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The Haar system H

Haar (1910): For j € No, u € Z let h; , be supported on
fu=[271,27(u+ 1)) and

By u(x) = 1 onthe left half of J; ,
M7 =1 onthe right half of 1,

e The Haar frequency of h; , is 2.

e The functions 2//2h; ,, together with the functions
h_1, == 1},41) form an ONB of L?(R).

e Let 3 be the collection of h; ,, j = —1,0,1,2,..., u € Z.

Haar system on [0, 1), or T: Take only those Haar functions
defined on [0, 1).



Haar system in d dimensions

e Intervals are replaced by cubes. For every dyadic cube we
have 29 — 1 Haar functions.

Let u® = Ljo,1), u = Lo,1/2) = Lpiyz,0)-
For every ¢ = (£1,...,£q) € {0,1}9 let
A (X1, ..., Xq) = Ul (x7) - uld)(xg).
Finally, one sets
hS)(x) = HO@x —0), jez, tezl,

The Haar system J{4 is then given by

0 : d d N
sa={n)}, 0 {1iez ted c (0,11 \(0}}.



Bases, |

Def. 1 Given a (quasi-)Banach space X of tempered
distributions in R? and an enumeration U = (uy, U, ... ) of the
Haar system Hy, we say that U is a basic sequence on X if the
orthogonal projections P, : span(i{) — span ({uy,...,uUs}) are
uniformly bounded.

e Only seemingly weaker: Any f in the closure of span(i/) can
be expanded in a unique way as

f=>calf)un

with convergence in X. Then c¢,(f) = 29 (f u,)up,.

Def. 2. If ¢/ is a basic sequence on X and if span(i/) is dense in
X then we say that i/ is a Schauder basis of X.



Bases, Il

Assume that span(X/) is dense in X and suppose that i/ is a
Schauder basis
Def. 3. U is an unconditional basis of X if for f =" chup we

have that -
Z Coo(n) Uz (n)
n=1

converges for every bijection o : N — N.

Equivalently:
@ > > . +cnhu, converges for all choices of +1.

@ > > . +tm(n)cpu, converges for all m € ¢>°(N).



Bases, Il

Use the UBP:

e U{ is an unconditional basis if and only if the span of i/ is
dense and if the projections to subspaces generated by finite
subsets of &/ are uniformly bounded.

e For unconditional bases the multiplier problem is trivial:

U is an unconditional basis if and only if the multiplier
transformation

f=>ca(fun > m(n)ca(f)un

is @ bounded operator for all m € ¢>°(N).



We say that ¢/ is an unconditional basic sequence on X if ¢/ is
an unconditional basis on span(u)x.

For the Haar system the following notion is also useful.
Def. H4 is a local basis of X if f = cn(f)un converges for all
compactly supported f.

The statements about projection operators remain true, but the
operator norms depend on the choice of a compact set K in
which all considered f are supported.

One can also define the notions of local unconditional basis,
local basic sequence and local unconditional basic sequence.



The Haar basis in LP(R)

Schauder (28): H (with the natural lexicographic order) is a
basis of LP([0,1)) when 1 < p < 0.

oo 22—

f—E0f+ZZZI

j=0 pu=0
for f € LP([0, 1)), with convergence in LP.

e One works with conditional expectional operators Ey
associated to dyadic intervals of length 2-N

e En. 1 — Ep is the orthogonal projection to the space
generated by the Haar functions with Haar frequency 2V.

e Billard (1970’s): H is a Schauder basis on the Hardy space
h'(T).



The Haar basis in LP(R), 1 < p < o©

Marcinkiewicz (37): H is an unconditional basis of LP(R) when
1< p<oo.

e For f € [P,

f= Z szUv hj,u>hjvu

j=—1 ek
with unconditional convergence in LP.

Based on prior work of Paley, on square functions.

e Pefczynski (61): L' cannot be imbedded in a Banach space
with an unconditional basis.



Function spaces on R, I.

Sobolev spaces W], 1 < p < oo, me N.

fllwp = D 110°Fllp

la|<m
Bessel potential space L2 aka Sobolev space.
1fll2 = (11 = A)%3f]],
where F[(I — A)¥2f](¢) = (1+ [¢)*/27(¢).

Note that for 1 < p < oo we have WP = £ and the L£
interpolate with the complex method.

Since Haar functions are not smooth we are interested in these
spaces for small s.



Function spaces on RY, II.

LP Holder classes A(p,s) = Bg ., For0 < s <1,1 < p < oo,

17+ ) — 1l
fllgs = |/fllp +sup ——F——".
I, = Il +sup 1= 75

Sobolev-Slobodecki spaces B; ,. For0 < s <1 let

f(x)— f(y)|P 1/p
I, = 115+ ([ T2 o ay)

|x — y|oFsP

B , is also referred to as "Sobolev space of fractional order s".
But BS , # L& for p # 2.



