Singularity formation
in nonlinear time-dependent PDEs

Birgit Schorkhuber

Fakultdt fiir Mathematik
Karlsruher Institut fiir Technologie

birgit.schoerkhuber@kit.edu

Chemnitz Summer School on Applied Analysis 2019
23.-27.09.2019

LSupport by the Klaus-Tschira Stiftung and the CRC 1173 Wave phenomena:
analysis and numerics is gratefully acknowledged



Singularity formation in nonlinear partial differential equations

Many processes in natural sciences and applications are mathematically
described by time-dependent PDEs (heat equation, wave equation,
Schrodinger equation, Navier-Stokes equation, Einstein equations, . .. )

Nonlinearities model self-reinforcing/focusing processes = ’blowup’ of
solutions in finite time

Meaning?
Limitation of the underlying modelling assumptions
Physical system undergoes radical changes/formation of singularities

Mathematically: change of solution concept = continuation of
solutions in some weak sense?
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Singularity formation - Mathematical questions

Criteria on initial data to predict break down of solutions?

When/where/how fast do singularities form (blowup time/blowup
point/blowup speed)?

How do solutions look like close to the singularity?
Continuation past the blowup?

Behavior of generic solutions = Universality?

Similar mechanisms seem to play a role in very different types of PDEs J

Aim of this course
Give a basic introduction into the topic
Show classical methods that shed light on some of the above questions

Make links to current fields of research

Remark: Singularity formation in nonlinear PDEs is a large and active area
of research = only a few aspects can be considered here! J
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Blowup in nonlinear ODEs

Example 1: Forp>1,peN

has the blowup solution

_1
u(t) = (T - t) P=lRp, Kp= (Til)p_l
Example 2: Forp > 1, pe N
o’ (t) = u(t)?

has the blowup solution

1
__2 D1
ut) = (T —t) 7 Tcp, cp= [?Igzi)lg]p 1

In contrast to focusing nonlinearities, defocusing nonlinearities behave
better
o’ (t) = —u(t)?

for odd p > 1 = no finite-time blowup
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Nonlinear PDEs - model problems

Nonlinear wave equation on R?

Ofu(t,z) — Au(t, ) = u(t, )"
’LL(O, T) = .f(w)v 8{11(0, :U) = g(m)

Nonlinear heat equation on R?

Au(t,z) — Au(t, z) = u(t,z)?
u(0,z) = uo(x)

ODE blowup = explicit example for finite-time blowup
What are the conditions on the initial data to ensure
local existence of solutions for ¢ € [0,T") and some T > 07

global existence or all ¢t > 0, respectively finite time blowup of
solutions?
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The wave equation

Nonlinear wave equation on R?

diu(t,z) — Au(t, =) = +u(t, z)?
u(0,z) = .f(x)v atu((): T) = g(x)

for (t,x) € I x R*, I C R an interval containing 0
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The wave equation

Linear wave equation on R?

dtu(t, ) — Au(t,z) = F(t,x)
U(O, z) = f(x)> 81:’[1(0, z) = g()

for (t,x) € I x R*, I C R an interval containing 0
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The wave equation

Linear wave equation on R?

dtu(t, ) — Au(t,z) = F(t,x)
u(O, z) = f(x)v 81:’[1(0, z) = g()

for (t,x) € I x R*, I C R an interval containing 0

Free energy

Bu)(t) = /R (1Vult, o) + |dvult, 2)?) de

Basic energy estimate
IVu(t, )l L2@ay + [10cu(t, )l L2 ga)

t
< V51l 2y + gl 2y + / 1F (s, ) 2 gty ds.
(0]
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Representation of solutions - Properties
Explicit solution d = 1, F = 0, d’Alembert’s formula:

x+t
u(t.a) = 5le+0+ fa—0)+3 [ o

Higher space dimensions: Kirchhoff formula, method of descent

Finite speed of propagation = backward lightcone at (T',zq), T > 0,
o € R

Crue = {(t,x) € R : & —xo| < T —t,t €[0,T)}

(T,x0)
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Fourier transform and Sobolev spaces

