

Mass-lumping discretization and solvers for distributed elliptic optimal control problems with L_2 - regularization

Ulrich Langer¹ Richard Löscher² Olaf Steinbach³ Huidong Yang⁴

The purpose of this talk is to investigate the effects of the use of mass-lumping in the finite element discretization of the reduced first-order optimality system arising from a standard tracking-type, distributed elliptic optimal control problem with L_2 regularization. We show that mass-lumping will not affect the L_2 error between the desired state and the computed state, but will lead to a Schur-complement system that allows for a fast matrix-by-vector multiplication. We show that the use of the Schur-Complement Preconditioned Conjugate Gradient method in a nested iteration setting leads to an asymptotically optimal solver with respect to the complexity. Moreover, it is easy to parallelize this solver.

References:

[1] http://arxiv.org/abs/2304.14664

¹Johannes Kepler University Linz, Institute of Numerical Mathematics ulanger@numa.uni-linz.ac.at

²Technische Universität Graz, Institut für Angewandte Mathematik, loescher@math.tugraz.at

³Technische Universität Graz, Institut für Angewandte Mathematik, o.steinbach@tugraz.at

⁴University of Vienna, Faculty of Mathematics, and Doppler Laboratory for Mathematical Modeling and Simulation of Next Generations of Ultrasound Devices huidong.yang@univie.ac.at