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The Haar system H

Haar (1910): For j ∈ N0, µ ∈ Z let hj,µ be supported on
Ij,µ = [2−jµ,2−j(µ+ 1)) and

hj,µ(x) =

{
1 on the left half of Ij,µ
−1 on the right half of Ij,µ

• The Haar frequency of hj,µ is 2j .

• The functions 2j/2hj,µ, together with the functions
h−1,µ := 1[µ,µ+1) form an ONB of L2(R).

• Let H be the collection of hj,µ, j = −1,0,1,2, . . . , µ ∈ Z.

Haar system on [0,1), or T: Take only those Haar functions
defined on [0,1).



Haar system in d dimensions

• Intervals are replaced by cubes. For every dyadic cube we
have 2d − 1 Haar functions.

Let u(0) = 1[0,1), u(1) = 1[0,1/2) − 1[1/2,1).

For every ε = (ε1, . . . , εd ) ∈ {0,1}d let

h(ε)(x1, . . . , xd ) = u(ε1)(x1) · · · u(εd )(xd ).

Finally, one sets

h(ε)
j,` (x) = h(ε)(2jx − `), j ∈ Z, ` ∈ Zd ,

The Haar system Hd is then given by

Hd =
{

h(~0)
0,`

}
`∈Zd
∪
{

h(ε)
j,` | j ∈ Z, ` ∈ Zd , ε ∈ {0,1}d \ {~0}

}
.



Bases, I

Def. 1 Given a (quasi-)Banach space X of tempered
distributions in Rd and an enumeration U = (u1,u2, . . . ) of the
Haar system Hd , we say that U is a basic sequence on X if the
orthogonal projections Pn : span(U)→ span ({u1, . . . ,un}) are
uniformly bounded.

• Only seemingly weaker: Any f in the closure of span(U) can
be expanded in a unique way as

f =
∑

n

cn(f )un

with convergence in X. Then cn(f ) = 2freq(un)〈f ,un〉un.

Def. 2. If U is a basic sequence on X and if span(U) is dense in
X then we say that U is a Schauder basis of X.



Bases, II

Assume that span(U) is dense in X and suppose that U is a
Schauder basis
Def. 3. U is an unconditional basis of X if for f =

∑
n cnun we

have that
∞∑

n=1

c$(n)u$(n)

converges for every bijection $ : N→ N.

Equivalently:∑∞
n=1±cnun converges for all choices of ±1.

∑∞
n=1±m(n)cnun converges for all m ∈ `∞(N).



Bases, III

Use the UBP:

• U is an unconditional basis if and only if the span of U is
dense and if the projections to subspaces generated by finite
subsets of U are uniformly bounded.

• For unconditional bases the multiplier problem is trivial:

U is an unconditional basis if and only if the multiplier
transformation

f =
∑

n

cn(f )un 7→
∑

n

m(n)cn(f )un

is a bounded operator for all m ∈ `∞(N).



Bases, IV

We say that U is an unconditional basic sequence on X if U is
an unconditional basis on span(U)

X
.

For the Haar system the following notion is also useful.
Def. Hd is a local basis of X if f =

∑
cn(f )un converges for all

compactly supported f .

The statements about projection operators remain true, but the
operator norms depend on the choice of a compact set K in
which all considered f are supported.

One can also define the notions of local unconditional basis,
local basic sequence and local unconditional basic sequence.



The Haar basis in Lp(R)

Schauder (28): H (with the natural lexicographic order) is a
basis of Lp([0,1)) when 1 ≤ p <∞.

f = E0f +
∞∑

j=0

2j−1∑
µ=0

2j〈f ,hj,µ〉hj,µ

for f ∈ Lp([0,1)), with convergence in Lp.

• One works with conditional expectional operators EN
associated to dyadic intervals of length 2−N .

• EN+1 − EN is the orthogonal projection to the space
generated by the Haar functions with Haar frequency 2N .

• Billard (1970’s): H is a Schauder basis on the Hardy space
h1(T).



The Haar basis in Lp(R), 1 < p <∞

Marcinkiewicz (37): H is an unconditional basis of Lp(R) when
1 < p <∞.

• For f ∈ Lp,

f =
∞∑

j=−1

∑
µ∈Z

2j〈f ,hj,µ〉hj,µ

with unconditional convergence in Lp.

Based on prior work of Paley, on square functions.

• Pełczynski (61): L1 cannot be imbedded in a Banach space
with an unconditional basis.



Function spaces on Rd , I.

Sobolev spaces W m
p , 1 ≤ p ≤ ∞, m ∈ N.

‖f‖W m
p

=
∑
|α|≤m

‖∂αf‖p

Bessel potential space Lp
s aka Sobolev space.

‖f‖Lp
s

= ‖(I −∆)s/2f‖p

where F [(I −∆)s/2f ](ξ) = (1 + |ξ|2)s/2 f̂ (ξ).
Note that for 1 < p <∞ we have W p

s = Lp
s and the Lp

s
interpolate with the complex method.

Since Haar functions are not smooth we are interested in these
spaces for small s.



Function spaces on Rd , II.

Lp Hölder classes Λ(p, s) ≡ Bs
p,∞ For 0 < s < 1, 1 ≤ p ≤ ∞,

‖f‖Bs
p,∞

= ‖f‖p + sup
h 6=0

‖f (·+ h)− f‖p
|h|s

.

