# Singularity formation in nonlinear time-dependent PDEs 

Birgit Schörkhuber

Fakultät für Mathematik<br>Karlsruher Institut für Technologie birgit.schoerkhuber@kit.edu

Chemnitz Summer School on Applied Analysis 2019
23.-27.09.2019

[^0]
## Singularity formation in nonlinear partial differential equations

Many processes in natural sciences and applications are mathematically described by time-dependent PDEs (heat equation, wave equation, Schrödinger equation, Navier-Stokes equation, Einstein equations, ...)

Nonlinearities model self-reinforcing/focusing processes $\Rightarrow$ 'blowup' of solutions in finite time

## Meaning?

- Limitation of the underlying modelling assumptions
- Physical system undergoes radical changes/formation of singularities
- Mathematically: change of solution concept $\Rightarrow$ continuation of solutions in some weak sense?


## Singularity formation - Mathematical questions

- Criteria on initial data to predict break down of solutions?
- When/where/how fast do singularities form (blowup time/blowup point/blowup speed)?
- How do solutions look like close to the singularity?
- Continuation past the blowup?
- Behavior of generic solutions $\Rightarrow$ Universality?

Similar mechanisms seem to play a role in very different types of PDEs
Aim of this course

- Give a basic introduction into the topic
- Show classical methods that shed light on some of the above questions
- Make links to current fields of research

Remark: Singularity formation in nonlinear PDEs is a large and active area of research $\Rightarrow$ only a few aspects can be considered here!

## Blowup in nonlinear ODEs

- Example 1: For $p>1, p \in \mathbb{N}$

$$
u^{\prime}(t)=u(t)^{p}
$$

has the blowup solution

$$
u(t)=(T-t)^{-\frac{1}{p-1}} \kappa_{p}, \quad \kappa_{p}=\left(\frac{1}{p-1}\right)^{\frac{1}{p-1}}
$$

- Example 2: For $p>1, p \in \mathbb{N}$

$$
u^{\prime \prime}(t)=u(t)^{p}
$$

has the blowup solution

$$
u(t)=(T-t)^{-\frac{2}{p-1}} c_{p}, \quad c_{p}=\left[\frac{2(p+1)}{(p-1)^{2}}\right]^{\frac{1}{p-1}}
$$

- In contrast to focusing nonlinearities, defocusing nonlinearities behave better

$$
u^{\prime \prime}(t)=-u(t)^{p}
$$

for odd $p>1 \Rightarrow$ no finite-time blowup

## Nonlinear PDEs - model problems

Nonlinear wave equation on $\mathbb{R}^{d}$

$$
\begin{gathered}
\partial_{t}^{2} u(t, x)-\Delta u(t, x)=u(t, x)^{p} \\
u(0, x)=f(x), \partial_{t} u(0, x)=g(x)
\end{gathered}
$$

Nonlinear heat equation on $\mathbb{R}^{d}$

$$
\begin{array}{r}
\partial_{t} u(t, x)-\Delta u(t, x)=u(t, x)^{p} \\
u(0, x)=u_{0}(x)
\end{array}
$$

ODE blowup $\Rightarrow$ explicit example for finite-time blowup
What are the conditions on the initial data to ensure

- local existence of solutions for $t \in[0, T)$ and some $T>0$ ?
- global existence or all $t>0$, respectively finite time blowup of solutions?


## The wave equation

Nonlinear wave equation on $\mathbb{R}^{d}$

$$
\begin{array}{r}
\partial_{t}^{2} u(t, x)-\Delta u(t, x)= \pm u(t, x)^{p} \\
u(0, x)=f(x), \partial_{t} u(0, x)=g(x)
\end{array}
$$

for $(t, x) \in I \times \mathbb{R}^{d}, I \subset \mathbb{R}$ an interval containing 0

## The wave equation

Linear wave equation on $\mathbb{R}^{d}$

$$
\begin{array}{r}
\partial_{t}^{2} u(t, x)-\Delta u(t, x)=F(t, x) \\
u(0, x)=f(x), \partial_{t} u(0, x)=g(x)
\end{array}
$$

for $(t, x) \in I \times \mathbb{R}^{d}, I \subset \mathbb{R}$ an interval containing 0

## The wave equation

Linear wave equation on $\mathbb{R}^{d}$

$$
\begin{array}{r}
\partial_{t}^{2} u(t, x)-\Delta u(t, x)=F(t, x) \\
u(0, x)=f(x), \partial_{t} u(0, x)=g(x)
\end{array}
$$

for $(t, x) \in I \times \mathbb{R}^{d}, I \subset \mathbb{R}$ an interval containing 0

- Free energy

$$
E(u)(t)=\int_{\mathbb{R}^{d}}\left(|\nabla u(t, x)|^{2}+\left|\partial_{t} u(t, x)\right|^{2}\right) d x
$$

Basic energy estimate

$$
\begin{aligned}
\|\nabla u(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{d}\right)} & +\left\|\partial_{t} u(t, \cdot)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
& \lesssim\|\nabla f\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\|g\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\int_{0}^{t}\|F(s, \cdot)\|_{L^{2}\left(\mathbb{R}^{d}\right)} d s
\end{aligned}
$$

## Representation of solutions - Properties

- Explicit solution $d=1, F=0$, d'Alembert's formula:

$$
u(t, x)=\frac{1}{2}[f(x+t)+f(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s
$$

- Higher space dimensions: Kirchhoff formula, method of descent
- Finite speed of propagation $\Rightarrow$ backward lightcone at $\left(T, x_{0}\right), T>0$, $x_{0} \in \mathbb{R}^{d}$

$$
\mathcal{C}_{T, x_{0}}:=\left\{(t, x) \in \mathbb{R}^{d}:\left|x-x_{0}\right| \leq T-t, t \in[0, T)\right\}
$$



