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Questions for function spaces measuring smoothness

Hd : System of Haar functions in Rd (or Td ).
Consider Triebel-Lizorkin spaces F s

p,q, Besov spaces Bs
p,q.

Q1: For which spaces is Hd a basic sequence?

Q2: For which spaces is Hd a Schauder basis?

Q3: For which spaces is Hd an unconditional basis?

Q4: Haar system on unit cube or on Rd : Does it matter for the
outcomes?

• Q3 refers to Hd as a set of functions.

• Q1, Q2, Q4 refer to specific enumerations of Hd .



Pre-2014 results

• Triebel (73), (78): Hd is an (unconditional) basis on Bs
p,q if

max{d
p
− d ,

1
p
− 1} < s < min{1

p
,1}.

Secondary smoothness parameter q plays no role. Result is
sharp up to endpoints.
• Many more results on splines, wavelets in Besov spaces
(Ciesielski, Figiel, Ropela, Meyer, Sickel, Bourdaud, Oswald).
2010: Triebel’s monograph :
Hd is an unconditional basis on F s

p,q if

max{1
p
− 1,

1
q
− 1,

d
p
− d ,

d
q
− d} < s < min{1

p
,

1
q
, 1}.

Q: Is the additional restriction on q necessary?



A recurring picture
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• Hd is unconditional basis for Bs
p,q: interior of the entire

domain.
• Tomorrow’s topic: On F s

p,q unconditional basis property only
holds in the grey region.



Schauder basis (interior of the figure)

Theorem (GSU)

Let 0 < q <∞, and p > d
d+1 . Assume that

−1 +
1
p
< s <

1
p

if p > 1,

−d +
d
p
< s < 1 if

d
d + 1

< p ≤ 1.

Then U is a Schauder basis of F s
p,q.

• This result refers to admissible enumerations U of Hd .

• Analogous result is true on T or Td where the lexicographic
order can be used as the standard enumeration.

• Recall: For Besov spaces, Triebel had proved the result with
unconditionality, so then admissibility is irrelevant.



Admissible enumerations

Admissibility means roughly: Mimicking the lexicographic order
for Haar functions on the unit interval.
In endpoint cases one has to be careful with the definition of
admissibility (characteristic function of cubes may not be
pointwise multipliers). Here we use:
Def. An enumeration U = {u1,u2, ...} of the Haar system is
(strongly) admissible if the following condition holds for some
b ∈ N. Whenever

un, un′ supported in 5-fold dilate of a dyadic unit cube,

|supp (un)| ≥ 2b|supp un′ |

then n ≤ n′.



Conditional expectations

Key is to understand boundedness properties for the
conditional expectional operators EN associated to dyadic
intervals of length 2−N .
Recall: EN+1 − EN is the orthogonal projection to the space
generated by the Haar functions with Haar frequency 2N .
Then a main ingredient for the Schauder basis property is
Theorem. Let max{−d + d/p, −1 + 1/p} < s < min{1/p,1},
then

‖EN f‖F s
p,q

. ‖f‖F s
p,q
.

Basic Idea: Approximate EN (rough non-convolution
approximation of the identity) with a nice convolution
approximation of the identity ΠN = Φ0(2−ND), with suitable
smooth compactly supported Φ0 with

∫
Φ0dx = 1.

Clearly for all s,p,q

‖ΠN f‖F s
p,q

. ‖f‖F s
p,q
.



EN −ΠN is better

Use embeddings to reduce to
Theorem. For p, s in the interior of the figure, any r > 0

‖EN f −ΠN f‖Bs
p,r

. ‖f‖Bs
p,∞

.

Note the continuous embeddings for r ≤ min{1,p,q} :

Bs
p,r ⊂ F s

p,r ⊂ F s
p,q ⊂ F s

p,∞ ⊂ Bs
p,∞.

• Approximation of EN by ΠN is harder in the endpoint cases.



Another kind of Littlewood-Paley decomposition

A standard tool is to decompose decompose

g =
∑
j≥0

LjPjg =
∑
j≥0

PjLjg.

Lj "Littlewood-Paley cutoff operators" which have appropriate
compact support and, when j > 0, cancellation. For j > 0 we
have

Ljg = 2jdψ(2j ·) ∗ g,
∫
ψdx = 0 (or higher canc.)

Pjg = 2jdβ(2j ·) ∗ g, P̂jg supported where |ξ| ≈ 2j .

• This is used in the Calderón reproducing formula, in the
discrete form by Frazier and Jawerth.
• Use this for g being f or EN f .
•We may assume ΠN =

∑
j≤N LjPj .



