
Basis properties of the Haar system in
various function spaces, III.

Andreas Seeger (University of Wisconsin-Madison)

Chemnitz Summer School on Applied Analysis 2019

• Based on joint work with Gustavo Garrigós and Tino Ullrich



Triebel (2010) .

H is an unconditional basis on F s
p,q if

max{−1/p′,−1/q′} < s < min{1/p,1/q}.

1
p

s

1 d+1
d

qd+1
qd

1

1
q

1−q
q

−1



Restrictions for unconditional basis property

Theorem (SU-MZ2017)
Let 1 < p,q <∞.
H is an unconditional basis on F s

p,q if and only if

max{−1/p′,−1/q′} < s < min{1/p,1/q}.

As a byproduct of the proof we also get

Theorem

For 1 < p,q <∞ we have F s,dyad
p,q = F s

p,q if and only if
max{−1/p′,−1/q′} < s < min{1/p,1/q} .



Failure of unconditionality: Quantitative versions

X will be some Sobolev or Triebel-Lizorkin space.

For E ⊂ Hd let HF (E) ⊂ N be the Haar frequency set of E .

For any A ⊂ {2n : n = 0,1, . . . }, set

G(X ,A) := sup
{
‖PE‖X→X : E ⊂ H, HF(E) ⊂ A

}
.

Q1. How fast can G(X ,A) grow if #A grows?
Q2. How fast must G(X ,A) grow if #A grows?

Define, for λ ∈ N, the upper and lower Haar projection numbers

γ∗(X ;λ) := sup
{
G(X ,A) : #A ≤ λ} ,

γ∗(X ;λ) := inf
{
G(X ,A) : #A ≥ λ} .



Behavior of γ∗ and γ∗

Theorem
Let 1 < p < q <∞, 1/q < s < 1/p. Then

γ∗(F s
p,q;λ) ≈ γ∗(F s

p,q;λ) ≈ λs−1/q

In other words G(F s
p,q,A) ≈ (#A)s−1/q.

Theorem (Endpoint)

Thm. Let 1 < p < q <∞, s = 1/q. Then for large λ

γ∗(F 1/q
p,q ;λ) ≈ log λ

γ∗(F
1/q
p,q ;λ) ≈ (log λ)1/q′

• Similar statements in the dual situation, i.e. q < p and
−1/p′ < s ≤ −1/q′.
• Proofs are done in the dual setting.



Idea for G(F s
p,q,A) & (#A)−s−1/q′ when

−1 < s < −1/q′, q < p

Assume d = 1. Given a set A ⊂ {2j}j∈N of Haar frequencies,
N � 1, and card(A) ≈ c2N .
• Let E be the set of Haar functions supported in [0,1] with
Haar frequencies in A. We shall see that we can split
E = E (1) ∪ E (2) (disjoint union) so that∥∥PE (1) − PE (2)

∥∥
F s

p,q→F s
p,q

& 2N(−s−1/q′).

The splitting will be random. Note that the operator norm of
either PE (1) or PE (2) is & 2N(−s−1/q′)..
We need to construct f with ‖f‖F s

p,q
≤ 1 and

‖PE (1) f − PE (2) f‖F s
p,q

& 2N(−s−1/q′).



The test functions f

Let
S = {(l , ν) : 2l−N ∈ A′, ν ∈ 2NZ, 2−lν ∈ [0,1]}

and let Sl be the slice for fixed l .
Let

f =
∑

2l−N∈A′
fl =:

∑
(l,ν)∈S

(±1)2−lsηl,ν

where η`,ν are suitable "bump" functions of width 2−l , located
near 2−lν, with sufficiently many vanishing moments.
Note: For fixed l , "bumps" are 2N−l separated.
• Assume q < p <∞, −1 < s < −1/q′. Then one has (cf.
[Christ-S., PLMS 06]) (uniformly in choices of signs)

‖f‖F s
p,q

. 1.

This is easy for p = q but requires a proof for q > p. Later.



Lower bound for PE (1) − PE (2)

If p > q and f supported in [0,1]

‖PE (1) f − PE (2) f‖F s
p,q

& ‖PE (1) f − PE (2) f‖F s
q,q

and thus we estimate the F s
q,q norm from below.

Let (j , l , ν, µ)→ n(j , l , ν, µ) be bijective and consider the
Rademacher functions rn. We need to show that for one t (i.e.
one choice of signs in j , l , ν, µ)(∑

k

2ksq
∥∥∥ ∑
(l,ν)∈S

∑
j∈A′

2j
2j−1∑
µ=0

rn(j,l,ν,µ)(t)2−ls〈ηl,ν ,hj,µ〉hj,µ∗ψk

∥∥∥q

q

)1/q

& 2N(−s−1/q′). By averaging and Khinchine’s inequality it
suffices to show(∑

k

2ksq
∥∥∥( ∑

(l,ν)∈S

∑
j∈A′

2j−1∑
µ=0

|2j2−ls〈ηl,ν ,hj,µ〉hj,µ ∗ ψk
∣∣2)1/2∥∥∥q

q

)1/q

& 2N(−s−1/q′). Keep only those terms j = k , l = k + N.