Fourier transform and Sobolev spaces

Fourier transform: For $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ we define the Fourier transform by

$$
\hat{f}(\xi)=(\mathcal{F} f)(\xi)=\int_{\mathbb{R}^{d}} e^{-i x \xi} f(x) d x
$$

and

$$
f(x)=\left(\mathcal{F}^{-1} \hat{f}\right)(x):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \xi} \hat{f}(\xi) d \xi
$$

Recall:
$-\|\hat{f}\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}$ and $\|\hat{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \simeq\|f\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}$

- Convolution: $(f \star g)(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y, \mathcal{F}(f \star g)=\hat{f} \hat{g}$
- Derivatives: $\mathcal{F}\left(\partial^{\alpha} f\right)(\xi)=i \xi^{\alpha} \hat{f}(\xi)$

Fourier transform and Sobolev spaces

Sobolev spaces $H^{k}\left(\mathbb{R}^{d}\right)$ : Completion of $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with respect to

$$
\|f\|_{H^{k}\left(\mathbb{R}^{d}\right)}^{2}:=\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{k}|\hat{f}(\xi)|^{2} d \xi=\left\|\left(1+|\cdot|^{2}\right)^{\frac{k}{2}} \hat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \quad k \in \mathbb{N}_{0}
$$

- For $k>\frac{d}{2}$, we have

$$
\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \lesssim\|f\|_{H^{k}\left(\mathbb{R}^{d}\right)}
$$

Proof: For $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}|\hat{f}(\xi)| d \xi & =\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{-k / 2}\left(1+|\xi|^{2}\right)^{k / 2}|\hat{f}(\xi)| d \xi \\
& \leq\left(\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{-k} d \xi\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{k}|\hat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}} \\
& \leq C_{k}\|f\|_{H^{k}\left(\mathbb{R}^{d}\right)}
\end{aligned}
$$

with $C_{k}=\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{-k} d \xi<\infty$ for $k>\frac{d}{2}$

## The linear wave equation - Fourier representation of solutions

Fourier transform with respect to the spatial variable $\Rightarrow$

$$
\begin{aligned}
& \left(\partial_{t}^{2}+|\xi|^{2}\right) \hat{u}(t, \xi)=\hat{F}(t, \xi) \\
& \hat{u}(0, \xi)=\hat{f}(\xi), \quad \partial_{t} \hat{u}(0, \xi)=\hat{g}(\xi)
\end{aligned}
$$

Fundamental system $\{\sin (|\xi| \cdot), \cos (|\xi| \cdot)\}$

$$
\begin{aligned}
\hat{u}(t, \xi) & =c_{1}(\xi) \cos (|\xi| t)+c_{2}(\xi) \sin (|\xi| t) \\
& -\cos (|\xi| t) \int_{0}^{t} \frac{\sin (|\xi| s)}{|\xi|} \hat{h}(s, \xi) d s+\sin (|\xi| t) \int_{0}^{t} \frac{\cos (|\xi| s)}{|\xi|} \hat{h}(s, \xi) d s
\end{aligned}
$$

Fourier representation

$$
\hat{u}(t, \xi)=\cos (|\xi| t) \hat{f}(\xi)+\frac{\sin (|\xi| t)}{|\xi|} \hat{g}(\xi)+\int_{0}^{t} \frac{\sin (|\xi|(t-s))}{|\xi|} \hat{F}(s, \xi) d s
$$

Duhamel's formula

$$
\begin{gathered}
u(t, \cdot)=\cos (|\nabla| t) f+\frac{\sin (|\nabla| t)}{|\nabla|} g+\int_{0}^{t} \frac{\sin (|\nabla|(t-s))}{|\nabla|} F(s, \cdot) d s \\
\cos (|\nabla| t) f:=\mathcal{F}^{-1}(\cos (|\xi| t) \hat{f}), \quad \frac{\sin (|\nabla| t)}{|\nabla|} f=\mathcal{F}^{-1}\left(\frac{\sin (|\xi| t)}{|\xi|} \hat{f}\right)
\end{gathered}
$$

The linear wave equation - Energy estimates
$H^{k}$ - bounds for wave propergators
$\|\cos (|\nabla| t) f\|_{H^{k}\left(\mathbb{R}^{d}\right)} \lesssim\|f\|_{H^{k}\left(\mathbb{R}^{d}\right)}, \quad\left\|\frac{\sin (|\nabla| t)}{|\nabla|} g\right\|_{H^{k}\left(\mathbb{R}^{d}\right)} \lesssim(1+t)\|g\|_{H^{k-1}\left(\mathbb{R}^{d}\right)}$

Energy estimates for the linear wave equation

$$
\begin{aligned}
& \|u(t, \cdot)\|_{H^{k}\left(\mathbb{R}^{d}\right)}+\left\|\partial_{t} u(t, \cdot)\right\|_{H^{k-1}\left(\mathbb{R}^{d}\right)} \\
& \quad \leq C(1+t)\left(\|f\|_{H^{k}\left(\mathbb{R}^{d}\right)}+\|g\|_{H^{k-1}\left(\mathbb{R}^{d}\right)}+\int_{0}^{t}\|h(s, \cdot)\|_{H^{k-1}\left(\mathbb{R}^{d}\right)} d s\right)
\end{aligned}
$$

## The linear wave equation - Localized energy estimates

Localized energy

$$
E_{u}^{l o c}(t):=\int_{\mathbb{B}_{T-t}^{d}\left(x_{0}\right)}|\nabla u(t, x)|^{2}+\left|\partial_{t} u(t, x)\right|^{2} d x
$$

Note that $\frac{d}{d t} E_{u}^{l o c}(t) \leq 0$
Energy estimates (localized)
For $x_{0} \in \mathbb{R}^{d}, T>0$ fix, $k \in \mathbb{N}$ and $0<t<T$,

$$
\begin{aligned}
& \|u(t, \cdot)\|_{H^{k}\left(\mathbb{B}_{T-t}^{d}\left(x_{0}\right)\right)}+\left\|\partial_{t} u(t, \cdot)\right\|_{H^{k-1}\left(\mathbb{B}_{T-t}^{d}\left(x_{0}\right)\right)} \\
& \quad \lesssim\|f\|_{H^{k}\left(\mathbb{B}_{T}^{d}\left(x_{0}\right)\right)}+\|g\|_{H^{k-1}\left(\mathbb{B}_{T}^{d}\left(x_{0}\right)\right)}+\int_{0}^{t}\|h(s, \cdot)\|_{H^{k-1}\left(\mathbb{B}_{T-s}^{d}\left(x_{0}\right)\right)} d s
\end{aligned}
$$

