Basis properties of the Haar system in various function spaces, III.

Andreas Seeger (University of Wisconsin-Madison)

Chemnitz Summer School on Applied Analysis 2019

- Based on joint work with Gustavo Garrigós and Tino Ullrich

Triebel (2010) .

\mathcal{H} is an unconditional basis on $F_{p, q}^{s}$ if

$$
\max \left\{-1 / p^{\prime},-1 / q^{\prime}\right\}<s<\min \{1 / p, 1 / q\}
$$

Restrictions for unconditional basis property

Theorem (SU-MZ2017)

Let $1<p, q<\infty$.
\mathcal{H} is an unconditional basis on $F_{p, q}^{s}$ if and only if

$$
\max \left\{-1 / p^{\prime},-1 / q^{\prime}\right\}<s<\min \{1 / p, 1 / q\} .
$$

As a byproduct of the proof we also get

Theorem

For $1<p, q<\infty$ we have $F_{p, q}^{s, \text { dyad }}=F_{p, q}^{s}$ if and only if $\max \left\{-1 / p^{\prime},-1 / q^{\prime}\right\}<s<\min \{1 / p, 1 / q\}$.
X will be some Sobolev or Triebel-Lizorkin space.
For $E \subset \mathcal{H}_{d}$ let $H F(E) \subset \mathbb{N}$ be the Haar frequency set of E.
For any $A \subset\left\{2^{n}: n=0,1, \ldots\right\}$, set

$$
\mathcal{G}(X, A):=\sup \left\{\left\|P_{E}\right\|_{X \rightarrow X}: E \subset \mathcal{H}, \operatorname{HF}(E) \subset A\right\}
$$

Q1. How fast can $\mathcal{G}(X, A)$ grow if $\# A$ grows?
Q2. How fast must $\mathcal{G}(X, A)$ grow if $\# A$ grows?
Define, for $\lambda \in \mathbb{N}$, the upper and lower Haar projection numbers

$$
\begin{aligned}
\gamma^{*}(X ; \lambda) & :=\sup \{\mathcal{G}(X, A): \# A \leq \lambda\} \\
\gamma_{*}(X ; \lambda) & :=\inf \{\mathcal{G}(X, A): \# A \geq \lambda\}
\end{aligned}
$$

Behavior of γ_{*} and γ^{*}

Theorem

Let $1<p<q<\infty, 1 / q<s<1 / p$. Then

$$
\gamma_{*}\left(F_{p, q}^{s} ; \lambda\right) \approx \gamma^{*}\left(F_{p, q}^{s} ; \lambda\right) \approx \lambda^{s-1 / q}
$$

In other words $\mathcal{G}\left(F_{p, q}^{s}, A\right) \approx(\# A)^{s-1 / q}$.

Theorem (Endpoint)

Thm. Let $1<p<q<\infty, s=1 / q$. Then for large λ

$$
\begin{aligned}
& \gamma^{*}\left(F_{p, q}^{1 / q} ; \lambda\right) \approx \log \lambda \\
& \gamma_{*}\left(F_{p, q}^{1 / q} ; \lambda\right) \approx(\log \lambda)^{1 / q^{\prime}}
\end{aligned}
$$

- Similar statements in the dual situation, i.e. $q<p$ and
$-1 / p^{\prime}<s \leq-1 / q^{\prime}$.
- Proofs are done in the dual setting.

Idea for $\mathcal{G}\left(F_{p, q}^{S}, A\right) \gtrsim(\# A)^{-s-1 / q^{\prime}}$ when $-1<s<-1 / q^{\prime}, q<p$

Assume $d=1$. Given a set $A \subset\left\{2^{j}\right\}_{j \in \mathbb{N}}$ of Haar frequencies, $N \gg 1$, and $\operatorname{card}(A) \approx c 2^{N}$.

- Let E be the set of Haar functions supported in $[0,1]$ with Haar frequencies in A. We shall see that we can split $E=E^{(1)} \cup E^{(2)}$ (disjoint union) so that

$$
\left\|P_{E^{(1)}}-P_{E^{(2)}}\right\|_{F_{p, q}^{s} \rightarrow F_{p, q}^{s}} \gtrsim 2^{N\left(-s-1 / q^{\prime}\right)}
$$

The splitting will be random. Note that the operator norm of either $P_{E^{(1)}}$ or $P_{E^{(2)}}$ is $\gtrsim 2^{N\left(-s-1 / q^{\prime}\right)}$..
We need to construct f with $\|f\|_{F_{p, q}} \leq 1$ and

$$
\left\|P_{E^{(1)}} f-P_{E^{(2)}} f\right\|_{F_{p, q}^{s}} \gtrsim 2^{N\left(-s-1 / q^{\prime}\right)} .
$$

The test functions f

Let

$$
\mathfrak{S}=\left\{(I, \nu): 2^{I-N} \in A^{\prime}, \nu \in 2^{N} \mathbb{Z}, 2^{-I} \nu \in[0,1]\right\}
$$

and let \mathfrak{S}, be the slice for fixed I.
Let

$$
f=\sum_{2^{I-N} \in A^{\prime}} f_{l}=: \sum_{(I, \nu) \in \mathfrak{S}}(\pm 1) 2^{-l s} \eta_{l, \nu}
$$

where $\eta_{\ell, \nu}$ are suitable "bump" functions of width 2^{-1}, located near $2^{-l} \nu$, with sufficiently many vanishing moments.
Note: For fixed I, "bumps" are 2^{N-I} separated.

