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Singularity formation in nonlinear partial differential equations

Many processes in natural sciences and applications are mathematically
described by time-dependent PDEs (heat equation, wave equation,
Schrödinger equation, Navier-Stokes equation, Einstein equations, . . . )

Nonlinearities model self-reinforcing/focusing processes ⇒ ’blowup’ of
solutions in finite time

Meaning?

I Limitation of the underlying modelling assumptions
I Physical system undergoes radical changes/formation of singularities
I Mathematically: change of solution concept ⇒ continuation of

solutions in some weak sense?
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Singularity formation - Mathematical questions

I Criteria on initial data to predict break down of solutions?

I When/where/how fast do singularities form (blowup time/blowup
point/blowup speed)?

I How do solutions look like close to the singularity?

I Continuation past the blowup?

I Behavior of generic solutions ⇒ Universality?

Similar mechanisms seem to play a role in very different types of PDEs

Aim of this course

I Give a basic introduction into the topic

I Show classical methods that shed light on some of the above questions

I Make links to current fields of research

Remark: Singularity formation in nonlinear PDEs is a large and active area
of research ⇒ only a few aspects can be considered here!
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Blowup in nonlinear ODEs

I Example 1: For p > 1, p ∈ N

u′(t) = u(t)p

has the blowup solution

u(t) = (T − t)−
1

p−1 κp, κp = ( 1
p−1

)
1

p−1

I Example 2: For p > 1, p ∈ N

u′′(t) = u(t)p

has the blowup solution

u(t) = (T − t)−
2

p−1 cp, cp =
[
2(p+1)

(p−1)2

] 1
p−1

I In contrast to focusing nonlinearities, defocusing nonlinearities behave
better

u′′(t) = −u(t)p

for odd p > 1⇒ no finite-time blowup
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Nonlinear PDEs - model problems

Nonlinear wave equation on Rd

∂2
t u(t, x)−∆u(t, x) = u(t, x)p

u(0, x) = f(x), ∂tu(0, x) = g(x)

Nonlinear heat equation on Rd

∂tu(t, x)−∆u(t, x) = u(t, x)p

u(0, x) = u0(x)

ODE blowup ⇒ explicit example for finite-time blowup

What are the conditions on the initial data to ensure

I local existence of solutions for t ∈ [0, T ) and some T > 0?

I global existence or all t > 0, respectively finite time blowup of
solutions?
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The wave equation

Nonlinear wave equation on Rd

∂2
t u(t, x)−∆u(t, x) = ±u(t, x)p

u(0, x) = f(x), ∂tu(0, x) = g(x)

for (t, x) ∈ I × Rd, I ⊂ R an interval containing 0
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The wave equation

Linear wave equation on Rd

∂2
t u(t, x)−∆u(t, x) = F (t, x)

u(0, x) = f(x), ∂tu(0, x) = g(x)

for (t, x) ∈ I × Rd, I ⊂ R an interval containing 0

6 / 41



The wave equation

Linear wave equation on Rd

∂2
t u(t, x)−∆u(t, x) = F (t, x)

u(0, x) = f(x), ∂tu(0, x) = g(x)

for (t, x) ∈ I × Rd, I ⊂ R an interval containing 0

I Free energy

E(u)(t) =

∫
Rd

(
|∇u(t, x)|2 + |∂tu(t, x)|2

)
dx

Basic energy estimate

‖∇u(t, ·)‖L2(Rd) + ‖∂tu(t, ·)‖L2(Rd)

. ‖∇f‖L2(Rd) + ‖g‖L2(Rd) +

∫ t

0

‖F (s, ·)‖L2(Rd)ds.
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Representation of solutions - Properties

I Explicit solution d = 1, F = 0, d’Alembert’s formula:

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

∫ x+t

x−t
g(s)ds.

I Higher space dimensions: Kirchhoff formula, method of descent
I Finite speed of propagation ⇒ backward lightcone at (T, x0), T > 0,
x0 ∈ Rd

CT,x0 := {(t, x) ∈ Rd : |x− x0| ≤ T − t, t ∈ [0, T )}

x

(T,x0)
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Fourier transform and Sobolev spaces

Fourier transform: For f ∈ S(Rd) we define the Fourier transform by

f̂(ξ) = (Ff)(ξ) =

∫
Rd

e−ixξf(x)dx

and
f(x) = (F−1f̂)(x) :=

1

(2π)d

∫
Rd

eixξf̂(ξ)dξ.

