Sampling discretization of integral norms. Lecture 1

Vladimir Temlyakov

Chemnitz, September, 2019

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 1

• Functions belong to an *N*-dimensional subspace *X_N*. We call such results the Marcinkiewicz-type discretization theorems.

- Functions belong to an *N*-dimensional subspace *X_N*. We call such results the Marcinkiewicz-type discretization theorems.
- Functions belong to a given function class.

- Functions belong to an *N*-dimensional subspace *X_N*. We call such results the Marcinkiewicz-type discretization theorems.
- Functions belong to a given function class. There are different settings and different ingredients, which play important role in this problem.

- Functions belong to an *N*-dimensional subspace *X_N*. We call such results the Marcinkiewicz-type discretization theorems.
- Functions belong to a given function class. There are different settings and different ingredients, which play important role in this problem.
- We begin with the Marcinkiewicz-type discretization.

Marcinkiewicz problem

Let Ω be a compact subset of \mathbb{R}^d with the probability measure μ . We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the Marcinkiewicz-type discretization theorem with parameters mand q if there exist a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ and two positive constants $C_i(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q) \|f\|_q^q \le rac{1}{m} \sum_{
u=1}^m |f(\xi^{
u})|^q \le C_2(d,q) \|f\|_q^q.$$
 (1)

Marcinkiewicz problem

Let Ω be a compact subset of \mathbb{R}^d with the probability measure μ . We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the Marcinkiewicz-type discretization theorem with parameters mand q if there exist a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ and two positive constants $C_i(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q)\|f\|_q^q \leq \frac{1}{m} \sum_{\nu=1}^m |f(\xi^{\nu})|^q \leq C_2(d,q)\|f\|_q^q.$$
(1)

In the case $q = \infty$ we define L_{∞} as the space of continuous on Ω functions and ask for

$$C_1(d) \|f\|_{\infty} \le \max_{1 \le \nu \le m} |f(\xi^{\nu})| \le \|f\|_{\infty}.$$
 (2)

Marcinkiewicz problem

Let Ω be a compact subset of \mathbb{R}^d with the probability measure μ . We say that a linear subspace X_N of the $L_q(\Omega)$, $1 \le q < \infty$, admits the Marcinkiewicz-type discretization theorem with parameters mand q if there exist a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ and two positive constants $C_i(d, q)$, j = 1, 2, such that for any $f \in X_N$ we have

$$C_1(d,q)\|f\|_q^q \leq \frac{1}{m} \sum_{\nu=1}^m |f(\xi^{\nu})|^q \leq C_2(d,q)\|f\|_q^q.$$
(1)

In the case $q = \infty$ we define L_{∞} as the space of continuous on Ω functions and ask for

$$C_1(d) \|f\|_{\infty} \le \max_{1 \le \nu \le m} |f(\xi^{\nu})| \le \|f\|_{\infty}.$$
 (2)

We will also use a brief way to express the above property: the $\mathcal{M}(m, q)$ theorem holds for a subspace X_N or $X_N \in \mathcal{M}(m, q)$.

We briefly present well known results related to the Marcinkiewicz-type discretization theorems for the trigonometric polynomials. We briefly present well known results related to the Marcinkiewicz-type discretization theorems for the trigonometric polynomials. We begin with the case $\Pi(\mathbf{N}) := [-N_1, N_1] \times \cdots \times [-N_d, N_d], N_j \in \mathbb{N}$ or $N_j = 0$, $j = 1, \dots, d$, $\mathbf{N} = (N_1, \dots, N_d)$.