Fourier transform: For f € S(R%) we define the Fourier transform by

f©) = Fn© = [ @

and 1
f@) = F @) = g [ €€
Recall:
£l oo gay < 11£ll 21 (gay and ||f||i2(Rd) =~ |12 g2
Convolution: (f % g)(x) = [za f( )9(y)dy, F(f*g) = fq

Derivatives: F(0% f)(§) = i€® f(g)
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Fourier transform and Sobolev spaces

Sobolev spaces H"(R?): Completion of S(R?) with respect to

0y = [ A+ P IFOPE = 10 +1- )5 Flaeay, & €N

For k > %, we have
£l oo ey S If e may

Proof: For f € S(RY)
[ f@de= [ 1)+ 1) o)l
R4 R4

< (/Rd<1+ f|2>—kd5)% (/Rd(” P /e Pde >;

< Ck”f”Hk(Rd)

with Cr = [Lu (14 [£]*)7*d¢ < oo for k > ¢
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The linear wave equation - Fourier representation of solutions

Fourier transform with respect to the spatial variable =

(07 + 1€Ma(t, &) = F(t,€)
@(0,€) = (&), 9(0,€) = §(¢)
Fundamental system {sin(|¢]-), cos(|¢]-)}

a(t, &) = c1(§) cos([€]t) + ca2(€) sin([€]t)

sin(|€]s) * cos([€]s) »
_ &)d h d
cos( |§\t)/ +€) 8+Slﬂ(\f|t)/0 (s,€)ds

€] €l

Fourier representation

a(t, €) = cos([€lt) f(€) + SBUEM 5y 4 / Fen(El = 9)) g )

§ €l

Duhamel’s formula

u(t, ) = cos(|V[t) f + Si“|(|vv||t)g+/o Sin(‘?éﬁ_s))F(s,-)ds

cos(|V|t)f := FH(cos(|g[t) f), LD f = F(=nlEld f)
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The linear wave equation - Energy estimates

H*- bounds for wave propergators

sin(|V|t)

| COS(|V|t)f||Hk(1Rd) S ||f||H"’(Rd)7 g
V]
HE(RT)

S+ t)Hg”Hk*l(Rd)

.

Energy estimates for the linear wave equation
llw(t, M way + [10sult, )l -1 way

t
<c(+1) (nank(Rd) Hlglleseny + [ G, ~>||HH<Rd>ds)
(0]
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The linear wave equation - Localized energy estimates

Localized energy
Boo(t) = / Vult, o) + |Bu(t, z)Pdz
BL_, (z0)

Note that £ E°(t) <0

Energy estimates (localized)

For zp e R, T >0 fix, ke Nand 0 < ¢t < T,
”u(tf)”Hk(]B,’}_t(zo)) + [|Geut, ')HHk—l(]Bglp_t(zo))

t
S ||f||Hk(BdT(z0)) + ”g”Hk*l(]B%(zo)) +/0 IR (s, ')||H’€*1(]Bg,7s(zo))ds

v
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The nonlinear wave equation

Nonlinear wave equation on R?

dtu(t,z) — Au(t, z) = +u(t, z)?
u(0,z) = f(z), 0:u(0,z) = g(z)

with p > 1 an odd integer, (t,z) € I xR, I C R, 0 € I.

