Metric Graphs
using Multigrid Methods

Max Brockmann1

The question of investigating partial differential equations (PDEs) on graphs arises in
the context of an interdisciplinary research project of the prediction of protein propaga-
tion in the brain network of Alzheimer’s Disease patients [3]. Graphs allow modelling the
structure of the brain network, while PDEs, particularly diffusion equations, describe the
protein propagation. As a first attempt to approximate such PDEs on graphs, we focus
on second order elliptic PDEs and multigrid methods for the solution of systems arising
from a finite element discretization.
In order to formulate PDEs on graphs, we explain the network structure with the help
of metric graphs. Metric graphs use an edgewise parameterization of the graph such
that differential operators can be defined on graphs. Additionally, we require Neumann-
Kirchhoff Conditions, a kind of flow conservation property, on all vertices.
We discretize the metric graph with a finite element method, as described in [1]. The dis-
cretization of the metric graph can be interpreted as an extended graph with additional
vertices. We then choose a hat function basis on the extended graph, resulting in a char-
acterisation of the weak formulation of the PDE as as(

HEE HEV
HVE HVV

)
u = f ,

where u is the coefficient vector of the solution of the PDE written in its basis.
Each submatrix HEE ,HEV , and HVV corresponds to different adjacency of hat functions
on the extended graph. Thus their size increase with more discretization points on each
of the edges. This is especially important for the matrix HEE , because it is a block- di-
agonal matrix, with each blocks size proportional to the number of discretization points.
Consequently, a fine discretization leads to a large system of equations and high com-
putational cost.
We use a multigrid method to find the solution of the system of equations, making nec-
essary adjustments for intergrid operators on graphs.
We show numerical results of the convergence rate of the multigrid method on Test prob-
lems.
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Finite Element Simulation for Elastic and Plastic Fluids

Muhammad Tayyab Bin Saghir1 Hogenrich Damanik2 Stefan Turek3

In this study, we present the development of a 2D finite-element solver for the simula-
tion of fluids exhibiting both elastic and plastic constitutive properties. These types of
fluids are commonly modeled in the constitutive communities as elastoviscoplastic flu-
ids, where the numerical variables depend on the choice of various constitutive models.
Many of these constitutive models involve different numerical frameworks to handle the
transition between the solid and liquid phases, such as the Saramito model. Although
these strategies offer improved accuracy, the numerical treatment becomes significantly
more complex, primarily due to the challenges of identifying the interface between the
two phases.
To address these complexities, we propose a similar approach from Emad Chaparian et
al. by combining the constitutive models of the Oldroyd-B model and the Papanastasiou
model for Bingham fluids within a single Eulerian numerical framework. This strategy,
which has recently gained attention in elastoviscoplasticity studies, has demonstrated
promising qualitative results. Within this approach, our aim is to approximate the veloc-
ity, pressure, and elastic stresses in both space and time. To achieve this, we employ a
high-order finite element method for the velocity-stress approximation and a discontin-
uous pressure element. This specific element pair has proven to be highly effective for
accurately capturing the behavior of both the Oldroyd-B and Bingham fluids, including
nonlinear viscosity functions.
Our study consists of two main steps. First, we validate each component of the numerical
solver individually, ensuring that the approximations and calculations are accurate. This
step is crucial to establish the reliability and robustness of our approach. Subsequently,
in the second step, we apply the solver to simulate elastoviscoplastic fluid behavior in
a porous medium. By investigating the fluid flow and deformation within this specific
context, we aim to demonstrate the capabilities and potential of our methodology.

1Institute of Applied Mathematics (LS III), TU Dortmund University, Vogelpothsweg 87, D-44227 Dort-
mund, Germany.
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3Institute of Applied Mathematics (LS III), TU Dortmund University, Vogelpothsweg 87, D-44227 Dort-
mund, Germany.
stefan.turek@mathematik.tu-dortmund.de



52 36th Chemnitz FE Symposium 2023 on tour

Finite Element Methods for Curvature Computation

Joachim Schöberl1

In this talk we present recent results on discretizing curvature by finite element methods.
One application is the simulation of elastic shells, where the bending energy is described
by the change of curvature with respect to a reference configuration. Here we need ex-
trinsic curvature of embedded manifolds, i.e. of surface meshes in R3. In the second part
we talk about intrinsic curvature, where only the metric information inside the surface is
available. Intrinsic curvature is needed also for numerical relativity. Both approaches
need the concept of distributional derivatives. We show that finite elements of Hellan-
Herrmann-Johnson and Regge-type match with these distributions. We show how to use
these methods within the NGSolve finite element package.