Recall:
I ‖f̂‖L∞(Rd) ≤ ‖f‖L1(Rd) and ‖f̂‖2L2(Rd) ' ‖f‖

2
L2(R2)

I Convolution: (f ? g)(x) =
∫
Rd f(x− y)g(y)dy, F(f ? g) = f̂ ĝ

I Derivatives: F(∂αf)(ξ) = iξαf̂(ξ)
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Fourier transform and Sobolev spaces

Sobolev spaces Hk(Rd): Completion of S(Rd) with respect to

‖f‖2Hk(Rd) :=

∫
Rd

(1 + |ξ|2)k|f̂(ξ)|2dξ = ‖(1 + | · |2)
k
2 f̂‖2L2(Rd), k ∈ N0

I For k > d
2
, we have

‖f‖L∞(Rd) . ‖f‖Hk(Rd)

Proof: For f ∈ S(Rd)∫
Rd

|f̂(ξ)|dξ =

∫
Rd

(1 + |ξ|2)−k/2(1 + |ξ|2)k/2|f̂(ξ)|dξ

≤
(∫

Rd

(1 + |ξ|2)−kdξ

) 1
2
(∫

Rd

(1 + |ξ|2)k|f̂(ξ)|2dξ
) 1

2

≤ Ck‖f‖Hk(Rd)

with Ck =
∫
Rd(1 + |ξ|2)−kdξ <∞ for k > d

2
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The linear wave equation - Fourier representation of solutions

Fourier transform with respect to the spatial variable ⇒

(∂2
t + |ξ|2)û(t, ξ) = F̂ (t, ξ)

û(0, ξ) = f̂(ξ), ∂tû(0, ξ) = ĝ(ξ)

Fundamental system {sin(|ξ|·), cos(|ξ|·)}

û(t, ξ) = c1(ξ) cos(|ξ|t) + c2(ξ) sin(|ξ|t)

− cos(|ξ|t)
∫ t

0

sin(|ξ|s)
|ξ|

ĥ(s, ξ)ds+ sin(|ξ|t)
∫ t

0

cos(|ξ|s)
|ξ|

ĥ(s, ξ)ds

Fourier representation

û(t, ξ) = cos(|ξ|t)f̂(ξ) +
sin(|ξ|t)
|ξ| ĝ(ξ) +

∫ t

0

sin(|ξ|(t− s))
|ξ| F̂ (s, ξ)ds

Duhamel’s formula

u(t, ·) = cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F (s, ·)ds

cos(|∇|t)f := F−1(cos(|ξ|t)f̂), sin(|∇|t)
|∇| f = F−1( sin(|ξ|t)

|ξ| f̂)
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The linear wave equation - Energy estimates

Hk- bounds for wave propergators

‖ cos(|∇|t)f‖Hk(Rd) . ‖f‖Hk(Rd),

∥∥∥∥ sin(|∇|t)
|∇| g

∥∥∥∥
Hk(Rd)

. (1 + t)‖g‖Hk−1(Rd)

Energy estimates for the linear wave equation

‖u(t, ·)‖Hk(Rd) + ‖∂tu(t, ·)‖Hk−1(Rd)

≤ C(1 + t)

(
‖f‖Hk(Rd) + ‖g‖Hk−1(Rd) +

∫ t

0

‖h(s, ·)‖Hk−1(Rd)ds

)
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The linear wave equation - Localized energy estimates

Localized energy

Elocu (t) :=

∫
Bd
T−t

(x0)

|∇u(t, x)|2 + |∂tu(t, x)|2dx

Note that d
dt
Elocu (t) ≤ 0

Energy estimates (localized)

For x0 ∈ Rd, T > 0 fix, k ∈ N and 0 < t < T ,

‖u(t,·)‖Hk(Bd
T−t

(x0))
+ ‖∂tu(t, ·)‖Hk−1(Bd

T−t
(x0))

. ‖f‖Hk(Bd
T
(x0))

+ ‖g‖Hk−1(Bd
T
(x0))

+

∫ t

0

‖h(s, ·)‖Hk−1(Bd
T−s

(x0))
ds
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The nonlinear wave equation

Nonlinear wave equation on Rd

∂2
t u(t, x)−∆u(t, x) = ±u(t, x)p

u(0, x) = f(x), ∂tu(0, x) = g(x)

with p > 1 an odd integer, (t, x) ∈ I × Rd, I ⊂ R, 0 ∈ I.