Decompose

O.B.d.A.(W.l.o.g.) r ≤ min{1,p,q}:

∥∥EN f −ΠN f
∥∥

Bs
p,r

.
∥∥∥{2ks

∞∑
j=N+1

PkLkENLjPj f
}∥∥∥

`r (Lp)

+
∥∥∥{2ks

N∑
j=0

PkLk (EN − I)LjPj f
}∥∥∥

`r (Lp)

.
( ∞∑

j=N+1

∞∑
k=0

2ksr‖PkLkENLjPj f‖rp
)1/r

+
( N∑

j=0

∞∑
k=0

2ksr‖PkLk (EN − I)LjPj f‖rp
)1/r

•We need to show that this is . supj 2js‖Pj f‖p.



p ≥ 1

Lemma.

2ks‖PkLkENLjPj f‖p . Up,s(j , k ,N)2js‖Pj f‖p, j ≥ N

2ks|‖PkLk (EN − I)LjPj f‖p . Up,s(j , k ,N)2js‖Pj f‖p, j ≤ N

where

Up,s(j , k ,N) =


2j( 1

p−1−s)2k(s− 1
p )2N , j , k ≥ N

2j(1−s)2k(s− 1
p )2N( 1

p−1)
, j ≤ N ≤ k

2j(1−s)2k(1+s)2−2N , j , k ≤ N

2j( 1
p−1−s)2k(1+s)2−

N
p , k ≤ N ≤ j .

• Good for estimates in the interior of the figure. Also some
results at the boundary.



p ≤ 1

Lemma.

2ks‖PkLkENLjPj f‖p . Up,s(j , k ,N)2js‖Pj f‖p, j ≥ N

2ks|‖PkLk (EN − I)LjPj f‖p . Up,s(j , k ,N)2js‖Pj f‖p, j ≤ N

where

Up,s(j , k ,N) =


2j( d

p−d−s)2k(s− 1
p )2N(d− d−1

p ) if j , k > N

2j(1−s)2k(s− 1
p )2N( 1

p−1) if j ≤ N < k

2j(1−s)2k(s+d+1− d
p )2N( d

p−d−2) if 0 ≤ j , k ≤ N

2j( d
p−d−s)2k(s+d+1− d

p )2−N if k ≤ N < j .

• Good for estimates in the interior of the figure. Also some
results at the boundary.



Endpoint case I: 1 < p <∞, s = 1/p.

1

• Haar functions do not belong to F 1/p
p,q , q ≤ ∞.

• Haar functions do not belong to B1/p
p,q , q <∞.

• But Haar functions belong to B1/p
p,∞.

Proposition

Let 1 < p <∞, s = 1/p. Then the operators EN are uniformly
bounded on B1/p

p,∞.



Endpoint case II: p =∞, −1 < s ≤ 0.

1

• Separability fails for p =∞.

Proposition
Let p =∞. (i) If −1 < s < 0 then the operators EN are
uniformly bounded on Bs

∞,q, 0 < q <∞.
(ii) If −1 < s ≤ 0 then the operators EN are uniformly bounded
on Bs

∞,∞.
(iii) If −1 < s ≤ 0 then the operators EN are uniformly bounded
on F s

∞,q, 0 < q <∞.



Endpoint case III: 1 < p <∞, s = 1/p − 1.

1

Let U an admissible enumeration.

Theorem
Let 1 < p <∞, s = 1/p − 1.
(i) U not a basic sequence on F s

p,q, q > 0, or Bs
p,q, for any q > 1.

(ii) Schauder basis property on Bs
p,q(Rd ) fails for some

admissible U , any q > 0.
(iii) All admissible U are local Schauder bases on Bs

p,q(Rd ) if
and only if 0 < q ≤ 1.

• In (iii) unconditionality fails.

• In the cases 1 < p,q <∞ negative results follow by duality.



Endpoint case IV: p ≤ 1, s = d/p − d

Theorem

1

Let d
d+1 < p ≤ 1, s = d

p − d. Then

(i) All admissible U are Schauder bases on F s
p,q for 0 < q <∞,

and basic sequences on F s
p,∞.

(ii) All admissible U are Schauder bases (basic sequences) on
Bs

p,q, s = d
p − d, if and only if q = p.

(iii) All admissible U are local Schauder bases (basic
sequences) on Bs

p,q, s = d
p − d, if and only if 0 < q ≤ p, but

uniform boundedness of the EN fails for p < q ≤ 1.

• In all cases above Hd is not an unconditional basis.
• The positive result in (iii), on [0,1)d was also obtained by
Oswald.



Endpoint case IV, cont.

1

Def. Let Q be a large cube. X function space.

Op(T ,X ,Q) := sup
{
‖Tf‖X : ‖f‖X ≤ 1, supp (f ) ⊂ Q

}
.