## The nonlinear wave equation

Nonlinear wave equation on $\mathbb{R}^{d}$

$$
\begin{array}{r}
\partial_{t}^{2} u(t, x)-\Delta u(t, x)= \pm u(t, x)^{p} \\
u(0, x)=f(x), \partial_{t} u(0, x)=g(x)
\end{array}
$$

with $p>1$ an odd integer, $(t, x) \in I \times \mathbb{R}^{d}, I \subset \mathbb{R}, 0 \in I$.

- Sign of the nonlinearity: focusing (+)/defocusing (-)
- Conserved energy

$$
E(u)(t)=\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla u(t, x)|^{2}+\left|\partial_{t} u(t, x)\right|^{2} d x \mp \frac{1}{p+1} \int_{\mathbb{R}^{d}}|u(t, x)|^{p+1} d x
$$

- Notion of criticality: Invariance under rescaling

$$
u_{\lambda}(t, x)=\lambda^{-\frac{2}{p-1}} u(t / \lambda, x / \lambda), \quad \lambda>0
$$

- Energy critical case $p=\frac{d+2}{d-2}=: p_{c}$

$$
E\left(u_{\lambda}\right)(t)=E(u)(t / \lambda)
$$

## The nonlinear wave equation - Local well-posedness at high regularities

Definition: Strong $H^{k}$-solution
Set $F_{ \pm}(u)= \pm u^{p}$. We say that $u \in C\left(I, H^{k}\left(\mathbb{R}^{d}\right) \cap C^{1}\left(I, H^{k-1}\left(\mathbb{R}^{d}\right)\right)\right.$ is a strong $H^{k}$-solution if it satisfies for all $t \in I$

$$
u(t)=\cos (|\nabla| t) f+\frac{\sin (|\nabla| t)}{|\nabla|} g+\int_{0}^{t} \frac{\sin (|\nabla|(t-s))}{|\nabla|} F_{ \pm}(u(s)) d s
$$

## Theorem

Let $k>\frac{d}{2}$ and suppose $f \in H^{k}\left(\mathbb{R}^{d}\right), g \in H^{k-1}\left(\mathbb{R}^{d}\right)$. There is a $T>0$ (depending on the norm of the data) such that the initial value problem for the nonlinear wave equation has a unique strong $H^{k}$-solution

$$
u \in C\left([0, T], H^{k}\left(\mathbb{R}^{d}\right) \cap C^{1}\left([0, T], H^{k-1}\left(\mathbb{R}^{d}\right)\right)\right.
$$

Basic idea: Solution via contraction mapping principle

- Duhamel's formula for linear wave equation
$L^{\infty}$ embedding to control the nonlinearity

The nonlinear wave equation - Local well-posedness at high regularities

Proof $d=3, k=2$

- $X:=C\left([0, T], H^{2}\left(\mathbb{R}^{d}\right)\right) \cap C^{1}\left([0, T], H^{1}\left(\mathbb{R}^{3}\right)\right)$ with norm

$$
\|u\|_{X}:=\sup _{0 \leq t \leq T}\left(\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.}\right)
$$

The nonlinear wave equation - Local well-posedness at high regularities

Proof $d=3, k=2$

- $X:=C\left([0, T], H^{2}\left(\mathbb{R}^{d}\right)\right) \cap C^{1}\left([0, T], H^{1}\left(\mathbb{R}^{3}\right)\right)$ with norm

$$
\|u\|_{X}:=\sup _{0 \leq t \leq T}\left(\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.}\right)
$$

- For $R>0$, consider

$$
X_{R}:=\left\{u \in X:\|u\|_{X} \leq R\right\}
$$

The nonlinear wave equation - Local well-posedness at high regularities

Proof $d=3, k=2$

- $X:=C\left([0, T], H^{2}\left(\mathbb{R}^{d}\right)\right) \cap C^{1}\left([0, T], H^{1}\left(\mathbb{R}^{3}\right)\right)$ with norm

$$
\|u\|_{X}:=\sup _{0 \leq t \leq T}\left(\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.}\right)
$$

- For $R>0$, consider

$$
X_{R}:=\left\{u \in X:\|u\|_{X} \leq R\right\}
$$

- For $u \in X$ define a map $u \mapsto K(u)$,

$$
K(u)(t):=\cos (|\nabla| t) f+\frac{\sin (|\nabla| t)}{|\nabla|} g+\int_{0}^{t} \frac{\sin (|\nabla|(t-s))}{|\nabla|} F_{ \pm}(u(s, \cdot)) d s
$$

The nonlinear wave equation - Local well-posedness at high regularities

Proof $d=3, k=2$

- $X:=C\left([0, T], H^{2}\left(\mathbb{R}^{d}\right)\right) \cap C^{1}\left([0, T], H^{1}\left(\mathbb{R}^{3}\right)\right)$ with norm

$$
\|u\|_{X}:=\sup _{0 \leq t \leq T}\left(\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.}\right)
$$

- For $R>0$, consider

$$
X_{R}:=\left\{u \in X:\|u\|_{X} \leq R\right\}
$$

- For $u \in X$ define a map $u \mapsto K(u)$,

$$
K(u)(t):=\cos (|\nabla| t) f+\frac{\sin (|\nabla| t)}{|\nabla|} g+\int_{0}^{t} \frac{\sin (|\nabla|(t-s))}{|\nabla|} F_{ \pm}(u(s, \cdot)) d s
$$

- We show $K: X_{R} \rightarrow X_{R}$ is a contraction $\Rightarrow$ apply Banach's fixed point theorem