I Sign of the nonlinearity: focusing (+)/defocusing (-)

I Conserved energy

E(u)(t) =
1

2

∫
Rd

|∇u(t, x)|2 + |∂tu(t, x)|2dx∓ 1

p+ 1

∫
Rd

|u(t, x)|p+1dx

I Notion of criticality : Invariance under rescaling

uλ(t, x) = λ
− 2

p−1 u(t/λ, x/λ), λ > 0

I Energy critical case p = d+2
d−2

=: pc

E(uλ)(t) = E(u)(t/λ)
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The nonlinear wave equation - Local well-posedness at high regularities

Definition: Strong Hk−solution
Set F±(u) = ±up. We say that u ∈ C(I,Hk(Rd) ∩ C1(I,Hk−1(Rd)) is a
strong Hk−solution if it satisfies for all t ∈ I

u(t) = cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F±(u(s))ds

Theorem

Let k > d
2

and suppose f ∈ Hk(Rd), g ∈ Hk−1(Rd). There is a T > 0
(depending on the norm of the data) such that the initial value problem for
the nonlinear wave equation has a unique strong Hk−solution

u ∈ C([0, T ], Hk(Rd) ∩ C1([0, T ], Hk−1(Rd))

Basic idea: Solution via contraction mapping principle
I Duhamel’s formula for linear wave equation

I L∞ embedding to control the nonlinearity
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The nonlinear wave equation - Local well-posedness at high regularities

Proof d = 3, k = 2

I X := C([0, T ], H2(Rd)) ∩ C1([0, T ], H1(R3)) with norm

‖u‖X := sup
0≤t≤T

(
‖u(t)‖H2(R3) + ‖∂tu(t)‖H1((R3)

)

I For R > 0, consider

XR := {u ∈ X : ‖u‖X ≤ R}

I For u ∈ X define a map u 7→ K(u),

K(u)(t) := cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F±(u(s, ·))ds

I We show K : XR → XR is a contraction ⇒ apply Banach’s fixed point
theorem

I By definition K(u) solves linear wave equation with rhs. F±(u)

15 / 41



The nonlinear wave equation - Local well-posedness at high regularities

Proof d = 3, k = 2

I X := C([0, T ], H2(Rd)) ∩ C1([0, T ], H1(R3)) with norm

‖u‖X := sup
0≤t≤T

(
‖u(t)‖H2(R3) + ‖∂tu(t)‖H1((R3)

)
I For R > 0, consider

XR := {u ∈ X : ‖u‖X ≤ R}

I For u ∈ X define a map u 7→ K(u),

K(u)(t) := cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F±(u(s, ·))ds

I We show K : XR → XR is a contraction ⇒ apply Banach’s fixed point
theorem

I By definition K(u) solves linear wave equation with rhs. F±(u)

15 / 41



The nonlinear wave equation - Local well-posedness at high regularities

Proof d = 3, k = 2

I X := C([0, T ], H2(Rd)) ∩ C1([0, T ], H1(R3)) with norm

‖u‖X := sup
0≤t≤T

(
‖u(t)‖H2(R3) + ‖∂tu(t)‖H1((R3)

)
I For R > 0, consider

XR := {u ∈ X : ‖u‖X ≤ R}

I For u ∈ X define a map u 7→ K(u),

K(u)(t) := cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F±(u(s, ·))ds

I We show K : XR → XR is a contraction ⇒ apply Banach’s fixed point
theorem

I By definition K(u) solves linear wave equation with rhs. F±(u)

15 / 41



The nonlinear wave equation - Local well-posedness at high regularities

Proof d = 3, k = 2

I X := C([0, T ], H2(Rd)) ∩ C1([0, T ], H1(R3)) with norm

‖u‖X := sup
0≤t≤T

(
‖u(t)‖H2(R3) + ‖∂tu(t)‖H1((R3)

)
I For R > 0, consider

XR := {u ∈ X : ‖u‖X ≤ R}

I For u ∈ X define a map u 7→ K(u),

K(u)(t) := cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F±(u(s, ·))ds

I We show K : XR → XR is a contraction ⇒ apply Banach’s fixed point
theorem

I By definition K(u) solves linear wave equation with rhs. F±(u)

15 / 41



The nonlinear wave equation - Local well-posedness at high regularities

Proof d = 3, k = 2

I X := C([0, T ], H2(Rd)) ∩ C1([0, T ], H1(R3)) with norm

‖u‖X := sup
0≤t≤T

(
‖u(t)‖H2(R3) + ‖∂tu(t)‖H1((R3)