We briefly present well known results related to the Marcinkiewicz-type discretization theorems for the trigonometric polynomials. We begin with the case $\Pi(\mathbf{N}) := [-N_1, N_1] \times \cdots \times [-N_d, N_d], N_j \in \mathbb{N} \text{ or } N_j = 0,$ $j = 1, \dots, d, \mathbf{N} = (N_1, \dots, N_d). \text{ Denote}$ $P'(\mathbf{N}) := \{\mathbf{n} = (n_1, \dots, n_d), \quad n_j - \text{ are natural numbers,} \\ 0 \le n_i \le 4N_i - 1, \quad j = 1, \dots, d\}$ We briefly present well known results related to the Marcinkiewicz-type discretization theorems for the trigonometric polynomials. We begin with the case $\Pi(\mathbf{N}) := [-N_1, N_1] \times \cdots \times [-N_d, N_d], N_j \in \mathbb{N} \text{ or } N_j = 0,$ $j = 1, \dots, d, \mathbf{N} = (N_1, \dots, N_d). \text{ Denote}$ $P'(\mathbf{N}) := \{\mathbf{n} = (n_1, \dots, n_d), \quad n_j - \text{ are natural numbers,} \\ 0 \le n_j \le 4N_j - 1, \quad j = 1, \dots, d\}$

and set

$$\mathbf{x}(\mathbf{n}) := \left(rac{\pi n_1}{2N_1}, \dots, rac{\pi n_d}{2N_d}
ight), \qquad \mathbf{n} \in P'(\mathbf{N}).$$

- 1 三 1 三 三 二

Marcinkiewicz-type theorem for $\mathcal{T}(\Pi(\mathbf{N}))$

In the case $N_j = 0$ we assume $x_j(\mathbf{n}) = 0$. Denote $\overline{N} := \max(N, 1)$ and $v(\mathbf{N}) := \prod_{j=1}^{d} \overline{N}_j$. Then the following Marcinkiewicz-type discretization theorem is known for all $1 \le q \le \infty$: for any $f \in \mathcal{T}(\Pi(\mathbf{N}))$

 $C_1(d,q) \|t\|_q^q \le v(4\mathbf{N})^{-1} \sum_{\mathbf{n} \in P'(\mathbf{N})} |f(\mathbf{x}(\mathbf{n}))|^q \le C_2(d,q) \|t\|_q^q, \quad (5)$

Marcinkiewicz-type theorem for $\mathcal{T}(\Pi(\mathbf{N}))$

In the case $N_j = 0$ we assume $x_j(\mathbf{n}) = 0$. Denote $\overline{N} := \max(N, 1)$ and $v(\mathbf{N}) := \prod_{j=1}^{d} \overline{N}_j$. Then the following Marcinkiewicz-type discretization theorem is known for all $1 \le q \le \infty$: for any $f \in \mathcal{T}(\Pi(\mathbf{N}))$

$$C_1(d,q) \|t\|_q^q \le v(4\mathbf{N})^{-1} \sum_{\mathbf{n} \in P'(\mathbf{N})} |f(\mathbf{x}(\mathbf{n}))|^q \le C_2(d,q) \|t\|_q^q, \quad (5)$$

which implies the following relation

 $\mathcal{T}(\Pi(\mathsf{N})) \in \mathcal{M}(v(4\mathsf{N}), q), \quad 1 \leq q \leq \infty.$

Note that $v(4\mathbf{N}) \leq C(d) \dim \mathcal{T}(\Pi(\mathbf{N}))$.

Marcinkiewicz-type theorem for $\mathcal{T}(\Pi(\mathbf{N}))$

In the case $N_j = 0$ we assume $x_j(\mathbf{n}) = 0$. Denote $\overline{N} := \max(N, 1)$ and $v(\mathbf{N}) := \prod_{j=1}^{d} \overline{N}_j$. Then the following Marcinkiewicz-type discretization theorem is known for all $1 \le q \le \infty$: for any $f \in \mathcal{T}(\Pi(\mathbf{N}))$

 $C_1(d,q) \|t\|_q^q \le v(4\mathbf{N})^{-1} \sum_{\mathbf{n} \in P'(\mathbf{N})} |f(\mathbf{x}(\mathbf{n}))|^q \le C_2(d,q) \|t\|_q^q, \quad (5)$

which implies the following relation

 $\mathcal{T}(\Pi(\mathsf{N})) \in \mathcal{M}(v(4\mathsf{N}), q), \quad 1 \leq q \leq \infty.$

Note that $v(4\mathbf{N}) \leq C(d) \dim \mathcal{T}(\Pi(\mathbf{N}))$. It is clear from the above construction that the set $\{\mathbf{x}(\mathbf{n}) : \mathbf{n} \in P'(\mathbf{N})\}$ depends substantially on **N**. The main goal of this paper is to construct for a given q and M a set, which satisfies an analog of (5) for all **N** with $v(\mathbf{N}) \leq M$.