## The nonlinear wave equation - Local well-posedness at high regularities

Proof $d=3, k=2$

- $X:=C\left([0, T], H^{2}\left(\mathbb{R}^{d}\right)\right) \cap C^{1}\left([0, T], H^{1}\left(\mathbb{R}^{3}\right)\right)$ with norm

$$
\|u\|_{X}:=\sup _{0 \leq t \leq T}\left(\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.}\right)
$$

- For $R>0$, consider

$$
X_{R}:=\left\{u \in X:\|u\|_{X} \leq R\right\}
$$

- For $u \in X$ define a map $u \mapsto K(u)$,

$$
K(u)(t):=\cos (|\nabla| t) f+\frac{\sin (|\nabla| t)}{|\nabla|} g+\int_{0}^{t} \frac{\sin (|\nabla|(t-s))}{|\nabla|} F_{ \pm}(u(s, \cdot)) d s
$$

- We show $K: X_{R} \rightarrow X_{R}$ is a contraction $\Rightarrow$ apply Banach's fixed point theorem
- By definition $K(u)$ solves linear wave equation with rhs. $F_{ \pm}(u)$

The nonlinear wave equation - Local existence at high regularities

- Energy estimates

$$
\begin{aligned}
& \|K(u)(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} K(u)(t)\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.} \\
& \quad \lesssim(1+t)\left(E_{0}+\int_{0}^{t}\left\|u(s)^{p}\right\|_{H^{1}\left(\left(\mathbb{R}^{3}\right)\right.} d s\right)
\end{aligned}
$$

where $E_{0}:=\|f\|_{H^{2}}+\|g\|_{H^{1}}$

- Estimates for the nonlinearity, $u \in H^{2}\left(\mathbb{R}^{3}\right) \Rightarrow u \in L^{\infty}\left(\mathbb{R}^{3}\right)$

$$
\left\|u^{p}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq C^{\prime}\|u\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{p}
$$

- Then

$$
\|K(u)(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} K(u)(t)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \leq C(1+T)\left(E_{0}+T C^{\prime} R^{p}\right) \leq R
$$

for $R>0$ sufficiently large and $T \sim E_{0}^{-(p-1)}$ sufficiently small.

- Show $K: X_{R} \rightarrow X_{R}$ is a contraction: Let $u, v \in X_{R}$, then

$$
K(u)(t)-K(v)(t)=\int_{0}^{t} \frac{\sin (|\nabla|(t-s))}{|\nabla|}\left[F_{ \pm}(u(s))-F_{ \pm}(v(s))\right] d s
$$

The nonlinear wave equation - Local existence at high regularities

- Energy estimates

$$
\begin{aligned}
& \|K(u)(t)-K(v)(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} K(u)(t)-\partial_{t} K(v)(t)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \\
& \quad \leq C(1+T) \int_{0}^{t}\left\|u^{p}(s)-v^{p}(s)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} d s
\end{aligned}
$$

$\Rightarrow$ Use $u^{p}-v^{p}=(u-v) \sum_{j=0}^{p-1} u^{p-1-j} v^{j}$ to get

$$
\left\|u^{p}-v^{p}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \lesssim\|u-v\|_{H^{2}\left(\mathbb{R}^{3}\right)}\left(\|u\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{p-1}+\|v\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{p-1}\right)
$$

- We obtain

$$
\|K(u)-K(v)\|_{X} \leq C_{0}(1+T) T R^{p-1}\|u-v\|_{X} \leq \frac{1}{2}\|u-v\|_{X}
$$

for sufficiently small $T \sim E_{0}^{-(p-1)}$.

- Banach fixed point theorem $\Rightarrow$ Existence of a unique solution $u \in X_{R}$


## The nonlinear wave equation - Local existence at high regularities

- Unconditional uniqueness: Let $u, \tilde{u} \in X$ be strong $H^{k}$-solutions on $[0, T]$, set $v:=u-\tilde{u}$

$$
\begin{aligned}
& \|v(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} v(t)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} \\
& \quad \lesssim(1+t) \int_{0}^{t}\|v(s)\|_{H^{2}\left(\mathbb{R}^{3}\right)}\left(\|u(s)\|_{H^{2}\left(\left(\mathbb{R}^{3}\right)\right.}^{p-1}+\|\tilde{u}(s)\|_{H^{2}\left(R^{3}\right)}^{p-1}\right) d s \\
& \quad \lesssim \int_{0}^{t}\|v(s)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{s} v(s)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)} d s
\end{aligned}
$$

Gronwall inequality $\Rightarrow v=0$

- Persistence of regularity (smooth data implies smooth solution)

Smoothness of the nonlinearity: For any $k>\frac{3}{2}$

$$
\begin{aligned}
\left\|u^{p}\right\|_{H^{k}\left(\mathbb{R}^{3}\right)} & \lesssim\|u\|_{H^{k}\left(\mathbb{R}^{3}\right)}^{p} \\
\|u(t)\|_{H^{3}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{2}\left(\mathbb{R}^{3}\right)} & \lesssim\|f\|_{H^{3}\left(\mathbb{R}^{3}\right)}+\|g\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\int_{0}^{t}\left\|u(s)^{p}\right\|_{H^{2}\left(\mathbb{R}^{d}\right)} d s \\
& \lesssim\|f\|_{H^{3}\left(\mathbb{R}^{3}\right)}+\|g\|_{H^{2}\left(\mathbb{R}^{3}\right)}+T\|u\|_{X}^{p}
\end{aligned}
$$

- Use energy estimates in lightcones $\Rightarrow$ Finite speed of propagation holds for nonlinear problem


## The nonlinear wave equation - Local existence at high regularities

## Maximal solution/Blowup criterion

There is a $0<T_{+} \leq \infty$ such that

- There is a strong $H^{2}$ - solution on $I_{+}=\left[0, T_{+}\right)$which is the only one in $I_{+}$
- If $\tilde{u}$ is another solution on some $I \subset[0, \infty)$, then $I \subseteq I_{+}$
$>$ If $T_{+}<\infty$ then $\lim \sup _{t \rightarrow T_{+}}\left(\|u(t)\|_{H^{2}\left(\mathbb{R}^{3}\right)}+\left\|\partial_{t} u(t)\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}\right)=\infty$
- If $T_{+}<\infty$ then $\|u(t, \cdot)\|_{L^{\infty}\left(\left[0, T_{+}\right) \times \mathbb{R}^{3}\right)}=\infty$

Remarks
$\checkmark$ The same strategy works in all space dimension at regularity $s>\frac{d}{2}$
$\downarrow$ Local existence for negative times $\left[0, T_{+}\right) \rightarrow\left(T_{-}, T_{+}\right)$

- $T_{ \pm}=\infty$ ?