)
I For R > 0, consider

XR := {u ∈ X : ‖u‖X ≤ R}

I For u ∈ X define a map u 7→ K(u),

K(u)(t) := cos(|∇|t)f +
sin(|∇|t)
|∇| g +

∫ t

0

sin(|∇|(t− s))
|∇| F±(u(s, ·))ds

I We show K : XR → XR is a contraction ⇒ apply Banach’s fixed point
theorem

I By definition K(u) solves linear wave equation with rhs. F±(u)

15 / 41



The nonlinear wave equation - Local existence at high regularities

I Energy estimates

‖K(u)(t)‖H2(R3) + ‖∂tK(u)(t)‖H1((R3)

. (1 + t)

(
E0 +

∫ t

0

‖u(s)p‖H1((R3)ds

)
where E0 := ‖f‖H2 + ‖g‖H1

I Estimates for the nonlinearity, u ∈ H2(R3)⇒ u ∈ L∞(R3)

‖up‖H1(R3) ≤ C
′‖u‖p

H2(R3)

I Then

‖K(u)(t)‖H2(R3) + ‖∂tK(u)(t)‖H1(R3) ≤ C(1 + T )(E0 + TC′Rp) ≤ R

for R > 0 sufficiently large and T ∼ E−(p−1)
0 sufficiently small.

I Show K : XR → XR is a contraction: Let u, v ∈ XR, then

K(u)(t)−K(v)(t) =

∫ t

0

sin(|∇|(t−s))
|∇| [F±(u(s))− F±(v(s))]ds

16 / 41



The nonlinear wave equation - Local existence at high regularities

I Energy estimates

‖K(u)(t)−K(v)(t)‖H2(R3) + ‖∂tK(u)(t)− ∂tK(v)(t)‖H1(R3)

≤ C(1 + T )

∫ t

0

‖up(s)− vp(s)‖H1(R3)ds

I Use up − vp = (u− v)
∑p−1
j=0 u

p−1−jvj to get

‖up − vp‖H1(R3) . ‖u− v‖H2(R3)(‖u‖
p−1

H2(R3)
+ ‖v‖p−1

H2(R3)
)

I We obtain

‖K(u)−K(v)‖X ≤ C0(1 + T )TRp−1‖u− v‖X ≤
1

2
‖u− v‖X

for sufficiently small T ∼ E−(p−1)
0 .

I Banach fixed point theorem ⇒ Existence of a unique solution u ∈ XR
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The nonlinear wave equation - Local existence at high regularities

I Unconditional uniqueness: Let u, ũ ∈ X be strong Hk−solutions on
[0, T ], set v := u− ũ

‖v(t)‖H2(R3) + ‖∂tv(t)‖H1(R3)

. (1 + t)

∫ t

0

‖v(s)‖H2(R3)(‖u(s)‖p−1

H2((R3)
+ ‖ũ(s)‖p−1

H2(R3)
)ds

.
∫ t

0

‖v(s)‖H2(R3) + ‖∂sv(s)‖H1(R3)ds

Gronwall inequality ⇒ v = 0
I Persistence of regularity (smooth data implies smooth solution)

Smoothness of the nonlinearity: For any k > 3
2

‖up‖Hk(R3) . ‖u‖
p

Hk(R3)

‖u(t)‖H3(R3) + ‖∂tu(t)‖H2(R3) . ‖f‖H3(R3) + ‖g‖H2(R3) +

∫ t

0

‖u(s)p‖H2(Rd)ds

. ‖f‖H3(R3) + ‖g‖H2(R3) + T‖u‖pX
I Use energy estimates in lightcones ⇒ Finite speed of propagation holds

for nonlinear problem
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The nonlinear wave equation - Local existence at high regularities

Maximal solution/Blowup criterion
There is a 0 < T+ ≤ ∞ such that

I There is a strong H2− solution on I+ = [0, T+) which is the only one
in I+

I If ũ is another solution on some I ⊂ [0,∞), then I ⊆ I+
I If T+ <∞ then lim supt→T+

(‖u(t)‖H2(R3) + ‖∂tu(t)‖H1(R3)) =∞
I If T+ <∞ then ‖u(t, ·)‖L∞([0,T+)×R3) =∞

Remarks

I The same strategy works in all space dimension at regularity s > d
2

I Local existence for negative times [0, T+)→ (T−, T+)

I T± =∞?
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The defocusing wave equation

Can the conserved energy be used to obtain global existence?