Sign of the nonlinearity: focusing (+)/defocusing (-)

Conserved energy

B(u)(t) = %/ Vult, 2)|? + |Brult, 2)Pde + ——

g L )l e

Notion of criticality: Invariance under rescaling
ua(t, ) = AT u(t/\ z/X), A>0

Energy critical case p = % =:Pc

E(ux)(t) = E(u)(t/X)
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The nonlinear wave equation - Local well-posedness at high regularities

Definition: Strong H*—solution

Set Fy(u) = +uP. We say that u € C(I, H*(RY) n C* (I, H* 1 (R)) is a
strong H*—solution if it satisfies for all ¢ € T

ult) = cos(|VIE)f + %ﬁ'”g + [ Wamsm

Theorem

Let k > % and suppose f € HR(RY), g € H*"Y(RY). Thereis a T >0
(depending on the norm of the data) such that the initial value problem for
the nonlinear wave equation has a unique strong H*—solution

u e C([0,T], H*RY) n C* ([0, T], H* ' (R%))

Basic idea: Solution via contraction mapping principle

Duhamel’s formula for linear wave equation

L* embedding to control the nonlinearity
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The nonlinear wave equation - Local well-posedness at high regularities
Proof d=3, k=2

X = ([0, T], H*(R%)) n C*([0, T], H' (R?)) with norm

lullx ;= sup (Hu(t)”H2(R3) + Hatu(t)”Hl((]R{3))
0<t<T
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The nonlinear wave equation - Local well-posedness at high regularities

Proof d=3, k=2
X :=C([0,T], H*(R%)) n C*([0, T], H*(R®)) with norm

lullx ;= sup (Hu(t)HH2(R3) + Hatu(t)”Hl((]R{3))
0<t<T

For R > 0, consider

Xr:={ue X :|ul|lx <R}
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The nonlinear wave equation - Local well-posedness at high regularities

Proof d =3, k=2
X :=C([0,T], H*(R%)) n C*([0, T], H*(R®)) with norm

lullx :== sup (Hu(t)HH2(R3) + Hatu(t)||H1((R3))
0<t<T
For R > 0, consider
Xr:={ue X :|ul|lx <R}

For u € X define a map u — K(u),

K(u)(t) :==cos(|VI|t) f + Sinf'%lt)g +/0 WFi(u(s, -))ds
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The nonlinear wave equation - Local well-posedness at high regularities

Proof d =3, k=2
X :=C([0,T], H*(R%)) n C*([0, T], H*(R®)) with norm

lullx :== sup (Hu(t)HH2(R3) + Hatu(t)||H1((R3))
0<t<T
For R > 0, consider
Xr:={ue X :|ul|lx <R}

For u € X define a map u — K(u),

K(u)(t) :==cos(|VI|t) f + Sinl(%lt)g +/0 Wﬁ}(u(s, -))ds

We show K : Xr — Xg is a contraction = apply Banach’s fixed point
theorem
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The nonlinear wave equation - Local well-posedness at high regularities

Proof d =3, k=2
X :=C([0,T], H*(R%)) n C*([0, T], H*(R®)) with norm

lullx :== sup (Hu(t)HH2(R3) + Hatu(t)||H1((R3))
0<t<T
For R > 0, consider
Xr:={ue X :|ul|lx <R}

For u € X define a map u — K(u),

K(u)(t) :==cos(|VI|t) f + Sinl(%lt)g +/0 WFi(u(s, -))ds

We show K : Xr — Xg is a contraction = apply Banach’s fixed point
theorem

By definition K (u) solves linear wave equation with rhs. Fi (u)
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The nonlinear wave equation - Local existence at high regularities

Energy estimates
1K (w) () | 72 3y + 106 K (w) (8) || 1 (r3)
t
S(A4+1t) <Eo +/ ||u(s)p\|H1((]R3)ds)
0

where Eo := || f[|g2 + [lg]lm
Estimates for the nonlinearity, « € H*(R?) = u € L>®(R?)
el sy < €l
Then
1K (w) ()| 23y + 10K (u) (t) || 1wy < C(L+T)(Eo +TC'R?) < R
for R > 0 sufficiently large and T ~ Eo_(p_l) sufficiently small.
Show K : Xr — Xg is a contraction: Let u,v € Xg, then

K(u)(t) - K(v)(t) = / (VU= [ (u(s)) — Fa(v(s)))ds
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The nonlinear wave equation - Local existence at high regularities

Energy estimates
[ K (u)(t) = K(0)(0)||2rs) + 10:K (u)(t) = 0K (0) (@) || 112 ms)

t
<o(+T) / 47 (5) — 07 () | s ey s
0

I
Use u? —oP = (u—v) 3P u? 1700 to get

-1 -1
I = sy S s — 0l oy ety + ol
We obtain
_ 1
1 (u) = K(@)llx < Co(l+T)TR" u—v]x < Sllu—v]x
for sufficiently small T' ~ E; *~ Y.