## The defocusing wave equation

Can the conserved energy be used to obtain global existence?

$$
\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{1} \times L^{2}\left(\mathbb{R}^{d}\right)}:=\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\left\|\partial_{t} u(t)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

- Energy estimates

$$
\|\nabla u(t)\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\left\|\partial_{t} u(t)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \lesssim\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\|g\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\int_{0}^{t}\left\|u(s)^{p}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} d s
$$

Main challenge: Control of the nonlinear term

- Special case: $d=3, p=3$ Sobolev embedding $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{6}\left(\mathbb{R}^{3}\right)$

$$
\left\|u(t)^{3}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}=\|u(t)\|_{L^{6}\left(\mathbb{R}^{3}\right)}^{3} \lesssim\|\nabla u\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{3}
$$

Fixed point argument in

$$
X:=\left\{C\left([0, T], \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right) \cap C^{1}\left([0, T], L^{2}\left(\mathbb{R}^{3}\right)\right)\right\}
$$

$X_{R} \subset X, R \sim\|(f, g)\|_{\dot{H}^{1} \times L^{2}\left(\mathbb{R}^{3}\right)} \Rightarrow$ solution on $[0, T], T \sim R^{-2}$

- Defocusing case

$$
\int_{\mathbb{R}^{d}}|\nabla u(t, x)|^{2}+\left|\partial_{t} u(t, x)\right|^{2} \leq E_{(f, g)}
$$

for all $t>0 \Rightarrow$ Global existence of solutions!

## Local/global existence of solutions in the energy space

## Remarks

- More general: Control of the nonlinearity via Strichartz estimates $\Rightarrow$ Local existence in the energy space for $1<p \leq p_{c}$
- Global existence for the defocusing wave equation for $1<p \leq p_{c}$
- Energy space not suitable for supercritical problems $p>p_{c}$
- No globally (in time) controlled quantities at higher Sobolev regularities

Big open question: Global existence for the defocusing wave equation in the supercritical case $p>p_{c}$ ?

## The focusing wave equation - Finite-time blowup

For the focusing wave equation, finite-time blowup solutions do exist

$$
\begin{array}{r}
\partial_{t}^{2} u(t, x)-\Delta u(t, x)=u(t, x)^{p} \\
u(0, x)=f(x), \partial_{t} u(0, x)=g(x)
\end{array}
$$

ODE blowup

$$
u_{T}(t, x)=(T-t)^{-\frac{2}{p-1}} c_{p}, \quad c_{p}=\left[\frac{2(p+1)}{(p-1)^{2}}\right]^{\frac{1}{p-1}}, \quad T>0
$$

- Define smooth initial data $(f, g)$ such that

$$
f(x)=u_{T}(0, x), \quad g(x)=\partial_{t} u_{T}(0, x) \quad \forall x \in \overline{\mathbb{B}_{2 T}^{3}}
$$

and $f(x)=g(x)=0$ for $|x| \geq 3 T$.

- Finite speed of propagation $\Rightarrow$ the solution blows up at $t=T$ on $\mathbb{B}_{T}^{3}$


## The focusing nonlinear wave equation

We use this example to show that for $p=7$ the initial value problem is not locally well-posed in the energy space $\dot{H}^{1}\left(\mathbb{R}^{3}\right) \times L^{2}\left(\mathbb{R}^{3}\right)$.

- We have the explicit solution $u(t, x)=(1-t)^{-\frac{1}{3}} c_{7}$
- Define initial data $(f, g)$ as above $\Rightarrow$ the corresponding solution blows up at $t=1$
- Rescaling $u_{\lambda}(t, x)=\lambda^{-\frac{1}{3}} u(t / \lambda, x / \lambda)$. Then

$$
\left.\left(u_{\lambda}, \partial_{t} u_{\lambda}\right)\right|_{t=0}=\left(f_{\lambda}, g_{\lambda}\right)=\left.\left(u_{\lambda}^{*}, \partial_{t} u_{\lambda}^{*}\right)\right|_{t=0} \quad \text { in } \mathbb{B}_{2 \lambda}^{3}
$$

$\Rightarrow u_{\lambda}(t, x)$ blows up at $t=\lambda$

- Define a sequence $\left(\lambda_{j}\right) \subset \mathbb{R}^{+}$such that

$$
\lim _{j \rightarrow \infty} \lambda_{j}=0, \quad \sum_{j=0}^{\infty} \lambda_{j}^{1 / 6}<\infty
$$

$\Rightarrow \operatorname{Define}\left(f_{\lambda_{j}}, g_{\lambda_{j}}\right)$,

$$
\left\|\nabla f_{\lambda_{j}}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \lesssim \lambda_{j}^{1 / 6}\|\nabla f\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

and similar for $g_{\lambda_{j}}$.

## The focusing nonlinear wave equation

- Choose $x_{j} \in \mathbb{R}^{3}, \lim _{j \rightarrow \infty} x_{j}$ exists and such that the supports of

$$
\tilde{f}_{j}(x):=f_{\lambda_{j}}\left(x-x_{j}\right), \quad \tilde{g}_{j}(x):=g_{\lambda_{j}}\left(x-x_{j}\right)
$$

are mutually disjoint.