Keeping only terms with j = k , l = k + N and using
quasi-disjointness in (µ, ν): It suffices to show and one easily
gets

(∑
k∈A

2ksq
2k−1∑
µ=0

∥∥∥2k2−(k+N)s|〈ηk+N,ν(µ),hk ,µ〉hk ,µ ∗ ψk

∥∥∥q

q

)1/q

& 2N(−s−1/q′).

There are also deterministic example where one has to be
much more careful in the estimation for the lower bound
([SU]-constr.appr).
Concretely: show a lower bound for terms j = k , l = k + N and
a (smaller!) upper bound for all other terms. Possible with
additional separation assumptions on subsets of A.



Lower bounds for f =
∑

l fl

Using the moment and support conditions for the ηl,ν , and
standard maximal estimates, one reduces to∥∥∥( ∑

l−N∈A

[ ∑
ν∈Sl

1Il,ν

]q)1/q∥∥∥
p
≤ C(p,q)

The Il,ν are 2−l -intervals separated by 2N−l

It suffices to check this for p = mq, m = 1,2,3, . . . . Immediate
when m = 1.
Now w.l.o.g q = 1 and one checks∫ [∑

l

∑
ν∈Sl

1Il,ν

]m
dx ≤ B(m)

• The functions 1Il,ν
are not independent, but have low

correlation.



BMO bound

Alternatively (see [SU-MZ]):
When m→∞ then B(m)→∞ and so there will be no
L∞ → L∞ bound. But one can show

‖
∑

l

∑
ν∈Sl

1Il,ν
‖BMO . C

and use that L1 and BMO can be interpolated via the complex
method to yield Lq.



Endpoint: How does G(F 1/q
p,q ,A) depend on A?

Answer: It depends on the density of log2(A) = {k : 2k ∈ A} on
intervals of length ∼ log2(#A). Here #A ≥ 2. Define

Z(A) = max
n∈Z

#{k : 2k ∈ A, |k − n| ≤ log2#A} ,

Z(A) = min
2n∈A

#{k : 2k ∈ A, |k − n| ≤ log2 #A} .

Remarks: (i) 1 ≤ Z(A) ≤ Z(A) ≤ 1 + 2 log2#A.
(ii) Z(A) = O(1) when #A ≈ 2N and log2(A) is N-separated.
(iii) For A = [1,2N ] ∩ N we have Z(A) ≥ N.

Theorem
For 1 < p < q <∞,

Z(A)1− 1
q .

G(F 1/q
p,q ,A)

(log2 #A)
1
q

. Z(A)1− 1
q .



Failure of unconditionality in F s
p,q(R):

A multiplier question for p,q ≥ 1

On Friday we consider the question when Hd is an
unconditional basis, with emphasis on counterexamples.

1

Tmf :=
∞∑

j=0

m(j)
∑
µ

2j〈f ,hj,µ〉hj,µ =
∞∑

j=0

m(j)Dj f

where Dj = Ej+1 − Ej .
Recall: H1 unconditional basis ⇐⇒ every bounded sequence
m is a multiplier.
Q: What are the conditions on m that Tm is bounded on F s

p,q for
(p−1, s) in the non-shaded regions?



Multiplier question, II

V u: u-variation space:

‖m‖V u = ‖m‖∞ + sup
N

sup
j1<···<jN

( N−1∑
i=1

|m(ji+1)−m(ji)|u
)1/u

By a summation by parts argument it is easy to see: If the EN
are uniformly bounded on X then

‖Tm‖X . ‖m‖V1‖f‖X.

Can one do better?



Multiplier question, III

1

Theorem
Let 1 < p < q <∞ and 1/q ≤ s < 1/p. Then

‖Tmf‖F s
p,q
≤ C‖m‖Vu‖f‖F s

p,q
, 1/u > s − 1/q .

Essentially sharp up to endpoints: Lower bounds for Haar
projection numbers in [SU] give the existence of sets E ⊂ 2N
depending on s such that #E ≥ 2N , and thus ‖1E‖V u ≥ 2N/u,
and such that

‖T1E‖F s
p,q→F s

p,q
&

{
2N(s− 1

q ) if 1
q < s < 1

p ,

N if 1
q = s < 1

p .



Multipliers IV: Variation norms and interpolation

We want to interpolate but variation norms cannot be efficiently
interpolated (?).
• There is a related function space Ru such that

V ũ ⊂ Ru ⊂ V u, ũ < u.

Def. We say that g belongs to the class ru if g =
∑

ν cν1Iν
where (

∑
ν |cν |u)1/u ≤ 1.

Def. We say that h belongs to Ru if m can be written as

h =
∑

n

anhn

with
∑
|an| <∞ and the norm is given by inf

∑
|an| where the

inf is taken over all such representations.
• Since we don’t prove an endpoint result we can reduce to an
interpolation for `u spaces.
• This is sketched in a paper by Coifman, Rubio de Francia,
Semmes (1988).