Discretization for trigonometric polynomials in L_2

Let Q be a finite subset of \mathbb{Z}^d . We denote

$$\mathcal{T}(Q) := \{ f : f = \sum_{\mathbf{k} \in Q} c_{\mathbf{k}} e^{i(\mathbf{k},\mathbf{x})} \}.$$

Discretization for trigonometric polynomials in L_2

Let Q be a finite subset of \mathbb{Z}^d . We denote

$$\mathcal{T}(Q) := \{ f : f = \sum_{\mathbf{k} \in Q} c_{\mathbf{k}} e^{i(\mathbf{k}, \mathbf{x})} \}.$$

The following result was obtained by VT, 2017.

Theorem (1; VT, 2017)

There are three positive absolute constants C_1 , C_2 , and C_3 with the following properties: For any $d \in \mathbb{N}$ and any $Q \subset \mathbb{Z}^d$ there exists a set of $m \leq C_1|Q|$ points $\xi^j \in \mathbb{T}^d$, j = 1, ..., m such that for any $f \in \mathcal{T}(Q)$ we have

$$C_2 \|f\|_2^2 \leq rac{1}{m} \sum_{j=1}^m |f(\xi^j)|^2 \leq C_3 \|f\|_2^2.$$

The above theorem is based on the following lemma from S. Nitzan, A. Olevskii, and A. Ulanovskii, 2016.

Lemma (NOU, 2016)

Let a system of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_M$ from \mathbb{C}^N have the following properties: for all $\mathbf{w} \in \mathbb{C}^N$ we have $\sum_{j=1}^M |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 = \|\mathbf{w}\|_2^2$ and $\|\mathbf{v}_j\|_2^2 = N/M, \quad j = 1, \ldots, M$. Then there is a subset $J \subset \{1, 2, \ldots, M\}$ such that for all $\mathbf{w} \in \mathbb{C}^N$

$$c_0 \|\mathbf{w}\|_2^2 \leq \frac{M}{N} \sum_{j \in J} |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 \leq C_0 \|\mathbf{w}\|_2^2,$$

where c_0 and C_0 are some absolute positive constants.

b) 不算下 不算下

The above Lemma was derived from the following theorem from A. Marcus, D.A. Spielman, and N. Srivastava, 2015, which solved the Kadison-Singer problem.

Theorem (MSS, 2015)

Let a system of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_M$ from \mathbb{C}^N have the following properties: for all $\mathbf{w} \in \mathbb{C}^N$ we have $\sum_{j=1}^M |\langle \mathbf{w}, \mathbf{v}_j \rangle|^2 = ||\mathbf{w}||_2^2$ and $||\mathbf{v}_j||_2^2 \leq \epsilon$. Then there exists a partition of $\{1, \ldots, M\}$ into two sets S_1 and S_2 , such that for each i = 1, 2 we have for all $\mathbf{w} \in \mathbb{C}^N$

$$\sum_{j\in \mathcal{S}_i} |\langle \mathbf{w}, \mathbf{v}_j
angle|^2 \leq rac{(1+\sqrt{2\epsilon})^2}{2} \|\mathbf{w}\|_2^2.$$

Let $\Pi(\mathbf{N}) := [-N_1, N_1] \times \cdots \times [-N_d, N_d]$, $N_j \in \mathbb{N}$ or $N_j = 0$, $j = 1, \ldots, d$, $\mathbf{N} = (N_1, \ldots, N_d)$. The following result is obtained by VT, 2017.

Let $\Pi(\mathbf{N}) := [-N_1, N_1] \times \cdots \times [-N_d, N_d]$, $N_j \in \mathbb{N}$ or $N_j = 0$, $j = 1, \ldots, d$, $\mathbf{N} = (N_1, \ldots, N_d)$. The following result is obtained by VT, 2017.