- Assume $q<p<\infty,-1<s<-1 / q^{\prime}$. Then one has (cf. [Christ-S., PLMS 06]) (uniformly in choices of signs)

$$
\|f\|_{F_{p, q}^{s}} \lesssim 1
$$

This is easy for $p=q$ but requires a proof for $q>p$. Later.

Lower bound for $P_{E^{(1)}}-P_{E^{(2)}}$

If $p>q$ and f supported in $[0,1]$

$$
\left\|P_{E^{(1)}} f-P_{E^{(2)}} f\right\|_{F_{p, q}^{s}} \gtrsim\left\|P_{E^{(1)}} f-P_{E^{(2)}} f\right\|_{F_{q, q}^{s}}
$$

and thus we estimate the $F_{q, q}^{s}$ norm from below. Let $(j, I, \nu, \mu) \rightarrow n(j, I, \nu, \mu)$ be bijective and consider the Rademacher functions r_{n}. We need to show that for one t (i.e. one choice of signs in $j, I, \nu, \mu)$

$$
\left(\sum_{k} 2^{k s q}\left\|\sum_{(l, \nu) \in \mathfrak{S}} \sum_{j \in A^{\prime}} 2^{j} \sum_{\mu=0}^{2^{j}-1} r_{n(j, l, \nu, \mu)}(t) 2^{-l s}\left\langle\eta_{l, \nu}, h_{j, \mu}\right\rangle h_{j, \mu} * \psi_{k}\right\|_{q}^{q}\right)^{1 / q}
$$

$\gtrsim 2^{N\left(-s-1 / q^{\prime}\right)}$. By averaging and Khinchine's inequality it suffices to show

$$
\left(\sum_{k} 2^{k s q}\left\|\left(\sum_{(l, \nu) \in \mathfrak{S}} \sum_{j \in A^{\prime}} \sum_{\mu=0}^{2^{j}-1}\left|2^{j} 2^{-l s}\left\langle\eta_{l, \nu}, h_{j, \mu}\right\rangle h_{j, \mu} * \psi_{k}\right|^{2}\right)^{1 / 2}\right\|_{q}^{q}\right)^{1 / q}
$$

$\gtrsim 2^{N\left(-s-1 / q^{\prime}\right)}$. Keep only those terms $j=k, I=k+N$.

Keeping only terms with $j=k, I=k+N$ and using quasi-disjointness in (μ, ν) : It suffices to show and one easily gets

$$
\left(\sum_{k \in A} 2^{k s q} \sum_{\mu=0}^{2^{k}-1}\left\|2^{k} 2^{-(k+N) s} \mid\left\langle\eta_{k+N, \nu(\mu)}, h_{k, \mu}\right\rangle h_{k, \mu} * \psi_{k}\right\|_{q}^{q}\right)^{1 / q}
$$

$\geq 2^{N\left(-s-1 / q^{\prime}\right)}$.

There are also deterministic example where one has to be much more careful in the estimation for the lower bound ([SU]-constr.appr).
Concretely: show a lower bound for terms $j=k, I=k+N$ and a (smaller!) upper bound for all other terms. Possible with additional separation assumptions on subsets of A.

Lower bounds for $f=\sum_{l} f_{l}$

Using the moment and support conditions for the $\eta_{l, \nu}$, and standard maximal estimates, one reduces to

$$
\left\|\left(\sum_{I-N \in A}\left[\sum_{\nu \in \mathfrak{S}_{I}} \mathbb{1}_{l_{l, \nu}}\right]^{q}\right)^{1 / q}\right\|_{p} \leq C(p, q)
$$

The $I_{l, \nu}$ are 2^{-I}-intervals separated by $2^{N-।}$ It suffices to check this for $p=m q, m=1,2,3, \ldots$. Immediate when $m=1$.
Now w.l.o.g $q=1$ and one checks

$$
\int\left[\sum_{l} \sum_{\nu \in \mathfrak{S}_{l}} \mathbb{1}_{l_{l, \nu}}\right]^{m} d x \leq B(m)
$$

- The functions $\mathbb{1}_{l, \nu}$ are not independent, but have low correlation.

Alternatively (see [SU-MZ]):
When $m \rightarrow \infty$ then $B(m) \rightarrow \infty$ and so there will be no
$L^{\infty} \rightarrow L^{\infty}$ bound. But one can show

$$
\left\|\sum_{l} \sum_{\nu \in \mathfrak{S}_{l}} \mathbb{1}_{l_{l, \nu}}\right\|_{B M O} \lesssim C
$$

and use that L^{1} and $B M O$ can be interpolated via the complex method to yield L^{q}.

Endpoint: How does $\mathcal{G}\left(F_{p, q}^{1 / q}, A\right)$ depend on A ?