‖(u(t), ∂tu(t))‖Ḣ1×L2(Rd) := ‖∇u(t)‖L2(Rd) + ‖∂tu(t)‖L2(Rd)

I Energy estimates

‖∇u(t)‖L2(Rd)+‖∂tu(t)‖L2(Rd) . ‖f‖L2(Rd)+‖g‖L2(Rd)+

∫ t

0

‖u(s)p‖L2(R3)ds

Main challenge: Control of the nonlinear term
I Special case: d = 3, p = 3 Sobolev embedding Ḣ1(R3) ↪→ L6(R3)

‖u(t)3‖L2(R3) = ‖u(t)‖3L6(R3) . ‖∇u‖
3
L2(R3)

Fixed point argument in

X := {C([0, T ], Ḣ1(R3)) ∩ C1([0, T ], L2(R3))}

XR ⊂ X, R ∼ ‖(f, g)‖Ḣ1×L2(R3) ⇒ solution on [0, T ], T ∼ R−2

I Defocusing case ∫
Rd

|∇u(t, x)|2 + |∂tu(t, x)|2 ≤ E(f,g)

for all t > 0 ⇒ Global existence of solutions!
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Local/global existence of solutions in the energy space

Remarks

I More general: Control of the nonlinearity via Strichartz estimates ⇒
Local existence in the energy space for 1 < p ≤ pc

I Global existence for the defocusing wave equation for 1 < p ≤ pc
I Energy space not suitable for supercritical problems p > pc

I No globally (in time) controlled quantities at higher Sobolev
regularities

Big open question: Global existence for the defocusing wave equation in the
supercritical case p > pc?
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The focusing wave equation - Finite-time blowup

For the focusing wave equation, finite-time blowup solutions do exist

∂2
t u(t, x)−∆u(t, x) = u(t, x)p

u(0, x) = f(x), ∂tu(0, x) = g(x)

ODE blowup

uT (t, x) = (T − t)−
2

p−1 cp, cp =
[
2(p+1)

(p−1)2

] 1
p−1

, T > 0

I Define smooth initial data (f, g) such that

f(x) = uT (0, x), g(x) = ∂tuT (0, x) ∀x ∈ B3
2T

and f(x) = g(x) = 0 for |x| ≥ 3T .
I Finite speed of propagation ⇒ the solution blows up at t = T on B3

T
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The focusing nonlinear wave equation

We use this example to show that for p = 7 the initial value problem is not
locally well-posed in the energy space Ḣ1(R3)× L2(R3).

I We have the explicit solution u(t, x) = (1− t)−
1
3 c7

I Define initial data (f, g) as above ⇒ the corresponding solution blows
up at t = 1

I Rescaling uλ(t, x) = λ−
1
3 u(t/λ, x/λ). Then

(uλ, ∂tuλ)|t=0 = (fλ, gλ) = (u∗λ, ∂tu
∗
λ)|t=0 in B3

2λ

⇒ uλ(t, x) blows up at t = λ

I Define a sequence (λj) ⊂ R+ such that

lim
j→∞

λj = 0,
∞∑
j=0

λ
1/6
j <∞

I Define (fλj , gλj ) ,

‖∇fλj‖L2(R3) . λ
1/6
j ‖∇f‖L2(R3)

and similar for gλj .

23 / 41



The focusing nonlinear wave equation

I Choose xj ∈ R3 , limj→∞ xj exists and such that the supports of

f̃j(x) := fλj (x− xj), g̃j(x) := gλj (x− xj)

are mutually disjoint.
I Define

f̃ =
∞∑
j=0

f̃j , g̃ =
∞∑
j=0

g̃j

Then

‖∇f̃‖L2(R3) .
∞∑
j=0

λ
1/6
j ‖∇f‖L2(R3) . ‖∇f‖L2(R3)

and similar for g̃

I By taking

f̃ =

∞∑
j=N

f̃j , g̃ =

∞∑
j=N

g̃j

for some large N ∈ N⇒ data arbitrarily small in Ḣ1 × L2(Rd)
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The focusing wave equation - Finite-time blowup

Levine (1974): Negative energy ⇒ Finite-time blowup

Let (f, g) be smooth, compactly supported initial data with

E0 :=
1

2

∫
Rd

|∇f(x)|2 + |g(x)|2dx− 1

p+ 1

∫
Rd

|f(x)|p+1dx < 0

Then the corresponding solution cannot exist for all times.