Function spaces, lll. The role of square functions

Consider { Pk}, an inhomogeneous dyadic frequency
decomposition. Aka Littlewood-Paley decomposition.

Let ¢ € C((RY)*), pg = 1 near 0.

~

Pof(€) = ¢o(€)F(€),
Pif(€) = (do(27%¢) — do(2'FENF(E), k> 1.

e Localization to frequencies of size ~ 2k.
Then, for1 < p < oo

I7lie = | (iz”ﬂmz)” iR

by standard singular integral theory (in a Hilbert-space setting).



Function spaces, IV. B

S
b Fog

"Function spaces" as subspaces of tempered distributions via
Fourier analytic definitions:

Besov-Nikolskij-Taibleson spaces, 0 < p, g < oco.

Ifllgs,, = H{stPkf}Heq(Lp)
Triebel-Lizorkin spaces. 0 < p < 00, 0 < g < .

1fllrs , = (2" Pif | oo
Note F5, = L§, 1 < p < co. Hardy-Sobolev H§ when p > 0.

There is an extension to p = oo, so that F2, , = BMO, using
BMO-like norms in the general case (cf. the
Chang-Wilson-Wolff theorem and Frazier-dawerth definitions).



Function spaces, V. Peetre maximal functions

Motivated by the Hardy space results of Fefferman-Stein,
Peetre (1975) introduced maximal functions on distributions
with bounded Fourier theorems about maximal functions
support. Assume f Schwartz and f supported in a set of
diameter 1.
Then

f(x+ )| _

s M [
ey = Ml

Summary of proof: One proves first
|VFi(x + h)| [f(x + h)|
sup ————+ < —_—
vero (1 AN e (1 + A7
and then relies on a mean value inequality
, 1/r
90| < &1 sup [Vg|+ ca(ave,(olgl”) -

Bs(x)



Function spaces, VI. Peetre maximal functions:

Scaled and vector valued versions

e Assume that?k € &' is supported on a set of diameter R.

! [f(x + h)|
X+
My afe(X) = R T
Alkx) here (1 + Ril))A

Then

H{A4hAm}Hmup)§AH{@}Hmuﬁy A:>d/p.
H{Mk,AfK}HLp(eQ) SA H{fk}HLP(Eq)’ A>d/p,A>d/q.

One can use Fefferman-Stein vector-valued extension of the
Hardy-Littlewood maximal theorem.

Is the additional condition on q needed?



Function spaces, VI. Peetre maximal functions:

Scaled and vector valued versions

e Assume that?k € &' is supported on a set of diameter R.

! [f(x + h)|
X+
My afe(X) = R T
Alkx) here (1 + Ril))A

Then

H{A4hAm}Hmup)§AH{@}Hmuﬁy A:>d/p.
H{Mk,AfK}HLp(eQ) SA H{fk}HLP(Eq)’ A>d/p,A>d/q.

One can use Fefferman-Stein vector-valued extension of the
Hardy-Littlewood maximal theorem.

Is the additional condition on q needed? Yes, no matter what
the Ry are. (Christ, S., PLMS 2006).



Questions for function spaces measuring smoothness

Consider Triebel-Lizorkin spaces Fj ,

Q1: For which spaces is Hy a basic sequence?

S
Besov spaces Bg ;.

Q2: For which spaces is Hy a Schauder basis?
Q3: For which spaces is Hy an unconditional basis?

Q4: Haar system on unit cube or on R?: Does it matter for the
outcomes?

e Obvious necessary condition: The Haar functions must
belong to the space (mostly s < 1/p).

e Other necessary conditions by duality (e.g. mostly
s>-1+1/pwhen1 < p< o).
e Interpolation gives additional restrictions for cases with p < 1.

e We often disregard the cases p = co or g = oo (Schwartz
functions are not dense).



Some references to prior work

e Triebel (73), (78): Hy is an (unconditional) basis on B , if

d 1 1
ax{——d, ——1} <s<min{—,1}.
mx{p b } mln{p }

Result is sharp up to endpoints. Secondary smoothness
parameter g plays no role.

e Many more results on splines, wavelets in Besov spaces
(Ciesielski, Figiel, Ropela, Meyer, Sickel, Bourdaud, Oswald).
2010: Triebel’s monograph :

Hq is an unconditional basis on Fj . if

max{1—1,1—1,g—d,g—d}<s<min{1, 1,1}.
p q p q P q

Q: Is the additional restriction on q necessary?



A recurring picture
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Figure: Parameter domains for the Haar system in 7 , spaces on RY,
1<g< oo, hereqg=2.

Hg is unconditional basis for By ,: interior of the entire domain.



More about this on Thursday.




