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Triebel (2010) .

H is an unconditional basis on ngq if

max{—1/p/,—1/qd'} < s <min{1/p,1/q}.
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Restrictions for unconditional basis property

Theorem (SU-MZ2017)

Let1 < p,g < oc.
3 is an unconditional basis on Fj , if and only if

max{—1/p',—1/q'} < s < min{1/p,1/q}.

As a byproduct of the proof we also get

For1 < p,q < co we have Fy™" = F3, if and only if
max{—1/p,—1/q'} < s <min{1/p,1/q}.




Failure of unconditionality: Quantitative versions

X will be some Sobolev or Triebel-Lizorkin space.
For E C ¥4 let HF(E) C N be the Haar frequency set of E.
Forany Ac {2":n=0,1,...}, set

G(X. A) = sup {||Pellx_.x : E C 3, HF(E) ¢ A}.

Q1. How fast can G(X, A) grow if #A grows?
Q2. How fast must G(X, A) grow if #A grows?

Define, for A € N, the upper and lower Haar projection numbers

F(X;\) :==sup {g(X,A) CHA <N},
V(X A) = inf{g(X,A) CH#HA> N}



Behavior of ~, and ~+*

Let1 <p<qg<oo,1/g<s<1/p. Then
7*(F’g’q; A) = 7*(F5’q; A) ~ e

In other words G(F 5, A) ~ (#A)>~'/4.

ek

Theorem (Endpoint)

Thm. Let1 < p< g < oo, s=1/q. Then for large
7*(F;,/qq; A) = log A
Ye(Fal A) = (log A)'/9

e Similar statements in the dual situation, i.e. g < p and

-1/ <s<-1/q.
¢ Proofs are done in the dual setting.



Idea for G(FS,, A) = (#A) 5 /9 when

—-1<s<-1/9,g9<p

Assume d = 1. Given a set A C {2/};cy of Haar frequencies,
N > 1, and card(A) ~ c2N.
e Let E be the set of Haar functions supported in [0, 1] with
Haar frequencies in A. We shall see that we can split
E = EM y E@ (disjoint union) so that
— > oN(=s—1/q)

HPE(1> PE<2)HF5,(,%F,;Q ~
The splitting will be random. Note that the operator norm of
either Pz(1) or Pg) is > 2N(=s-1/d) |
We need to construct f with HfIIng <1 and

IPecyf = Pee fll s, 2 2N~/



The test functions f

Let
S={(lv):2"Ne A veaNz 27lvc[0,1]}

and let &, be the slice for fixed /.
Let
f= Z fi = Z (:|:1)2_IS17/7,,
2I-Nep (Iv)e®

where 7, are suitable "bump" functions of width 2/, located
near 2~ /v, with sufficiently many vanishing moments.
Note: For fixed /, "bumps" are 2N~/ separated.

e Assume g < p < oo, —1 < s < —1/¢’. Then one has (cf.
[Christ-S., PLMS 06]) (uniformly in choices of signs)

f <1,
11y S

This is easy for p = g but requires a proof for g > p. Later.



Lower bound for Pgi) — Pge

If p > q and f supported in [0, 1]

|Penf — Pearfllg, 2 1Py f — Pew fllrs,
and thus we estimate the F3 , norm from below.
Let (j,/,v,u) — n(j, 1, v, u) be bijective and consider the

Rademacher functions r,. We need to show that for one t (i.e.
one choice of signs in j, I, v, u)

2/—1

(S22 325 rjauan 02 st e

(ly)es jeA  u=0

> 2N(=s-1/4') By averaging and Khinchine’s inequality it
suffices to show

(;stq ( Z 22’2/2 S (01, By ) By | )1/2H )1/q

(lv)ed jeA u=0
> 2N(=s-1/d') Keep only those terms j = k, | = k + N.




Keeping only terms with j = k, | = k + N and using
quasi-disjointness in (i, v): It suffices to show and one easily
gets

k_
(Z oksq 22:1 szz—(k+N)s‘ <77k+N,v(#)’ hk,u>hk,u * wkHZ) "
keA pn=0

> oN(=s=1/q")

There are also deterministic example where one has to be
much more careful in the estimation for the lower bound
([SU]J-constr.appr).

Concretely: show a lower bound for terms j = k, | = k + N and
a (smaller!) upper bound for all other terms. Possible with
additional separation assumptions on subsets of A.



Lower bounds for f =), f;

Using the moment and support conditions for the 7, ,,, and
standard maximal estimates, one reduces to

H( [ //,qu/qu < C(p.q)

veES,

The I, are 2~/-intervals separated by 2N~/
It suffices to check this forp = mg, m=1,2,3,.... Immediate
when m=1.

Now w.l.0.g g = 1 and one checks
m
/ {Z > HIIV} dx < B(m)
| veG, '

e The functions Il,/ are not independent, but have low
correlation. ’



BMO bound

Alternatively (see [SU-MZ)):
When m — oo then B(m) — oo and so there will be no
L>° — L[> bound. But one can show

B3 L, llemo S €
| veg,

and use that L' and BMO can be interpolated via the complex
method to yield L9.



Endpoint: How does G(F,', A) depend on A?

Answer: It depends on the density of log,(A) = {k : 2K € A} on
intervals of length ~ log,(#A). Here #A > 2. Define

(A) = maZx#{k 2K € A |k — n| < log,#A},
ne

SN

(A) = min #{k - 2K c A, |k — n| < log, #A}.
ne

Remarks: (i) 1 < Z(A) < Z(A) < 14 2log,#A.
(i) Z(A) = O(1) when #A ~ 2N and log,(A) is N-separated.
(i) For A= [1,2N] NN we have Z(A) > N.

For1 < p<qg< oo,




Failure of unconditionality in F; ,(R):

A multiplier question for p,g > 1

On Friday we consider the question when % is an
unconditional basis, with emphasis on counterexamples.

Tmf_Zm(/Z Zm(/]D)/
/=0 M

where ]Dj = Ej+1 — Ej.

Recall: H4 unconditional basis < every bounded sequence
m is a multiplier.

Q: What are the conditions on mthat T,, is bounded on Fg,q for
(p~ "', s) in the non-shaded regions?



Multiplier question, Il

VY. u-variation space:

N—1
. . 1/u
Imllve = milc +sup sup (37 1mier) = mGi) )
N ji<-<jn 23

By a summation by parts argument it is easy to see: If the Ey
are uniformly bounded on X then

[ Tmllx < lmlvy [ £l

Can one do better?



Multiplier question, IlI

Let1 <p<g<oocandi/q<s<1/p. Then

| Tmflles, < Cllmllv,liflles,,  1/u>s—1/g.

Essentially sharp up to endpoints: Lower bounds for Haar
projection numbers in [SU] give the existence of sets E C 2N
depending on s such that #E > 2N, and thus || 1g|y» > 2V/Y,

and such that

N(s—1) 1 1
2 q |fq<s<p,

>
||T115”ngq—>F,§7q < {N if 15 —s< 23.



Multipliers IV: Variation norms and interpolation

We want to interpolate but variation norms cannot be efficiently
interpolated (7).
e There is a related function space RY such that

VicRYC VY  b<u.

Def. We say that g belongs to the class rYifg=>",¢,1,,
where (3, |c,|Y)1/¥ < 1.
Def. We say that h belongs to RY if m can be written as

h=>"anhy
n

with 3" |as| < oo and the norm is given by inf " |a,| where the
inf is taken over all such representations.

e Since we don’t prove an endpoint result we can reduce to an
interpolation for ¢ spaces.

e This is sketched in a paper by Coifman, Rubio de Francia,
Semmes (1988).