Proof: e.g. [Evans, Chapter 12]
I Define I(t) := ‖u(t, ·)‖2L2(R3) and J(t) := I(t)−α, 2 + 4α = p+ 1

I Use energy conservation
I E(0) < 0⇒ J(t) is a convex function for all t ≥ 0

I Argue by contradiction
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The nonlinear heat equation

Nonlinear heat equation on Rd

∂tu(t, x)−∆u(t, x) = u(t, x)p

u(0, x) = u0(x)

I Scale invariance u 7→ uλ

uλ(t, x) = λ
2

p−1 u(λ2t, λx), λ > 0

I Energy

E(u)(t) =
1

2

∫
Rd

|∇u(t, x)|2dx− 1

p+ 1

∫
Rd

|u(t, x)|p+1dx

Energy dissipation d
dt
E(u)(t) ≤ 0, ∀T > 0

I ’Energy critical’ exponent for d ≥ 3

pc :=
d+ 2

d− 2

I Blowup in finite time if E(u)(0) < 0
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The linear heat equation

We consider the Cauchy problem

∂tu(t, x)−∆u(t, x) = 0 x ∈ Rd, t > 0

u(0, x) = u0(x)

I Solution via Fourier transform ⇒

u(t, x) = [Gt ∗ u0](x) =

∫
Rd

Gt(x− y)u0(y)dy =: [S(t)u0](x)

with heat kernel Gt(x) = (4πt)−
d
2 e−

|x|2
4t

I Gt(x) > 0, ∀x ∈ Rd,
∫
Rd Gt(x)dx = 1

I Semigroup property: Gs+t = Gs ∗Gt ⇒

S(t+ s)u0 = S(t)S(s)u0, ∀t > s > 0

I Maximum principle: u0(x) ≥ 0⇒ u(t, x) > 0, ∀t > 0, x ∈ Rd

I u0 ≥ 0 ⇒
lim
t→∞

(4πt)
d
2 u(t, x) = ‖u0‖L1(Rd)
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The nonlinear heat equation - a Fujita-type result

Solution concept: Classical solutions or solutions that satisfy for t ∈ [0, T )

u(t) = S(t)u0 +

∫ t

0

S(t− s)u(s)pds (1)

I Fujita exponent 1 < pF < pc

pF = 1 +
2

d

Theorem (Blowup for 1 < p ≤ pF )

Let 1 < p ≤ pF , u0 ≥ 0 ∈ L1(Rd). Then there is no non-negative global
solution to Eq. (1).

Remark: Such critical exponents can also be found for the nonlinear wave
equation (’Strauss’ exponent)
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The nonlinear heat equation - Fujita-type results

Sketch of the proof for 1 < p < pF , see book [Quittner-Souplet 2007, Sec.18]

I Basic idea: Compare decay estimates for ’free’ evolution S(t)u0 implied
by Eq. (1) with linear decay rate t−

d
2

I More precisely, from Eq. (1) we obtain that

[S(t)u0](x) . t
− 1

p−1

I This implies
(4πt)

d
2 [S(t)u0](x) . t

d
2
− 1

p−1

such that for 1 < p < pF

lim
t→∞

(4πt)
n
2 [S(t)u0](x) = 0

which contradicts

lim
t→∞

(4πt)
n
2 [S(t)u0](x) = ‖u0‖L1(Rd).
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Self-similar blowup solutions

I Scale invariant problems ⇒ self-similar solutions?

I We first consider this for the nonlinear wave equation

Self-similar blowup solutions

uT (t, x) = (T − t)−
2

p−1U( |x|
T−t )

I Insert this ansatz into the nonlinear wave equation ⇒ nonlinear ODE

(1− ρ2)U ′′(ρ) +
(

2
ρ
− 2(p+1)

p−1
ρ
)
U ′(ρ)− 2(p+1)

(p−1)2
U(ρ) = U(ρ)p

I Finite speed of propagation ⇒ look for solutions that are smooth at
least in a backward lightcone, i.e., for all ρ ∈ [0, 1]

I Trivial solution U0(ρ) = cp for all d ≥ 1.