Banach fixed point theorem = Existence of a unique solution v € Xg
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The nonlinear wave equation - Local existence at high regularities

Unconditional uniqueness: Let u, @ € X be strong H*—solutions on
[0,T], set v:=u—1a

o)l 22 @sy + 100 () || 21 w3y

t
< +1) / () 2 ) ) 2522 sy + () 272t s

t
< / 10(8) 112y + 1050(3) | 12y s
0

Gronwall inequality = v =0
Persistence of regularity (smooth data implies smooth solution)

Smoothness of the nonlinearity: For any k& > %

e Lrzv ey < Nl g,

t
@)l a5 @) + 10w m2es) S W flms@s) + I9llm2@s) + [ uls)” g2 @ayds
0

S Nersrsy + 19l 2 sy + Tllull%k

Use energy estimates in lightcones = Finite speed of propagation holds
for nonlinear problem
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The nonlinear wave equation - Local existence at high regularities

Maximal solution/Blowup criterion
There is a 0 < T+ < oo such that
There is a strong H?— solution on I, = [0,7}) which is the only one
in Iy
If @ is another solution on some I C [0,00), then I C I
If T} < oo then limsup, . ([|u(t)||m2@s) + 10:u(t)|| a1 gs)) = o0
If Ty < oo then [lu(t, )|l Loo(jo,1, )xR3) = 00

Remarks
The same strategy works in all space dimension at regularity s > g
Local existence for negative times [0,7) — (T-,T4)

Ty = 00?
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The defocusing wave equation

Can the conserved energy be used to obtain global existence?

(), Oeul) g1 x p2ray = Vel L2 ey + [10eu(t)] 2 (e

Energy estimates

IVu()ll L2 ga)+l10cu(t)] 2 ey S ||f||Lz(Rd)+|\glle<Rd>+/ l[u($)” [l 2w ds
Main challenge: Control of the nonlinear term
Special case: d = 3, p = 3 Sobolev embedding H'(R®) < L°(R?)
()l 23y = () Zo@s) S IVullZos)

Fixed point argument in

X = {C([0,T], H'(R*)) n C* ([0, T], L*(R?))}
Xr C X, R~ ||(f,9)l g1 x 12 g3y = solution on [0,T], T ~ R™*
Defocusing case

[ 1vutt. o) + 10 a) < By

for all t > 0 = Global existence of solutions!
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Local/global existence of solutions in the energy space

Remarks

More general: Control of the nonlinearity via Strichartz estimates =
Local existence in the energy space for 1 < p < p.

Global existence for the defocusing wave equation for 1 < p < p.
Energy space not suitable for supercritical problems p > p.

No globally (in time) controlled quantities at higher Sobolev
regularities

Big open question: Global existence for the defocusing wave equation in the
supercritical case p > p.? J
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The focusing wave equation - Finite-time blowup

For the focusing wave equation, finite-time blowup solutions do exist

Ou(t,x) — Au(t, z) = u(t, )"
u(07 x) = f(l‘),atu(o,l‘) = g(m)
ODE blowup

_1
ur(t,e) = (T =) 7 cp, o= [2H]"7, T>0

Define smooth initial data (f, g) such that
f(@) =ur(0,z), g(zx)=0wur(0,z) Ve @

and f(z) = g(z) =0 for |z| > 3T.
Finite speed of propagation = the solution blows up at t = T on B5.
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The focusing nonlinear wave equation

We use this example to show that for p = 7 the initial value problem is not
locally well-posed in the energy space H'(R?*) x L?(R?).