- Define

$$
\tilde{f}=\sum_{j=0}^{\infty} \tilde{f}_{j}, \quad \tilde{g}=\sum_{j=0}^{\infty} \tilde{g}_{j}
$$

Then

$$
\|\nabla \tilde{f}\|_{L^{2}\left(\mathbb{R}^{3}\right)} \lesssim \sum_{j=0}^{\infty} \lambda_{j}^{1 / 6}\|\nabla f\|_{L^{2}\left(\mathbb{R}^{3}\right)} \lesssim\|\nabla f\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

and similar for $\tilde{g}$

- By taking

$$
\tilde{f}=\sum_{j=N}^{\infty} \tilde{f}_{j}, \quad \tilde{g}=\sum_{j=N}^{\infty} \tilde{g}_{j}
$$

for some large $N \in \mathbb{N} \Rightarrow$ data arbitrarily small in $\dot{H}^{1} \times L^{2}\left(\mathbb{R}^{d}\right)$

## The focusing wave equation - Finite-time blowup

Levine (1974): Negative energy $\Rightarrow$ Finite-time blowup
Let $(f, g)$ be smooth, compactly supported initial data with

$$
E_{0}:=\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla f(x)|^{2}+|g(x)|^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{d}}|f(x)|^{p+1} d x<0
$$

Then the corresponding solution cannot exist for all times.

Proof: e.g. [Evans, Chapter 12]

- Define $I(t):=\|u(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}$ and $J(t):=I(t)^{-\alpha}, 2+4 \alpha=p+1$
- Use energy conservation
- $E(0)<0 \Rightarrow J(t)$ is a convex function for all $t \geq 0$
- Argue by contradiction


## The nonlinear heat equation

Nonlinear heat equation on $\mathbb{R}^{d}$

$$
\begin{array}{r}
\partial_{t} u(t, x)-\Delta u(t, x)=u(t, x)^{p} \\
u(0, x)=u_{0}(x)
\end{array}
$$

- Scale invariance $u \mapsto u_{\lambda}$

$$
u_{\lambda}(t, x)=\lambda^{\frac{2}{p-1}} u\left(\lambda^{2} t, \lambda x\right), \quad \lambda>0
$$

- Energy

$$
E(u)(t)=\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla u(t, x)|^{2} d x-\frac{1}{p+1} \int_{\mathbb{R}^{d}}|u(t, x)|^{p+1} d x
$$

Energy dissipation $\frac{d}{d t} E(u)(t) \leq 0, \forall T>0$

- 'Energy critical' exponent for $d \geq 3$

$$
p_{c}:=\frac{d+2}{d-2}
$$

- Blowup in finite time if $E(u)(0)<0$


## The linear heat equation

We consider the Cauchy problem

$$
\begin{aligned}
& \partial_{t} u(t, x)-\Delta u(t, x)=0 \quad x \in \mathbb{R}^{d}, t>0 \\
& \quad u(0, x)=u_{0}(x)
\end{aligned}
$$

- Solution via Fourier transform $\Rightarrow$

$$
u(t, x)=\left[G_{t} * u_{0}\right](x)=\int_{\mathbb{R}^{d}} G_{t}(x-y) u_{0}(y) d y=:\left[S(t) u_{0}\right](x)
$$

with heat kernel $G_{t}(x)=(4 \pi t)^{-\frac{d}{2}} e^{-\frac{|x|^{2}}{4 t}}$

- $G_{t}(x)>0, \forall x \in \mathbb{R}^{d}, \int_{\mathbb{R}^{d}} G_{t}(x) d x=1$
- Semigroup property: $G_{s+t}=G_{s} * G_{t} \Rightarrow$

$$
S(t+s) u_{0}=S(t) S(s) u_{0}, \quad \forall t>s>0
$$

- Maximum principle: $u_{0}(x) \geq 0 \Rightarrow u(t, x)>0, \forall t>0, x \in \mathbb{R}^{d}$
- $u_{0} \geq 0 \Rightarrow$

$$
\lim _{t \rightarrow \infty}(4 \pi t)^{\frac{d}{2}} u(t, x)=\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

## The nonlinear heat equation - a Fujita-type result

Solution concept: Classical solutions or solutions that satisfy for $t \in[0, T)$

$$
\begin{equation*}
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) u(s)^{p} d s \tag{1}
\end{equation*}
$$

- Fujita exponent $1<p_{F}<p_{c}$

$$
p_{F}=1+\frac{2}{d}
$$

Theorem (Blowup for $1<p \leq p_{F}$ )
Let $1<p \leq p_{F}, u_{0} \geq 0 \in L^{1}\left(\mathbb{R}^{d}\right)$. Then there is no non-negative global solution to Eq. (1).

Remark: Such critical exponents can also be found for the nonlinear wave equation ('Strauss' exponent)

## The nonlinear heat equation - Fujita-type results

Sketch of the proof for $1<p<p_{F}$, see book [Quittner-Souplet 2007, Sec.18]

- Basic idea: Compare decay estimates for 'free' evolution $S(t) u_{0}$ implied by Eq. (1) with linear decay rate $t^{-\frac{d}{2}}$
- More precisely, from Eq. (1) we obtain that

$$
\left[S(t) u_{0}\right](x) \lesssim t^{-\frac{1}{p-1}}
$$

- This implies

$$
(4 \pi t)^{\frac{d}{2}}\left[S(t) u_{0}\right](x) \lesssim t^{\frac{d}{2}-\frac{1}{p-1}}
$$

such that for $1<p<p_{F}$

$$
\lim _{t \rightarrow \infty}(4 \pi t)^{\frac{n}{2}}\left[S(t) u_{0}\right](x)=0
$$

which contradicts

$$
\lim _{t \rightarrow \infty}(4 \pi t)^{\frac{n}{2}}\left[S(t) u_{0}\right](x)=\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

## Self-similar blowup solutions

- Scale invariant problems $\Rightarrow$ self-similar solutions?
- We first consider this for the nonlinear wave equation