I Non-trivial profiles exist in the subcritical and supercritical case (ODE
methods, numerics)
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The focusing cubic wave equation - Non-trivial self-similar blowup

[Glogić-S., arXiv preprint (2018)] Explicit example: p = 3, d ≥ 5,

u∗T (t, x) = (T − t)−1U∗
(
|x|
T−t

)
, U∗(ρ) =

2
√

2(d− 1)(d− 4)

d− 4 + 3ρ2

0.5 1.0 1.5 2.0

5

10

15

20

t=0

t=0.5

t=0.7

t=0.8

Figure: Blowup solution u∗1(t, r) = (1− t)−1U∗( r
1−t ) for d = 7
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The wave equation - Stable blowup behavior?

Q: Do self-similar solutions reflect properties of generic blowup solutions?

Numerical experiments [Bizoń-Chmaj-Tabor, Nonlinearity 17 (2004)]

I ODE blowup describes behavior of generic blowup solutions locally
around blowup point

I u∗T appears at the threshold between finite-time blowup and global
existence [Maliborski-Glogić-S., arXiv preprint (2019)]

Some analytic results

I d = 1: ODE blowup describes universal blowup behavior in backward
lightcone of the blowup point [Merle-Zaag], J. Funct. Anal. 253 (2007)

I d ≥ 3: ODE blowup is stable under small perturbations in backward
lightcone of the blowup point [Donninger-S., Dyn. Partial Differ. Equ.
9 (2012), Trans. Amer. Math. Soc. 366 (2014)]

I Co-dimension one stability of u∗T [Glogić-S., arXiv preprint (2018)]
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Analysis of self-similar blowup behavior

I Reformulation of the problem using similarity coordinates

ξ =
x− x0
T − t , τ = − log(T − t) + log T

x

(T,x0)

|x-x0| = T|x-x0| =T
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Analysis of self-similar blowup behavior

I Reformulation of the problem using similarity coordinates

ξ =
x− x0
T − t , τ = − log(T − t) + log T

𝝉

𝝃(0,0)
|𝝃| = 1 |𝝃| = 1
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Analysis of self-similar blowup behavior

I Reformulation of the problem using similarity coordinates

ξ =
x− x0
T − t , τ = − log(T − t) + log T

𝝉

𝝃(0,0)
|𝝃| = 1 |𝝃| = 1

I Rescaled variable ψ(τ, ξ) = (T − t)
2

p−1 u(t, x)(
∂2τ + p+3

p−1
∂τ + 2ξj∂ξj∂τ − (δjk − ξjξk)∂ξj∂ξk + 2 p+1

p−1
ξj∂ξj + 2 p+1

(p−1)2

)
ψ = ψp

I Self-similar solutions that blowup at (T, x0)⇒ static solution
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The nonlinear heat equation - Self-similar blowup

Self-similar blowup solutions:

u(t, x) = (T − t)−
1

p−1 f( x
T−t ), T > 0

The profiles w satisfy the elliptic equation

−∆w(y) +
1

2
y · ∇w(y) + 1

p−1
w(y) = w(y)p y ∈ Rd

With σ(y) = e−
|y|2
4 we write

−∇
(
σ(y)∇w(y)

)
= σ(y)

(
w(y)p − 1

p−1
w(y)

)
(2)

Constant solutions

w(y) = 0, w(y) = ±(1− p)−
1

p−1

In particular: The ODE blowup is a trivial self-similar solution
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The nonlinear heat equation - Self-similar blowup

Theorem (Giga-Kohn, Comm. Pure Appl. Math. 38 (1985), no. 3)

For 1 < p ≤ pc there are no non-trivial solutions to Eq. (2).

Sketch of the proof: Multiply Eq. (2) with w and |y|2w to obtain∫
Rd

|∇w(y)|2σ(y)dy =

∫
Rd

(
|w(y)|p+1 − 1

p−1
|w(y)|2

)
σ(y)dy (3)

and∫
Rd

|y|2|∇w(y)|2σ(y)dy =

∫
Rd

|y|2|w(y)|p+1σ(y)dy

+

∫
Rd

(
d|w(y)|2 − p+1

2(p−1)
|y|2|w(y)|2

)
σ(y)dy

(4)
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The nonlinear heat equation - Self-similar blowup

Multiplication by y · ∇w implies

∫
Rd

(
|y|2
4

+ 2−d
2

)
|∇w(y)|2σ(y)dy

=

∫
Rd

( |y|
2

2
− d)

(
1
p+1
|w(y)|p+1 − 1

2(p−1)
|w(y)|2

)
σ(y)dy

(5)

Then 2d× (3) - (4) + 2(p+ 1)× (5) yields

Pohozaev identity

∫
Rd

(
(2− d)p+ d+ 2)|∇w(y)|2σ(y)dy +

p− 1

2

∫
Rd

|y|2|∇w(y)|2σ(y)dy = 0

This implies that w = const. for d ≤ 2 or d ≥ 3 and 1 < p ≤ d+2
d−2
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The nonlinear heat equation - Self-similar blowup solutions for p > pc

For p > pc, there exist radial non-trivial self-similar blowup solutions.