We have the explicit solution u(¢,z) = (1 — t)_%m

Define initial data (f, g) as above = the corresponding solution blows
upatt=1

Rescaling ux(t,x) = )\_%u(t/)\, x/X). Then
(ux, Orun)li=0 = (fr, 91) = (ui, Oul)e=0  in B3,

= ux(t,z) blows up at t = A
Define a sequence (A\;) C R™ such that

. ) o \1/6
jhm A =0, jE:O AT < o0
Define (fx;,9x;)

IV 55, 2@y €A1V F 22 @s)
and similar for gy ;.
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The focusing nonlinear wave equation

Choose z; € R? | lim; o0 z; exists and such that the supports of
fi(@) = fx; (@ =), gi(x) == gx;(z — ;)

are mutually disjoint.
Define

Then -
Hv.f||L2(R3) 5 ZA;/GHVJCHL?(RS) 5 ||Vf||L2(R3)

j=0
and similar for g
By taking
f =

Mg

v a=>_4
j=N

for some large N € N = data arbitrarily small in H' x L*(R?)

Il
2

J
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The focusing wave equation - Finite-time blowup

Levine (1974): Negative energy = Finite-time blowup
Let (f, g) be smooth, compactly supported initial data with

-1 2 2, 1 p+1
Boi=3 [ IVI@P +la@Pds— = [ 1f@Pa <0

Then the corresponding solution cannot exist for all times.

Proof: e.g. [Evans, Chapter 12]
Define I(t) := ||u(t, -)||%2(R3) and J(t) :=I(t)"% 24+4a=p+1
Use energy conservation
E(0) < 0= J(t) is a convex function for all ¢ > 0

Argue by contradiction
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The nonlinear heat equation

Nonlinear heat equation on R?

Owu(t, ) — Au(t, ) = u(t,z)?

u(0, ) = uo(x)

Scale invariance u — uy
ux(t,x) = )\Pzﬁu()\Qt, Az), A>0

Energy

E(u)(t) = %/}Rd Vu(t, 2)2dz — Zﬁ /Rd lu(t, )| da

Energy dissipation £ E(u)(t) <0, VT > 0
Energy critical’ exponent for d > 3

Blowup in finite time if F(u)(0) <0
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The linear heat equation

We consider the Cauchy problem

Owu(t, ) — Au(t,z) =0 zeR"t>0
u(0,x) = uo(z)

Solution via Fourier transform =

u(t,z) = [Gt * uol(x) = /

R

, Gie(z — y)uo(y)dy =: [S(t)uo](z)

|z|?

with heat kernel G¢(z) = (47rt)_%e_ [
Gi(z) > 0,Vz €RY, [, Gi(z)dz =1

Semigroup property: Gsy: = Gs *x Gy =
S(t+ s)uo = S(t)S(s)up, Yt >s>0
Maximum principle: uo(z) > 0 = u(t,z) > 0,Vt > 0, = € R?

uo Z 0=
d
lim (47t)2 u(t, =) = |luoll 11 (ra)
t—o0
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The nonlinear heat equation - a Fujita-type result

Solution concept: Classical solutions or solutions that satisfy for ¢ € [0,T)

u(t) = S(t)uo + /0 " St — s)u(s)"ds (1)

Fujita exponent 1 < pr < pc

2
pF:1+E

Theorem (Blowup for 1 < p < pp)

Let 1 <p<pp,u >0¢eL! (]Rd). Then there is no non-negative global
solution to Eq. (1).

Remark: Such critical exponents can also be found for the nonlinear wave
equation (’Strauss’ exponent)
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The nonlinear heat equation - Fujita-type results

Sketch of the proof for 1 < p < pp, see book [Quittner-Souplet 2007, Sec.18]

Basic idea: Compare decay estimates for ’free’ evolution S(t)uo implied
by Eq. (1) with linear decay rate t=2
More precisely, from Eq. (1) we obtain that

1

[S(t)uol(x) St~ 7T
This implies
(4rt) [S(t)uo] (z) S ¢
such that for 1 < p < pr

lim (47t) 2 [S(t)uo)(z) = 0

t—o0

which contradicts

lim (47¢) % [S(t)uo](z) = |[uol| L1 (na)-

t—o0
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Self-similar blowup solutions

Scale invariant problems = self-similar solutions?