Sobolev-Slobodecki spaces Bs
p,p. For 0 < s < 1 let

‖f‖Bs
p,p

= ‖f‖p +
(∫∫ |f (x)− f (y)|p

|x − y |d+sp dx dy
)1/p

Bs
p,p is also referred to as "Sobolev space of fractional order s".

But Bs
p,p 6= Lp

s for p 6= 2.



Function spaces, III. The role of square functions

Consider {Pk}∞k=0, an inhomogeneous dyadic frequency
decomposition. Aka Littlewood-Paley decomposition.

Let φ0 ∈ C∞c ((Rd )∗), φ0 = 1 near 0.

P̂0f (ξ) = φ0(ξ)̂f (ξ),

P̂k f (ξ) = (φ0(2−kξ)− φ0(21−kξ))̂f (ξ), k ≥ 1.

• Localization to frequencies of size ≈ 2k .
Then, for 1 < p <∞

‖f‖Lp
s

=
∥∥∥( ∞∑

k=0

22ks|Pk f |2
)1/2∥∥∥

p
.

by standard singular integral theory (in a Hilbert-space setting).



Function spaces, IV. Bs
p,q, F s

p,q

"Function spaces" as subspaces of tempered distributions via
Fourier analytic definitions:

Besov-Nikolskij-Taibleson spaces, 0 < p,q ≤ ∞.

‖f‖Bs
p,q

=
∥∥{2ksPk f}

∥∥
`q(Lp)

Triebel-Lizorkin spaces. 0 < p <∞, 0 < q ≤ ∞.

‖f‖F s
p,q

=
∥∥{2ksPk f}

∥∥
Lp(`q)

Note F s
p,2 = Lp

s , 1 < p <∞. Hardy-Sobolev Hs
p when p > 0.

There is an extension to p =∞, so that F 0
∞,2 = BMO, using

BMO-like norms in the general case (cf. the
Chang-Wilson-Wolff theorem and Frazier-Jawerth definitions).



Function spaces, V. Peetre maximal functions

Motivated by the Hardy space results of Fefferman-Stein,
Peetre (1975) introduced maximal functions on distributions
with bounded Fourier theorems about maximal functions
support. Assume f Schwartz and f̂ supported in a set of
diameter 1.
Then

sup
x∈Rd

|f (x + h)|
(1 + |h|)d/r .

(
MHL[|f |r ]

)1/r
.

Summary of proof: One proves first

sup
x∈Rd

|∇f (x + h)|
(1 + |h|)d/r . sup

x∈Rd

|f (x + h)|
(1 + |h|)d/r

and then relies on a mean value inequality

|g(x)| ≤ c1δ sup
Bδ(x)

|∇g|+ c2

(
avBδ(x)|g|

r
)1/r

.



Function spaces, VI. Peetre maximal functions:
Scaled and vector valued versions

• Assume that f̂k ∈ S ′ is supported on a set of diameter Rk .
Let

Mk ,Afk (x) = sup
h∈Rd

|fk (x + h)|
(1 + Rk |h|)A .

Then∥∥{Mk ,Afk}
∥∥
`q(Lp)

.A
∥∥{fk}∥∥`q(Lp)

, A > d/p.∥∥{Mk ,Afk}
∥∥

Lp(`q)
.A

∥∥{fk}∥∥Lp(`q)
, A > d/p,A > d/q.

One can use Fefferman-Stein vector-valued extension of the
Hardy-Littlewood maximal theorem.

Is the additional condition on q needed?

Yes, no matter what
the Rk are. (Christ, S., PLMS 2006).
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Questions for function spaces measuring smoothness

Consider Triebel-Lizorkin spaces F s
p,q, Besov spaces Bs

p,q.

Q1: For which spaces is Hd a basic sequence?

Q2: For which spaces is Hd a Schauder basis?

Q3: For which spaces is Hd an unconditional basis?

Q4: Haar system on unit cube or on Rd : Does it matter for the
outcomes?

• Obvious necessary condition: The Haar functions must
belong to the space (mostly s < 1/p).

• Other necessary conditions by duality (e.g. mostly
s > −1 + 1/p when 1 < p <∞).
• Interpolation gives additional restrictions for cases with p ≤ 1.

•We often disregard the cases p =∞ or q =∞ (Schwartz
functions are not dense).



Some references to prior work

• Triebel (73), (78): Hd is an (unconditional) basis on Bs
p,q if

max{d
p
− d ,

1
p
− 1} < s < min{1

p
,1}.

Result is sharp up to endpoints. Secondary smoothness
parameter q plays no role.
• Many more results on splines, wavelets in Besov spaces
(Ciesielski, Figiel, Ropela, Meyer, Sickel, Bourdaud, Oswald).
2010: Triebel’s monograph :
Hd is an unconditional basis on F s

p,q if

max{1
p
− 1,

1
q
− 1,

d
p
− d ,

d
q
− d} < s < min{1

p
,

1
q
, 1}.

Q: Is the additional restriction on q necessary?



A recurring picture
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Figure: Parameter domains for the Haar system in F s
p,q spaces on Rd ,

1 < q <∞, here q = 2.

Hd is unconditional basis for Bs
p,q: interior of the entire domain.



More about this on Thursday.