1Technical University of Vienna
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Algebraic multigrid for finite element discretizations

Yvan Notay1

Algebraic multigrid (AMG) methods are known as efficient to solve linear systems re-
sulting from low order finite element (FE) approximations of elliptic PDEs. However, just
going to moderate order (say, P3, P4) may raise difficulties. On the other hand, non elliptic
problems cannot be tackled directly by AMG methods.
In this lecture, we show how these difficulties may be met using aggregation-based AMG,
considering moderate order FE on the one hand, and Stokes problems on the other hand.
In both cases, the key is to combine theoretical analysis that guaranties to be “on the safe
side” with efficient coding (including many heuristics) that allow one to obtain robust
results on real life applications.

1Université Libre de Bruxelles, Service de Métrologie Nucléaire
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Adaptive least-squares space-time finite element methods

Olaf Steinbach1 Christian Köthe2 Richard Löscher3

We consider the numerical solution of an operator equation Bu = f by using a least-
squares approach. We assume that B : X → Y ∗ is an isomorphism, and that A :
Y → Y ∗ implies a norm in Y , where X and Y are Hilbert spaces. The minimizer of
the least-squares functional 1

2
∥Bu − f∥2A−1 , i.e., the solution of the operator equation,

is then characterized by the gradient equation with an elliptic and self-adjoint operator
S = B∗A−1B : X → X∗. When introducing the adjoint p = A−1(f − Bu) we end up
with a saddle point formulation to be solved numerically by using mixed finite element
methods. Based on a discrete inf-sup stability condition we derive related a priori error
estimates. While the adjoint p is zero by construction, its approximation ph serves as a
posteriori error indicator to drive an adaptive discretization scheme. While this approach
can be applied to rather general equations, here we consider second order linear partial
differential equations, including the Poisson equation, the heat equation, and the wave
equation, in order to demonstrate the potential of this proposed approach which allows
us to use almost arbitrary space-time finite element methods for the adaptive solution
of time-dependent partial differential equations.

1TU Graz, Institute of Applied Mathematics
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On the necessity of the inf-sup condition for a mixed finite
element formulation

Fleurianne Bertrand1 Daniele Boffi2

We study a non standard mixed formulation of the Poisson problem, sometimes known
as dual mixed formulation. For reasons related to the equilibration of the flux, we use
finite elements that are conforming in H(div) for the approximation of the gradients, even
if the formulation would allow for discontinuous finite elements. The scheme is not uni-
formly inf-sup stable, but we can show existence and uniqueness of the solution, as well
as optimal error estimates for the gradient variable when suitable regularity assump-
tions are made. Several additional remarks complete the paper, shedding some light on
the sources of instability for mixed formulations.
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A pollution-free ultra-weak FOSLS discretization of the Helmholtz
equation

Harald Monsuur1 Rob Stevenson2

We consider an ultra-weak first order system discretization of the Helmholtz equation.
By employing the optimal test norm, the ‘ideal’ method yields the best approximation
to the pair of the Helmholtz solution and its scaled gradient w.r.t. the norm on L2(Ω) ×
L2(Ω)

d from the selected finite element trial space. On convex polygons, the ‘practical’,
implementable method is shown to be pollution-free when the polynomial degree of the
finite element test space grows proportionally with log κ. Numerical results also on other
domains show a much better accuracy than for the Galerkin method.
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Derivation and simulation of thermoelastic Kirchhoff plates

Johanna Beier1

Within the research of the Cluster of Excellence PhoenixD it is of interest to simulate ther-
moelastic materials on thin optical components which have the structure of Kirchhoff-
Plates. This leads to a bothsided nonlinear coupled 4th order system of the heat equation
and the elasticity equations. The standard finite element method (FEM) is a powerful tool
for the numerical solution of boundary value problems of elliptic PDEs. In this talk I will
present a derivation of a 2nd order thermoelastic system on Kirchhoff-Plates following
the method of Rafetseder and Zulehner. Further I will summarize some theoretical state-
ments and show our FEM simulation results.
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Physics-based block preconditioning for mixed dimensional
beam/solid coupling