## Self-similar blowup solutions

$$
u_{T}(t, x)=(T-t)^{-\frac{2}{p-1}} U\left(\frac{|x|}{T-t}\right)
$$

- Insert this ansatz into the nonlinear wave equation $\Rightarrow$ nonlinear ODE

$$
\left(1-\rho^{2}\right) U^{\prime \prime}(\rho)+\left(\frac{2}{\rho}-\frac{2(p+1)}{p-1} \rho\right) U^{\prime}(\rho)-\frac{2(p+1)}{(p-1)^{2}} U(\rho)=U(\rho)^{p}
$$

- Finite speed of propagation $\Rightarrow$ look for solutions that are smooth at least in a backward lightcone, i.e., for all $\rho \in[0,1]$
- Trivial solution $U_{0}(\rho)=c_{p}$ for all $d \geq 1$.
- Non-trivial profiles exist in the subcritical and supercritical case (ODE methods, numerics)

The focusing cubic wave equation - Non-trivial self-similar blowup
[Glogić-S., arXiv preprint (2018)] Explicit example: $p=3, d \geq 5$,

$$
u_{T}^{*}(t, x)=(T-t)^{-1} U^{*}\left(\frac{|x|}{T-t}\right), \quad U^{*}(\rho)=\frac{2 \sqrt{2(d-1)(d-4)}}{d-4+3 \rho^{2}}
$$



Figure: Blowup solution $u_{1}^{*}(t, r)=(1-t)^{-1} U^{*}\left(\frac{r}{1-t}\right)$ for $d=7$

The wave equation - Stable blowup behavior?

Q: Do self-similar solutions reflect properties of generic blowup solutions?

Numerical experiments [Bizoń-Chmaj-Tabor, Nonlinearity 17 (2004)]

- ODE blowup describes behavior of generic blowup solutions locally around blowup point
- $u_{T}^{*}$ appears at the threshold between finite-time blowup and global existence [Maliborski-Glogić-S., arXiv preprint (2019)]

Some analytic results

- $d=1$ : ODE blowup describes universal blowup behavior in backward lightcone of the blowup point [Merle-Zaag], J. Funct. Anal. 253 (2007)
- $d \geq 3$ : ODE blowup is stable under small perturbations in backward lightcone of the blowup point [Donninger-S., Dyn. Partial Differ. Equ. 9 (2012), Trans. Amer. Math. Soc. 366 (2014)]
- Co-dimension one stability of $u_{T}^{*}$ [Glogić-S., arXiv preprint (2018)]


## Analysis of self-similar blowup behavior

- Reformulation of the problem using similarity coordinates

$$
\xi=\frac{x-x_{0}}{T-t}, \quad \tau=-\log (T-t)+\log T
$$



## Analysis of self-similar blowup behavior

- Reformulation of the problem using similarity coordinates

$$
\xi=\frac{x-x_{0}}{T-t}, \quad \tau=-\log (T-t)+\log T
$$



## Analysis of self-similar blowup behavior

- Reformulation of the problem using similarity coordinates

$$
\xi=\frac{x-x_{0}}{T-t}, \quad \tau=-\log (T-t)+\log T
$$



- Rescaled variable $\psi(\tau, \xi)=(T-t)^{\frac{2}{p-1}} u(t, x)$

$$
\left(\partial_{\tau}^{2}+\frac{p+3}{p-1} \partial_{\tau}+2 \xi^{j} \partial_{\xi^{j}} \partial_{\tau}-\left(\delta^{j k}-\xi^{j} \xi^{k}\right) \partial_{\xi^{j}} \partial_{\xi^{k}}+2 \frac{p+1}{p-1} \xi^{j} \partial_{\xi^{j}}+2 \frac{p+1}{(p-1)^{2}}\right) \psi=\psi^{p}
$$

- Self-similar solutions that blowup at $\left(T, x_{0}\right) \Rightarrow$ static solution


## The nonlinear heat equation - Self-similar blowup

Self-similar blowup solutions:

$$
u(t, x)=(T-t)^{-\frac{1}{p-1}} f\left(\frac{x}{T-t}\right), \quad T>0
$$

The profiles $w$ satisfy the elliptic equation

$$
-\Delta w(y)+\frac{1}{2} y \cdot \nabla w(y)+\frac{1}{p-1} w(y)=w(y)^{p} \quad y \in \mathbb{R}^{d}
$$

With $\sigma(y)=e^{-\frac{|y|^{2}}{4}}$ we write

$$
\begin{equation*}
-\nabla(\sigma(y) \nabla w(y))=\sigma(y)\left(w(y)^{p}-\frac{1}{p-1} w(y)\right) \tag{2}
\end{equation*}
$$

Constant solutions

$$
w(y)=0, \quad w(y)= \pm(1-p)^{-\frac{1}{p-1}}
$$

In particular: The ODE blowup is a trivial self-similar solution

The nonlinear heat equation - Self-similar blowup

Theorem (Giga-Kohn, Comm. Pure Appl. Math. 38 (1985), no. 3)
For $1<p \leq p_{c}$ there are no non-trivial solutions to Eq. (2).
Sketch of the proof: Multiply Eq. (2) with $w$ and $|y|^{2} w$ to obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}|\nabla w(y)|^{2} \sigma(y) d y=\int_{\mathbb{R}^{d}}\left(|w(y)|^{p+1}-\frac{1}{p-1}|w(y)|^{2}\right) \sigma(y) d y \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{\mathbb{R}^{d}}|y|^{2}|\nabla w(y)|^{2} \sigma(y) d y= & \int_{\mathbb{R}^{d}}|y|^{2}|w(y)|^{p+1} \sigma(y) d y \\
& +\int_{\mathbb{R}^{d}}\left(d|w(y)|^{2}-\frac{p+1}{2(p-1)}|y|^{2}|w(y)|^{2}\right) \sigma(y) d y \tag{4}
\end{align*}
$$