Theorem (2; VT, 2017)

Let $d \in \mathbb{N}$. For any $n \in \mathbb{N}$ and any $Q \subset \Pi(\mathbf{N})$ with $\mathbf{N} = (2^n, \dots, 2^n)$ there exists a set of $m \leq C_1(d)|Q|n^{7/2}$ points $\xi^j \in \mathbb{T}^d$, $j = 1, \dots, m$ such that for any $f \in \mathcal{T}(Q)$ we have

$$C_2(d) \|f\|_1 \leq rac{1}{m} \sum_{j=1}^m |f(\xi^j)| \leq C_3(d) \|f\|_1.$$

• • = • • = •

We discussed in Kashin and Temlyakov, 2018, the following setting of the discretization problem of the uniform norm. Let $S_m := \{\xi^j\}_{j=1}^m \subset \mathbb{T}^d$ be a finite set of points. Clearly,

$$\|f\|_{L^{\infty}(S_m)} := \max_{1 \le j \le m} |f(\xi^j)| \le \|f\|_{\infty}.$$

We are interested in estimating the following quantities

$$D(Q, m) := D(Q, m, d) := \inf_{S_m} \sup_{f \in \mathcal{T}(Q)} \frac{\|f\|_{\infty}}{\|f\|_{L^{\infty}(S_m)}},$$
$$D(N, m) := D(N, m, d) := \sup_{Q, |Q| = N} D(Q, m, d).$$

Certainly, one should assume that $m \ge N$. Then the characteristic D(Q, m) guarantees that there exists a set of m points S_m such that for any $f \in \mathcal{T}(Q)$ we have

 $\|f\|_{\infty} \leq D(Q,m)\|f\|_{L^{\infty}(S_m)}.$

In the case d = 1 and Q = [-n, n] classical Marcinkiewicz theorem gives for $m \ge 4n$ that $D([-n, n], 4n) \le C$. Similar relation holds for $D([-n_1, n_1] \times \cdots \times [-n_d, n_d], (4n_1) \times \cdots \times (4n_d))$.

It was proved in Kashin and Temlyakov, 2018, that for a pair N, m, such that $m \simeq N$ we have $D(N, m) \simeq N^{1/2}$. We formulate this result as a theorem.

Theorem (KT, 2018)

For any constant $c \ge 1$ there exists a positive constant C such that for any pair of parameters N, m, with $m \le cN$ we have

 $D(N,m) \geq CN^{1/2}.$

Also, there are two positive absolute constants c_1 and C_1 with the following property: For any $d \in \mathbb{N}$ we have for $m \ge c_1 N$

 $D(N,m,d) \leq C_1 N^{1/2}.$

- 王子 - 王子

Hyperbolic crosses

Recall that the set of hyperbolic cross polynomials is defined as

$$\mathcal{T}(N) := \mathcal{T}(N, d) := \Big\{ f : f = \sum_{\mathbf{k} \in \Gamma(N)} c_{\mathbf{k}} e^{i(\mathbf{k}, \mathbf{x})} \Big\},$$

where $\Gamma(N)$ is the hyperbolic cross

$$\Gamma(N) := \Gamma(N,d) := \Big\{ \mathbf{k} \in \mathbb{Z}^d : \prod_{j=1}^d \max\{|k_j|,1\} \le N \Big\}.$$

Throughout this section, we define

$$\alpha_d := \sum_{j=1}^d \frac{1}{j}$$
 and $\beta_d := d - \alpha_d$

We use the following notation here. For $\mathbf{x} \in \mathbb{T}^d$ and $j \in \{1, \ldots, d\}$ we denote $\mathbf{x}^j := (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d)$. The following result was obtained by Dai, Prymak, Temlyakov, and Tikhonov, 2018.