Example: p = 2, 7 ≤ d ≤ 15,

uT (x, t) = (T − t)−1f(
|x|√
T−t ), f(ρ) =

24a

(a+ ρ2)2
+

b

a+ ρ2
(6)

with constants

a = 2(10
√

1 + d
2
− d− 14), b = 24(

√
1 + d

2
− 2).

0.2 0.4 0.6 0.8 1.0

200

400

600

800

1000

1200

t=0

t=0.5

t=0.9

t=0.95

Figure: Blowup solution uT (t, r) = (1− t)−1f( r
1−t ) for d = 7, T = 1
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Stable self-similar blowup in related models

Example 1 (co-rotational wave maps into S3)

∂2
t ψ(t, r)− ∂2

rψ((t, r)− 2

r
∂rψ((t, r) +

sin(2ψ((t, r))

r2
= 0

Scale invariance ψ 7→ ψλ(t, r) := ψ(λt, λr), λ > 0

Self-similar blowup solution (gradient blowup)

ψT (t, r) = 2 arctan( r
T−t )

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

ΨHt,rL, T=1

t=0.99

t=0.9

t=0.5

t=0

Figure: Blowup solution ψ1(t, r)

38 / 41



Stable self-similar blowup in related models

Example 1 (co-rotational wave maps into S3)

∂2
t ψ(t, r)− ∂2

rψ((t, r)− 2

r
∂rψ((t, r) +

sin(2ψ((t, r))

r2
= 0

Scale invariance ψ 7→ ψλ(t, r) := ψ(λt, λr), λ > 0

Extension past the blowup time [Biernat-Donninger-S., to appear in IMRN]

ψ∗T (t, r) = 4 arctan

(
r

T−t+
√

(T−t)2+r2

)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

ΨHt,rL, T=1

t=2

t=1.5

t=1.1

t=1.01

t=0.99

t=0.9

t=0.5

t=0

Figure: Blowup solution ψ∗1(t, r)
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Stable self-similar blowup in related models

Example 2 (Yang-Mills heat flow)

∂tu(r, t)− ∂2
ru(r, t)− d+ 1

r
∂ru(r, t) = 3(d− 2)u2(r, t)− (d− 2)r2u3(r, t)

Self-similar blowup solution for d ≥ 5
[Weinkove, Calc. Var. PDE 19 (2004)]

u∗T (r, t) = 1
T−tW

(
r√
T−t

)
, W (ρ) =

1

aρ2 + b

1 2 3 4
ρ

5

10

15

20

W(ρ)

Figure: u∗T (r, t) in d = 5 for T = 1
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Energy critical wave equation p = pc

Explicit static solution

W (x) =
(

1 + |x|2
d(d−2)

)−(d−2)/2

.

[Kenig-Merle, Acta Math. 201 (2008)] For E((f, g)) < E(W ), if

I ‖∇f‖L2 < ‖∇W‖L2 ⇒ Global existence.
I ‖∇f‖L2 > ‖∇W‖L2 ⇒ Finite time blowup.

Type II blowup solutions

u(t, x) ∼ λ(t)
− 2

p−1W ( x
λ(t)

), λ(t)→ 0 as t→ T

d = 3: [Krieger-Schlag-Tataru, Duke Math. J. 147 (2009)]
d = 4: [Hillairet-Raphaël, Anal. PDE 5 (2012)]
[. . . ]
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Further reading

Books/Lecture Notes

I L.C. Evans,Partial Differential Equations (Second Edition)
I C. Sogge, Lectures on non-linear wave equations.
I J. Shatah, M. Struwe, Geometric wave equations
I W. Strauss, Nonlinear Wave Equations
I T. Tao, Nonlinear dispersive equations. Local and global
analysis

I P. Quittner, P. Souplet Superlinear parabolic problems
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Thank you for your attention!