Theorem

Let d
d+1 < p ≤ 1, s = d

p − d. Then for cubes of side length ≥ 1,
and p < q ≤ 1,

Op(EN ,B
d
p−d
p,q ,Q) ≈ (2Nd |Q|)1/p−1/q.

Ex.: Let gl(x) = 2ldη(2lx),
∫
η = 0, N large, {am} ∈ `q.

Enumerate Zd = {zm : m = 1,2, . . . }. Set

FN(x) :=
∑

m

amgN+m(x − 2−Nzm).



Endpoint case V: s = 1.

Let U be admissible enumeration of Hd .

Theorem

1

Let d
d+1 ≤ p < 1.

(i) EN are uniformly bounded on F 1
p,q if and only if 0 < q ≤ 2.

(ii) EN are uniformly bounded on B1
p,q if and only if 0 < q ≤ p.

(iii) span (Hd ) is not dense on these spaces.
(iv) All admissible U are basic sequences in case (i) and local
basic sequences in case (ii), global if p = q.

• There are Schwartz functions for which EN f 6→ f in all spaces
with s = 1 (also observed by Oswald).



Endpoint case V: EN for s = 1, cont.

1

We do not want to separately estimate the contributions for Pj f
when j ≤ N.
Instead we use for d

d+2 < p < 1, r > 0,(∑
k

[
2k‖Lk (I − EN)ΠN f‖p

]r)1/r
. ‖∇f‖hp ≈ ‖f‖F 1

p,2
.



Endpoint case V: EN for s = 1, cont.

1

Observe independence of Q, |Q| > 1, in:

Theorem

Let d
d+1 ≤ p < 1 (or p = 1,q =∞ in B-case). Then

(i) Op(EN ,B1
p,q) ≈ N1/p−1/q, p ≤ q ≤ ∞.

(ii) Op(EN ,F 1
p,q) ≈ N1/2−1/q, 2 ≤ q ≤ ∞.

Example for (ii): fN(x) =
∑

N/4<j<N/2(±1)2−je2πi2j xψ(x) for
random choices of sequences of ±1.
Two unanswered questions:
• Is span(Hd ) dense in B1

p,q when q > p?
• Is span(Hd ) dense in F 1

p,q when q > 2?



Failure of unconditionality in F s
p,q(R):

A multiplier question for p,q ≥ 1

On Friday we consider the question when Hd is an
unconditional basis, with emphasis on counterexamples.

1

Tmf :=
∞∑

j=0

m(j)
∑
µ

2j〈f ,hj,µ〉hj,µ =
∞∑

j=0

m(j)Dj f

where Dj = Ej+1 − Ej .
Recall: H1 unconditional basis ⇐⇒ every bounded sequence
m is a multiplier.
Q: What are the conditions on m that Tm is bounded on F s

p,q for
(p−1, s) in the non-shaded regions?



Multiplier question, II

V u: u-variation space:

‖m‖V u = ‖m‖∞ + sup
N

sup
j1<···<jN

( N−1∑
i=1

|m(ji+1)−m(ji)|u
)1/u

By a summation by parts argument it is easy to see: If the EN
are uniformly bounded on X then

‖Tm‖X . ‖m‖V1‖f‖X .

Can one do better?



Multiplier question, III

1

Theorem
Let 1 < p < q <∞ and 1/q ≤ s < 1/p. Then

‖Tmf‖F s
p,q
≤ C‖m‖Vu‖f‖F s

p,q
, 1/u > s − 1/q .

Essentially sharp up to endpoints: Lower bounds for Haar
projection numbers in [SU] give the existence of sets E ⊂ 2N
depending on s such that #E ≥ 2N , and thus ‖1E‖V u ≥ 2N/u,
and such that

‖T1E‖F s
p,q→F s

p,q
&

{
2N(s− 1

q ) if 1
q < s < 1

p ,

N if 1
q = s < 1

p .



Multipliers IV: Variation norms and interpolation

We want to interpolate but variation norms cannot be efficiently
interpolated (?).
• There is a related function space Ru such that

V ũ ⊂ Ru ⊂ V u, ũ < u.

Def. We say that g belongs to the class ru if g =
∑

ν cν1Iν
where (

∑
ν |cν |u)1/u ≤ 1.

Def. We say that h belongs to Ru if m can be written as

h =
∑

n

anhn

with
∑
|an| <∞ and the norm is given by inf

∑
|an| where the

inf is taken over all such representations.
• Since we don’t prove an endpoint result we can reduce to an
interpolation for `u spaces.
• This is sketched in a paper by Coifman, Rubio de Francia,
Semmes (1988).