We first consider this for the nonlinear wave equation

Self-similar blowup solutions
ur(t,@) = (T — )" 51U(Lk) J

Insert this ansatz into the nonlinear wave equation = nonlinear ODE

(1= YU (p) + (2 = 2252) U'(p) — 21U (p) = U (p)”
Finite speed of propagation = look for solutions that are smooth at
least in a backward lightcone, i.e., for all p € [0, 1]

Trivial solution Up(p) = ¢p for all d > 1.

Non-trivial profiles exist in the subcritical and supercritical case (ODE
methods, numerics)
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The focusing cubic wave equation - Non-trivial self-similar blowup

[Glogié¢-S., arXiv preprint (2018)] Ezplicit example: p =3, d > 5,

T—t

wp(t,z) = (T —t)"'U" ( ] ) U*(p) = 2¢/2(d —1)(d — 4)

d— 4+ 3p?
— t=0
— t=05
— t=0.7
— t=0.8
0{5 1?0 15 20
Figure: Blowup solution u}(t,7) = (1 — )~ 'U*({%;) for d =7
o = =

Qe
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The wave equation - Stable blowup behavior?

Q: Do self-similar solutions reflect properties of generic blowup solutions? J

Numerical experiments [Bizon-Chmaj-Tabor, Nonlinearity 17 (2004)]

ODE blowup describes behavior of generic blowup solutions locally
around blowup point

up appears at the threshold between finite-time blowup and global
existence [Maliborski-Glogi¢-S., arXiv preprint (2019)]
Some analytic results

d = 1: ODE blowup describes universal blowup behavior in backward
lightcone of the blowup point [Merle-Zaag|, J. Funct. Anal. 253 (2007)

d > 3: ODE blowup is stable under small perturbations in backward
lightcone of the blowup point [Donninger-S., Dyn. Partial Differ. Equ.
9 (2012), Trans. Amer. Math. Soc. 366 (2014)]

Co-dimension one stability of u7 |Glogi¢-S., arXiv preprint (2018)]
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Analysis of self-similar blowup behavior

Reformulation of the problem using similarity coordinates

X — X0
T—t’

&= 7=—log(T —t)+1logT

0] =T px0l =T x
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Analysis of self-similar blowup behavior

Reformulation of the problem using similarity coordinates

X — X0
T—t’

&= 7=—log(T —t)+1logT
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Analysis of self-similar blowup behavior

Reformulation of the problem using similarity coordinates

X — X0
T—t’

&= 7=—log(T —t)+1logT

= ©0) R

Rescaled variable ¥(7,&) = (T — t)ﬁu(t, x)

(82 + B30, + 267050, — (57 — 76")0¢, On + 225670y + 252505 v = v”

Self-similar solutions that blowup at (7', zo) = static solution
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The nonlinear heat equation - Self-similar blowup

Self-similar blowup solutions:
u(t,z) = (T =) 771 f(75), T>0

The profiles w satisfy the elliptic equation

~Aw(y) + 3y Vo) + Fu() = vl ye R

ly]
With o(y) = e” 3 we write

=9 (ovum) =) (w6 - o) @)

Constant solutions

w(y) =0, w(y) =+(1—p) 7T

In particular: The ODE blowup is a trivial self-similar solution
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The nonlinear heat equation - Self-similar blowup

For 1 < p < p. there are no non-trivial solutions to Eq. (2).