The nonlinear heat equation - Self-similar blowup

Multiplication by $y \cdot \nabla w$ implies

$$
\begin{align*}
\int_{\mathbb{R}^{d}}\left(\frac{|y|^{2}}{4}\right. & \left.+\frac{2-d}{2}\right)|\nabla w(y)|^{2} \sigma(y) d y \\
& =\int_{\mathbb{R}^{d}}\left(\frac{|y|^{2}}{2}-d\right)\left(\frac{1}{p+1}|w(y)|^{p+1}-\frac{1}{2(p-1)}|w(y)|^{2}\right) \sigma(y) d y \tag{5}
\end{align*}
$$

Then $2 d \times(3)-(4)+2(p+1) \times(5)$ yields
Pohozaev identity

$$
\int_{\mathbb{R}^{d}}((2-d) p+d+2)|\nabla w(y)|^{2} \sigma(y) d y+\frac{p-1}{2} \int_{\mathbb{R}^{d}}|y|^{2}|\nabla w(y)|^{2} \sigma(y) d y=0
$$

This implies that $w=$ const. for $d \leq 2$ or $d \geq 3$ and $1<p \leq \frac{d+2}{d-2}$

The nonlinear heat equation - Self-similar blowup solutions for $p>p_{c}$

For $p>p_{c}$, there exist radial non-trivial self-similar blowup solutions.
Example: $p=2,7 \leq d \leq 15$,

$$
\begin{equation*}
u_{T}(x, t)=(T-t)^{-1} f\left(\frac{|x|}{\sqrt{T-t}}\right), \quad f(\rho)=\frac{24 a}{\left(a+\rho^{2}\right)^{2}}+\frac{b}{a+\rho^{2}} \tag{6}
\end{equation*}
$$

with constants

$$
a=2\left(10 \sqrt{1+\frac{d}{2}}-d-14\right), \quad b=24\left(\sqrt{1+\frac{d}{2}}-2\right) .
$$



$$
\text { — } \mathrm{t}=0.9
$$

$$
-\mathrm{t}=0.95
$$

Figure: Blowup solution $u_{T}(t, r)=(1-t)^{-1} f\left(\frac{r}{1-t}\right)$ for $d=7, T=1$

## Stable self-similar blowup in related models

Example 1 (co-rotational wave maps into $\mathbb{S}^{3}$ )

$$
\partial_{t}^{2} \psi(t, r)-\partial_{r}^{2} \psi\left((t, r)-\frac{2}{r} \partial_{r} \psi\left((t, r)+\frac{\sin (2 \psi((t, r))}{r^{2}}=0\right.\right.
$$

Scale invariance $\psi \mapsto \psi_{\lambda}(t, r):=\psi(\lambda t, \lambda r), \lambda>0$

Self-similar blowup solution (gradient blowup)

$$
\psi_{T}(t, r)=2 \arctan \left(\frac{r}{T-t}\right)
$$



Figure: Blowup solution $\psi_{1}(t, r)$

## Stable self-similar blowup in related models

Example 1 (co-rotational wave maps into $\mathbb{S}^{3}$ )

$$
\partial_{t}^{2} \psi(t, r)-\partial_{r}^{2} \psi\left((t, r)-\frac{2}{r} \partial_{r} \psi\left((t, r)+\frac{\sin (2 \psi((t, r))}{r^{2}}=0\right.\right.
$$

Scale invariance $\psi \mapsto \psi_{\lambda}(t, r):=\psi(\lambda t, \lambda r), \lambda>0$

Extension past the blowup time [Biernat-Donninger-S., to appear in IMRN]

$$
\psi_{T}^{*}(t, r)=4 \arctan \left(\frac{r}{T-t+\sqrt{(T-t)^{2}+r^{2}}}\right)
$$



Figure: Blowup solution $\psi_{1}^{*}(t, r)$

## Stable self-similar blowup in related models

Example 2 (Yang-Mills heat flow)

$$
\partial_{t} u(r, t)-\partial_{r}^{2} u(r, t)-\frac{d+1}{r} \partial_{r} u(r, t)=3(d-2) u^{2}(r, t)-(d-2) r^{2} u^{3}(r, t)
$$

Self-similar blowup solution for $d \geq 5$
[Weinkove, Calc. Var. PDE 19 (2004)]

$$
u_{T}^{*}(r, t)=\frac{1}{T-t} W\left(\frac{r}{\sqrt{T-t}}\right), \quad W(\rho)=\frac{1}{a \rho^{2}+b}
$$



Figure: $u_{T}^{*}(r, t)$ in $d=5$ for $T=1$

Energy critical wave equation $p=p_{c}$

Explicit static solution

$$
W(x)=\left(1+\frac{|x|^{2}}{d(d-2)}\right)^{-(d-2) / 2}
$$

[Kenig-Merle, Acta Math. 201 (2008)] For $E((f, g))<E(W)$, if
$\triangleright\|\nabla f\|_{L^{2}}<\|\nabla W\|_{L^{2}} \Rightarrow$ Global existence.
$\triangleright\|\nabla f\|_{L^{2}}>\|\nabla W\|_{L^{2}} \Rightarrow$ Finite time blowup.
Type II blowup solutions

$$
u(t, x) \sim \lambda(t)^{-\frac{2}{p-1}} W\left(\frac{x}{\lambda(t)}\right), \quad \lambda(t) \rightarrow 0 \text { as } t \rightarrow T
$$

$d=3:[$ Krieger-Schlag-Tataru, Duke Math. J. 147 (2009)]
$d=4$ : [Hillairet-Raphaël, Anal. PDE 5 (2012)]
[...]

## Further reading

## Books/Lecture Notes

- L.C. Evans,Partial Differential Equations (Second Edition)
- C. Sogge, Lectures on non-linear wave equations.
- J. Shatah, M. Struwe, Geometric wave equations
- W. Strauss, Nonlinear Wave Equations
- T. Tao, Nonlinear dispersive equations. Local and global analysis
- P. Quittner, P. Souplet Superlinear parabolic problems

Thank you for your attention!


[^0]:    ${ }^{1}$ Support by the Klaus-Tschira Stiftung and the CRC 1173 Wave phenomena: analysis and numerics is gratefully acknowledged