Max Firmbach1 Alexander Popp2 Matthias Mayr3

Multigrid methods are known to be highly efficient and scalable preconditioners, not
only for single-field problems but also for mortar methods ranging from contact me-
chanics to meshtying problems. An interesting application in this field is the mixed-
dimensional coupling of slender beam structures embedded into three-dimensional solid
bodies. Such beam/solid interactions can be found in several engineering scenarios (e.g.
fiber-reinforced composite materials or reinforced concrete). Imposing the coupling con-
straints via a penalty method as proposed in leads to an ill-conditioned and highly non-
diagonal dominant matrix. Solving such problems in an efficient and scalable manner
with iterative solvers is difficult and makes an appropriate preconditioning essential. Us-
ing algebraic multigrid methods (AMG) in this context is yet again challenging as there
are several open questions regarding AMG for beams and the coarsening of the mixed-
dimensional coupling terms.
This talk will discuss a physics-based block preconditioning approach based on AMG.
The outer block iteration is taken care of with an inexact LU-decomposition. A crucial
part of the calculation is the approximation of the inverse appearing in the Schur com-
plement. Using a sparse approximate inverse approach based on an appropriate sparsity
pattern helps to retain a low iteration number and parallel scalability. Multilevel ideas will
be used to approximate the block inverses appearing in the system. We will assess the
performance and the weak scalability of the proposed block preconditioner using exam-
ples of the interaction of solids with torsion-free Kirchhoff-Love and Simo-Reissner beam
finite elements.
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Solving fractional Burgers equations using the Hopf-Cole
transformation and local discontinuous Galerkin method

Mohadese Ramezani1 Reza Mokhtari2 Gundolf Haase3

We study the following time-fractional Burgers equation

Dα
t u+ ∂x

(
u2

2

)
− µ∆u = 0, (x, t) ∈ Ω× (0, T ],

u(·, t)|∂Ω = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

in which Ω is the spatial domain and Dα
t u is the time fractional derivative of order α ∈

(0, 1), i.e.

Dα
t u(·, t) =

1

Γ(2− α)

∫ t

0

(t− s)−α∂u(·, s)
∂s

ds.

Recently, Li et al. considered solving the time-fractional Burgers equation using the lo-
cal discontinuous Galerkin (LDG) method in space and L1 approximation in time. Here,
we aim to consider solving this problem with different approaches. By using the Hopf-
Cole transformation, the original time-fractional burgers equation is transformed into a
subdiffusion equation with the Neumann boundary conditions. Moreover, the solution of
the subdiffusion equation sometimes has low-order regularity in time even with smooth
initial data. Here, we are concerned with both problems whose solutions have strong reg-
ularity and weak singularity. Together with a local discontinuous Galerkin method and a
finite difference method (FDM) on a uniform mesh in time for discretizing the spatial
and temporal derivatives, respectively, we obtain the numerical solution. Handling the
singularities in the typical solution of subdiffusion problems, we establish the FDM on a
non-uniform mesh for approximating the Caputo derivative and utilize the LDG method in
space direction to derive the fully discrete method. Both numerical schemes have con-
vergence spatial rate O(hk+1) when piecewise polynomials of degree k are used. The
Caputo approximations used here are higher order than the L1 formula utilized by Li and
his coworkers.
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Implicit-explicit time discretization for Oseen’s equation at high
Reynolds number with application to fractional step methods

Deepika Garg1 Erik Burman2 Johnny Guzman3

In this talk we consider the application of implicit-explicit (IMEX) time discretizations for
the incompressible Oseen equations. The pressure velocity coupling and the viscous
terms are treated implicitly, while the convection term is treated explicitly. Both the sec-
ond order backward differentiation and the Crank-Nicolson methods are considered for
time discretization, resulting in a scheme similar to Gear’s method on the one hand and
to Adams Bashforth of second order on the other. For the discretization in space we
consider finite element methods with stabilization on the gradient jumps. The stabiliz-
ing terms ensures inf-sup stability for equal order interpolation and robustness at high
Reynolds number. Under suitable Courant conditions we prove stability of Gear’s scheme
in this regime. The stabilization allows us to prove error estimates of order O(hk+ 1

2 + τ 2).
Here h is the mesh parameter, k the polynomial order and τ the time step. Finally we show
that for inviscid flow (or underresolved viscous flow) the IMEX scheme can be written as
a fractional step method in which only a mass matrix is inverted for each velocity com-
ponent and a Poisson type equation is solved for the pressure.

1University College London
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3Brown University
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Least-Squares Finite Element Methode for a non-linear Sea-Ice
problem

Henrik Schneider1 Fleurianne Bertrand2

A nonlinear sea-ice problem is considered in a least-squares finite element setting. The
corresponding variational formulation approximating simultaneously the stress tensor
and the velocity is analysed. In particular, the least-squares functional is coercive and
continuous in an appropriate solution space. As the method does not require a com-
patibility condition between the finite element space, the formulation allows the use of
piecewise polynomial spaces of the same approximation order for both the stress and
the velocity approximations. A Newton-type iterative method is used to linearize the prob-
lem and numerical tests are provided to illustrate the theory.
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