Theorem (DPTT, 2018)

For each $d \in \mathbb{N}$ and each $N \in \mathbb{N}$ there exists a set W(N, d) of at most $C_d N^{\alpha_d} (\log N)^{\beta_d}$ points in $[0, 2\pi)^d$ such that for all $f \in \mathcal{T}(N)$, $\|f\|_{\infty} \leq C(d) \max_{\mathbf{w} \in W(N,d)} |f(\mathbf{w})|.$ It is well known that

 $\mathcal{T}(\Pi(N)) \in \mathcal{M}(C(d)N^d, \infty),$ $\Pi(N) := \{\mathbf{k} \in \mathbb{Z}^d : |k_j| \le N, j = 1, \dots, d\}.$

In particular, this implies that

 $\mathcal{T}(N) \in \mathcal{M}(C(d)N^d, \infty).$

Theorem DPTT shows that we can improve the above relation to

 $\mathcal{T}(N) \in \mathcal{M}(C(d)N^{\alpha_d}(\log N)^{\beta_d},\infty).$

Note that $\alpha_d \simeq \ln d$.

Lower bound

A trivial lower bound for *m* in the inclusion $\mathcal{T}(N) \in \mathcal{M}(m, \infty)$ is $m \ge \dim(\mathcal{T}(N)) \asymp N(\log N)^{d-1}$. The following nontrivial lower bound was obtained in Kashin and Temlyakov, 1998.

Theorem (KT, 1998)

Let a set $W \subset \mathbb{T}^2$ have a property:

 $\forall t \in \mathcal{T}(N)$ $||t||_{\infty} \leq b(\log N)^{\alpha} \max_{\mathbf{w} \in W} |t(\mathbf{w})|$

with some $0 \leq \alpha < 1/2$. Then

 $|\mathcal{W}| \geq C_1 N \log N e^{C_2 b^{-2} (\log N)^{1-2\alpha}}.$

In particular, Theorem KT with $\alpha = 0$ implies that a necessary condition on *m* for inclusion $\mathcal{T}(N) \in \mathcal{M}(m, \infty)$ is $m \geq \dim(\mathcal{T}(N))N^c$ with positive absolute constant *c*.

An operator T_N with the following properties was constructed in Temlyakov, 1993. The operator T_N has the form

$$\mathcal{T}_{\mathcal{N}}(f) = \sum_{j=1}^{m} f(\mathbf{x}^{j})\psi_{j}(\mathbf{x}), \quad m \leq c(d)\mathcal{N}(\log \mathcal{N})^{d-1}, \quad \psi_{j} \in \mathcal{T}(\mathcal{N}2^{d})$$

and

$$T_N(f) = f, \quad f \in \mathcal{T}(N), \tag{3}$$
$$\|T_N\|_{L_{\infty} \to L_{\infty}} \asymp (\log N)^{d-1}. \tag{4}$$

4 B N 4 B N

Points $\{\mathbf{x}^i\}$ are from the Smolyak net. Properties (3) and (4) imply that all $f \in \mathcal{T}(N)$ satisfy the discretization inequality

$$\|f\|_{\infty} \leq C(d)(\log N)^{d-1} \max_{1 \leq j \leq m} |f(\mathbf{x}^j)|.$$

.

We describe the properties of the subspace X_N in terms of a system $\mathcal{U}_N := \{u_i\}_{i=1}^N$ of functions such that $X_N = \operatorname{span}\{u_i, i = 1, \dots, N\}$. In the case $X_N \subset L_2$ we assume that the system is orthonormal on Ω with respect to measure μ . In the case of real functions we associate with $x \in \Omega$ the matrix $G(x) := [u_i(x)u_j(x)]_{i,j=1}^N$. Clearly, G(x) is a symmetric positive semi-definite matrix of rank 1. It is easy to see that for a set of points $\xi^k \in \Omega$, $k = 1, \dots, m$, and $f = \sum_{i=1}^N b_i u_i$ we have

$$\sum_{k=1}^m \lambda_k f(\xi^k)^2 - \int_{\Omega} f(x)^2 d\mu = \mathbf{b}^T \left(\sum_{k=1}^m \lambda_k G(\xi^k) - I \right) \mathbf{b},$$

where $\mathbf{b} = (b_1, \dots, b_N)^T$ is the column vector and I is the identity matrix.