Theorem (Giga-Kohn, Comm. Pure Appl. Math. 38 (1985), no. 3) J

Sketch of the proof: Multiply Eq. (2) with w and |y|*w to obtain

L vutemas = [ (1wl - 2lewl o @)
and
[ 0PITe@Powis = [ Pl oy
R4 R4

+ [ (@ - 2Pl oty Y

35 / 41



The nonlinear heat equation - Self-similar blowup

Multiplication by y - Vw implies

/Rd <% + ¥) IVu(y)|*o(y)dy
= [0 - ) (FHRP - ko)l oW

Then 2dx (3) - (4) + 2(p+ 1)x (5) yields

(®)

Pohozaev identity

/ (2= dp+d+2)|Vu(y)o(y)dy + ;%1 / y|*IVw(y)[*o(y)dy =0
Rd R4

This implies that w = const. for d < 2ord>3 and 1 < p < %
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The nonlinear heat equation - Self-similar blowup solutions for p > p.

For p > p., there exist radial non-trivial self-similar blowup solutions.

Example: p=2,7 < d <15,
24a b
=+ —
(a+p%)?  a+p?

ur(e,t) = (T =) f(Fes),  £(p)
with constants

a=210\/1+ % —-d—14), b=24(y/1+ % -2).

1200 F

1000

— t=0
— t=0.5
— t=0.9
— t=0.95

800

600 -

400

200

0.2 0.4 0.6 08 1.0

Figure: Blowup solution ur(¢,7) = (1 — t)*lf(ﬁ) ford=7T=1
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Stable self-similar blowup in related models

Example 1 (co-rotational wave maps into S)

OR0(t.r) — GR((t.7) — 20ru(t.r) + TEETD) g

Scale invariance 1 — ¥ (t,7) := V(AL Ar), A >0

Self-similar blowup solution (gradient blowup)

Pr(t,r) = 2arctan(F)

k), T=1

—_— t=0.99
— =09
— 1=0.5

—_— =0

Figure: Blowup solution 1 (¢,7)
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Stable self-similar blowup in related models

Example 1 (co-rotational wave maps into S)

F(t,r) — Fp((tr) — = Tw«t )+W:0

Scale invariance ) — ¥y (¢, 1) := 'g/}()\t, Ar), A >0

Extension past the blowup time [Biernat-Donninger-S., to appear in IMRN]

Y1 (t,r) = 4arctan (

”
T—t++/(T—t)2+7r2 )

P, T=1

—_—t=2

—t=15
— =11
— t=1.01
— t=0.99
— t=09

— t=05
— t=0

Figure: Blowup solution 7 (¢, r)
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Stable self-similar blowup in related models
Example 2 (Yang-Mills heat flow)

dwu(r,t) — dfu(r,t) — #&u(r, t) = 3(d — 2)u’(r, t) — (d — 2)r°u®(r, t)

Self-similar blowup solution for d > 5
[Weinkove, Calc. Var. PDE 19 (2004)]

wrlnt) = 75 W (7). W) = oy

Wip)

0

T 1 2 3 4

Figure: uk(r,t) ind =5 for T =1
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Energy critical wave equation p = p,

Explicit static solution

2 (d—2)/2
W) = (1+7555) .

[Kenig-Merle, Acta Math. 201 (2008)] For E((f,g)) < E(W), if

IVfllzz < [VW]|z2 = Global existence.
IVflizz > IVW]||2 = Finite time blowup.

Type II blowup solutions

u(t,x) ~ A(t) " P- 1W(A(t)) At) —>0ast—>T
[Krieger-Schlag-Tataru, Duke Math. J. 147 (2009)]
: [Hillairet-Raphaél, Anal. PDE 5 (2012)]

O &
-
—_— N W
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Further reading

Books/Lecture Notes

L.C. Evans,Partial Differential Equations (Second Edition)
C. Sogge, Lectures on non-linear wave equations.

J. Shatah, M. Struwe, Geometric wave equations

W. Strauss, Nonlinear Wave Equations

T. Tao, Nonlinear dispersive equations. Local and global
analysis

P. Quittner, P. Souplet Superlinear parabolic problems
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Thank you for your attention!