Answer: It depends on the density of $\log _{2}(A)=\left\{k: 2^{k} \in A\right\}$ on intervals of length $\sim \log _{2}(\# A)$. Here $\# A \geq 2$. Define

$$
\begin{aligned}
& \overline{\mathcal{Z}}(A)=\max _{n \in \mathbb{Z}} \#\left\{k: 2^{k} \in A,|k-n| \leq \log _{2} \# A\right\} \\
& \underline{\mathcal{Z}}(A)=\min _{2^{n} \in A} \#\left\{k: 2^{k} \in A,|k-n| \leq \log _{2} \# A\right\}
\end{aligned}
$$

Remarks: (i) $1 \leq \underline{\mathcal{Z}}(A) \leq \overline{\mathcal{Z}}(A) \leq 1+2 \log _{2} \# A$.
(ii) $\overline{\mathcal{Z}}(A)=O(1)$ when $\# A \approx 2^{N}$ and $\log _{2}(A)$ is N-separated.
(iii) For $A=\left[1,2^{N}\right] \cap \mathbb{N}$ we have $\underline{\mathcal{Z}}(A) \geq N$.

Theorem

For $1<p<q<\infty$,

$$
\underline{\mathcal{Z}}(A)^{1-\frac{1}{q}} \lesssim \frac{\mathcal{G}\left(F_{p, q}^{1 / q}, A\right)}{\left(\log _{2} \# A\right)^{\frac{1}{q}}} \lesssim \overline{\mathcal{Z}}(A)^{1-\frac{1}{q}}
$$

Failure of unconditionality in $F_{p, q}^{S}(\mathbb{R})$: A multiplier question for $p, q \geq 1$

On Friday we consider the question when \mathscr{H}^{d} is an unconditional basis, with emphasis on counterexamples.

$$
T_{m} f:=\sum_{j=0}^{\infty} m(j) \sum_{\mu} 2^{j}\left\langle f, h_{j, \mu}\right\rangle h_{j, \mu}=\sum_{j=0}^{\infty} m(j) \mathbb{D}_{j} f
$$

where $\mathbb{D}_{j}=\mathbb{E}_{j+1}-\mathbb{E}_{j}$.
Recall: \mathcal{H}_{1} unconditional basis \Longleftrightarrow every bounded sequence m is a multiplier.
Q: What are the conditions on m that T_{m} is bounded on $F_{p, q}^{s}$ for $\left(p^{-1}, s\right)$ in the non-shaded regions?

Multiplier question, II

$V^{u}: u$-variation space:

$$
\|m\|_{V^{u}}=\|m\|_{\infty}+\sup _{N} \sup _{j_{1}<\cdots<j_{N}}\left(\sum_{i=1}^{N-1}\left|m\left(j_{i+1}\right)-m\left(j_{i}\right)\right|^{u}\right)^{1 / u}
$$

By a summation by parts argument it is easy to see: If the \mathbb{E}_{N} are uniformly bounded on X then

$$
\left\|T_{m}\right\| x \lesssim\|m\| v_{1}\|f\|_{x}
$$

Can one do better?

Multiplier question, III

Theorem

Let $1<p<q<\infty$ and $1 / q \leq s<1 / p$. Then

$$
\left\|T_{m} f\right\|_{F_{p, q}^{s}} \leq C\|m\|_{V_{u}}\|f\|_{F_{p, q}^{s}}, \quad 1 / u>s-1 / q
$$

Essentially sharp up to endpoints: Lower bounds for Haar projection numbers in [SU] give the existence of sets $E \subset 2 \mathbb{N}$ depending on s such that $\# E \geq 2^{N}$, and thus $\left\|\mathbb{1}_{E}\right\|_{v u} \geq 2^{N / u}$, and such that

$$
\left\|T_{\mathbb{1}_{E}}\right\|_{F_{p, q}, F_{p, q}^{s}} \gtrsim \begin{cases}2^{N\left(s-\frac{1}{q}\right)} & \text { if } \frac{1}{q}<s<\frac{1}{p}, \\ N & \text { if } \frac{1}{q}=s<\frac{1}{p} .\end{cases}
$$

Multipliers IV: Variation norms and interpolation

We want to interpolate but variation norms cannot be efficiently interpolated (?).

- There is a related function space R^{u} such that

$$
V^{\tilde{u}} \subset R^{u} \subset V^{u}, \quad \tilde{u}<u .
$$

Def. We say that g belongs to the class r^{u} if $g=\sum_{\nu} c_{\nu} \mathbb{1}_{\nu}$ where $\left(\sum_{\nu}\left|c_{\nu}\right|^{u}\right)^{1 / u} \leq 1$.
Def. We say that h belongs to R^{u} if m can be written as

$$
h=\sum_{n} a_{n} h_{n}
$$

with $\sum\left|a_{n}\right|<\infty$ and the norm is given by inf $\sum\left|a_{n}\right|$ where the inf is taken over all such representations.

- Since we don't prove an endpoint result we can reduce to an interpolation for ℓ^{u} spaces.
- This is sketched in a paper by Coifman, Rubio de Francia, Semmes (1988).