Remarks continue

Therefore, the $\mathcal{M}^{w}(m, 2)$ problem is closely connected with a problem of approximation (representation) of the identity matrix I by an *m*-term approximant with respect to the system $\{G(x)\}_{x\in\Omega}$. It is easy to understand that under our assumptions on the system \mathcal{U}_{N} there exist a set of knots $\{\xi^{k}\}_{k=1}^{m}$ and a set of weights $\{\lambda_{k}\}_{k=1}^{m}$, with $m \leq N^{2}$ such that

$$I = \sum_{k=1}^{m} \lambda_k G(\xi^k)$$

and, therefore, we have for any $X_N \subset L_2$ that

 $X_N \in \mathcal{M}^w(N^2,2,0).$

We begin with formulation of the Rudelson result from 1999. Let $\Omega_M = \{x^j\}_{j=1}^M$ be a discrete set with the probability measure $\mu(x^j) = 1/M, j = 1, \dots, M$. Assume that $\{u_i(x)\}_{i=1}^N$ is a real orthonormal on Ω_M system satisfying the following condition: **Condition E.** For all j

$$\sum_{i=1}^{N} u_i (x^j)^2 \le N t^2$$

with some $t \ge 1$.

Then for every $\epsilon > 0$ there exists a set $J \subset \{1, \dots, M\}$ of indices with cardinality

$$m := |J| \le C \frac{t^2}{\epsilon^2} N \log \frac{Nt^2}{\epsilon^2}$$

such that for any $f = \sum_{i=1}^{N} c_i u_i$ we have

$$(1-\epsilon)\|f\|_2^2 \leq rac{1}{m}\sum_{j\in J}f(x^j)^2 \leq (1+\epsilon)\|f\|_2^2.$$

ヨト イヨト

Theorem (VT, 2017)

Let $\{u_i\}_{i=1}^N$ be an orthonormal system, satisfying condition **E**. Then for every $\epsilon > 0$ there exists a set $\{\xi^j\}_{i=1}^m \subset \Omega$ with

$$m \leq C \frac{t^2}{\epsilon^2} N \log N$$

such that for any $f = \sum_{i=1}^{N} c_i u_i$ we have

$$(1-\epsilon)\|f\|_2^2 \le rac{1}{m}\sum_{j=1}^m f(\xi^j)^2 \le (1+\epsilon)\|f\|_2^2.$$

We now comment on a recent breakthrough result by J. Batson, D.A. Spielman, and N. Srivastava, 2012. We formulate their result in our notations. Let as above $\Omega_M = \{x^j\}_{j=1}^M$ be a discrete set with the probability measure $\mu(x^j) = 1/M, j = 1, \ldots, M$. Assume that $\{u_i(x)\}_{i=1}^N$ is a real orthonormal on Ω_M system. Then for any number d > 1 there exist a set of weights $w_j \ge 0$ such that $|\{j : w_j \ne 0\}| \le dN$ so that for any $f \in \text{span}\{u_1, \ldots, u_N\}$ we have

$$\|f\|_2^2 \leq \sum_{j=1}^M w_j f(x^j)^2 \leq \frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}} \|f\|_2^2.$$

The proof of this result is based on a delicate study of the *m*-term approximation of the identity matrix *I* with respect to the system $\mathcal{D} := \{G(x)\}_{x \in \Omega}, G(x) := [u_i(x)u_j(x)]_{i,j=1}^N$ in the spectral norm. The authors control the change of the maximal and minimal eigenvalues of a matrix, when they add a rank one matrix of the form wG(x). Their proof provides an algorithm for construction of the weights $\{w_j\}$. In particular, this implies that

 $X_N(\Omega_M) \in \mathcal{M}^w(m,2,\epsilon)$ provided $m \ge CN\epsilon^{-2}$

with large enough C.

Definition of the entropy numbers

Let X be a Banach space and let B_X denote the unit ball of X with the center at 0. Denote by $B_X(y, r)$ a ball with center y and radius $r: \{x \in X : ||x - y|| \le r\}$. For a compact set A and a positive number ε we define the covering number $N_{\varepsilon}(A, X)$ as follows

 $N_{\varepsilon}(A,X) := \min\{n : \exists y^1, \ldots, y^n, y^j \in A : A \subseteq \cup_{j=1}^n B_X(y^j, \varepsilon)\}.$

Definition of the entropy numbers

Let X be a Banach space and let B_X denote the unit ball of X with the center at 0. Denote by $B_X(y, r)$ a ball with center y and radius $r: \{x \in X : ||x - y|| \le r\}$. For a compact set A and a positive number ε we define the covering number $N_{\varepsilon}(A, X)$ as follows

 $N_{\varepsilon}(A,X) := \min\{n : \exists y^1, \ldots, y^n, y^j \in A : A \subseteq \cup_{j=1}^n B_X(y^j, \varepsilon)\}.$

It is convenient to consider along with the entropy $H_{\varepsilon}(A, X) := \log_2 N_{\varepsilon}(A, X)$ the entropy numbers $\varepsilon_k(A, X)$:

$$\varepsilon_k(A,X) := \inf \{ \varepsilon : \exists y^1, \dots, y^{2^k} \in A : A \subseteq \cup_{j=1}^{2^k} B_X(y^j, \varepsilon) \}.$$

In our definition of $N_{\varepsilon}(A, X)$ and $\varepsilon_k(A, X)$ we require $y^j \in A$. In a standard definition of $N_{\varepsilon}(A, X)$ and $\varepsilon_k(A, X)$ this restriction is not imposed. However, it is well known that these characteristics may differ at most by a factor 2.

Theorem (4; VT2017)

Suppose that a real N-dimensional subspace X_N satisfies the following condition on the entropy numbers of the unit ball $X_N^1 := \{f \in X_N : \|f\|_1 \le 1\}$ with $B \ge 1$

$$arepsilon_k(X_N^1,L_\infty) \leq B \left\{ egin{array}{ll} N/k, & k \leq N, \ 2^{-k/N}, & k \geq N. \end{array}
ight.$$

Then there exists a set of $m \leq C_1 NB(\log_2(2N \log_2(8B)))^2$ points $\xi^j \in \Omega, j = 1, ..., m$, with large enough absolute constant C_1 , such that for any $f \in X_N$ we have

$$\frac{1}{2}\|f\|_1 \leq \frac{1}{m}\sum_{j=1}^m |f(\xi^j)| \leq \frac{3}{2}\|f\|_1.$$

The following lemma is from J. Bourgain, J. Lindenstrauss and V. Milman, 1989.

Lemma (BLM, 1989)

Let $\{g_j\}_{j=1}^m$ be independent random variables with $\mathbb{E}g_j = 0$, j = 1, ..., m, which satisfy

 $\|g_j\|_1 \leq 2, \qquad \|g_j\|_{\infty} \leq M, \qquad j=1,\ldots,m.$

Then for any $\eta \in (0, 1)$ we have the following bound on the probability

$$\mathbb{P}\left\{\left|\sum_{j=1}^{m} g_{j}\right| \geq m\eta\right\} < 2\exp\left(-\frac{m\eta^{2}}{8M}\right).$$

• • = • • = •

We now consider measurable functions $f(\mathbf{x})$, $\mathbf{x} \in \Omega$. For $1 \le q < \infty$ define

$$L^{q}_{z}(f) := \frac{1}{m} \sum_{j=1}^{m} |f(\mathbf{x}^{j})|^{q} - ||f||^{q}_{q}, \qquad \mathbf{z} := (\mathbf{x}^{1}, \dots, \mathbf{x}^{m}).$$

Let μ be a probabilistic measure on Ω . Denote $\mu^m := \mu \times \cdots \times \mu$ the probabilistic measure on $\Omega^m := \Omega \times \cdots \times \Omega$. We need the following inequality, which is a corollary of the above Lemma.

4 B N 4 B N

Proposition (VT, 2017)

Let $f_j \in L_1(\Omega)$ be such that

$$\|f_j\|_1 \le 1/2, \quad j = 1, 2; \qquad \|f_1 - f_2\|_{\infty} \le \delta.$$

Then

$$\mu^{m}\{\mathbf{z}: |L_{\mathbf{z}}^{1}(f_{1}) - L_{\mathbf{z}}^{1}(f_{2})| \ge \eta\} < 2\exp\left(-\frac{m\eta^{2}}{16\delta}\right).$$
 (5)

□ > 《 E > 《 E >

We consider the case X is $C(\Omega)$ the space of functions continuous on a compact subset Ω of \mathbb{R}^d with the norm

 $\|f\|_{\infty} := \sup_{\mathbf{x}\in\Omega} |f(\mathbf{x})|.$

We use the abbreviated notations

 $\varepsilon_n(W) := \varepsilon_n(W, C).$

In our case

 $W := W(Q) := \{t \in \mathcal{T}(Q) : \|t\|_1 = 1/2\}.$ (6)

Theorem (6; VT, 2017)

For any $Q \subset \Pi(\mathbf{N})$ with $\mathbf{N} = (2^n, \dots, 2^n)$ we have

$$\varepsilon_k(\mathcal{T}(Q)_1, L_\infty) \leq 2\varepsilon_k := 2C_4(d) \begin{cases} n^{3/2}(|Q|/k), & k \leq 2|Q| \\ n^{3/2}2^{-k/(2|Q|)}, & k \geq 2|Q| \end{cases}$$

∃ → < ∃ →</p>

Theorem (6; VT, 2017)

For any $Q \subset \Pi(\mathbf{N})$ with $\mathbf{N} = (2^n, \dots, 2^n)$ we have

$$arepsilon_k(\mathcal{T}(Q)_1,L_\infty)\leq 2arepsilon_k:=2C_4(d)\left\{egin{array}{ll} n^{3/2}(|Q|/k),&k\leq 2|Q|,\ n^{3/2}2^{-k/(2|Q|)},&k\geq 2|Q|. \end{array}
ight.$$

Specify $\eta = 1/4$. Denote $\delta_j := \varepsilon_{2^j}$, j = 0, 1, ..., and consider minimal δ_j -nets $\mathcal{N}_j \subset W$ of W in $\mathcal{C}(\mathbb{T}^d)$. We use the notation $N_j := |\mathcal{N}_j|$. Let J be the minimal j satisfying $\delta_j \leq 1/16$. For j = 1, ..., J we define a mapping A_j that associates with a function $f \in W$ a function $A_i(f) \in \mathcal{N}_i$ closest to f in the \mathcal{C} norm.

伺下 イヨト イヨト

Then, clearly,

 $\|f-A_j(f)\|_{\mathcal{C}}\leq \delta_j.$

We use the mappings A_j , j = 1, ..., J to associate with a function $f \in W$ a sequence (a chain) of functions $f_J, f_{J-1}, ..., f_1$ in the following way

 $f_J := A_J(f), \quad f_j := A_j(f_{j+1}), \quad j = J - 1, \ldots, 1.$

4 B K 4 B K

Reduction to simple events

Set

$$\eta_j := \frac{1}{16 \, nd}, \quad j = 1, \dots, J.$$

Rewriting

$$L_{z}^{1}(f_{J}) = L_{z}^{1}(f_{J}) - L_{z}^{1}(f_{J-1}) + \dots + L_{z}^{1}(f_{2}) - L_{z}^{1}(f_{1}) + L_{z}^{1}(f_{1})$$

we conclude that if $|L_z^1(f)| \ge 1/4$ then at least one of the following events occurs:

 $|L^1_{\mathsf{z}}(f_j) - L^1_{\mathsf{z}}(f_{j-1})| \geq \eta_j \quad \text{for some} \quad j \in (1, J] \quad \text{or} \quad |L^1_{\mathsf{z}}(f_1)| \geq \eta_1.$

In the rest of the proof we use the Proposition to estimate accurately the probability of the above events.