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Two settings

We are interested in discretizing the L4, 1 < g < oo, norm of
functions defined on a compact subset of RY. We distinguish right
a way two settings:

o Functions belong to an N-dimensional subspace Xy. We call
such results the Marcinkiewicz-type discretization theorems.

@ Functions belong to a given function class.
There are different settings and different ingredients, which
play important role in this problem.

We begin with the Marcinkiewicz-type discretization.
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Marcinkiewicz problem

Let Q be a compact subset of RY with the probability measure .
We say that a linear subspace Xy of the L4(€2), 1 < g < oo, admits
the Marcinkiewicz-type discretization theorem with parameters m
and q if there exist a set {¢¥ € Q,v =1,..., m} and two positive
constants Cj(d, q), j = 1,2, such that for any f € Xy we have

Gi(d, q)llfllg < %Z [F(E)I7 < Ga(d, 9)lIF G- (1)

v=1
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Marcinkiewicz problem

Let Q be a compact subset of RY with the probability measure .
We say that a linear subspace Xy of the L4(€2), 1 < g < oo, admits
the Marcinkiewicz-type discretization theorem with parameters m
and q if there exist a set {¢¥ € Q,v =1,..., m} and two positive
constants Cj(d, q), j = 1,2, such that for any f € Xy we have

Gi(d, q)llfllg < %Z [F(E)I7 < Ga(d, 9)lIF G- (1)

v=1

In the case g = oo we define L, as the space of continuous on Q2
functions and ask for

Al < max [FE)] < [F]l. 2)
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Marcinkiewicz problem

Let Q be a compact subset of RY with the probability measure .
We say that a linear subspace Xy of the L4(€2), 1 < g < oo, admits
the Marcinkiewicz-type discretization theorem with parameters m
and q if there exist a set {¢¥ € Q,v =1,..., m} and two positive
constants Cj(d, q), j = 1,2, such that for any f € Xy we have

Gi(d, q)llfllg < %Z [F(E)I7 < Ga(d, 9)lIF G- (1)

v=1

In the case g = oo we define L, as the space of continuous on Q2
functions and ask for

Al < max [FE)] < [F]l. 2)

We will also use a brief way to express the above property: the
M(m, q) theorem holds for a subspace Xy or Xy € M(m, q).
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Discretization for the trigonometric polynomials

We briefly present well known results related to the
Marcinkiewicz-type discretization theorems for the trigonometric
polynomials.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 1



Discretization for the trigonometric polynomials

We briefly present well known results related to the
Marcinkiewicz-type discretization theorems for the trigonometric
polynomials. We begin with the case

H(N) = [—Nl, Nl] X - X [—Nd, Nd], Nj € Nor Nj =0,
Jj=1,....,d, N=(Nyg,..., Nyg).
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Discretization for the trigonometric polynomials

We briefly present well known results related to the
Marcinkiewicz-type discretization theorems for the trigonometric
polynomials. We begin with the case

H(N) = [—Nl,Nl] X oo X [—Nd,Nd], Nj € N or Nj =0,
j=1,....,d, N=(Ny,...,Ny). Denote

P'(N) := {n=(n,...,nq), nj — are natural numbers,
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Discretization for the trigonometric polynomials

We briefly present well known results related to the
Marcinkiewicz-type discretization theorems for the trigonometric
polynomials. We begin with the case

H(N) = [—Nl, Nl] X - X [—Nd, Nd], Nj € Nor Nj =0,
j=1,....,d, N=(Ny,...,Ny). Denote

P'(N) := {n=(n,...,nq), nj — are natural numbers,

0<nj <4N; -1, j=1,...,d}

and set

(™ mhd /
x(n) := (2N1,...72Nd>, ne P(N).
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Marcinkiewicz-type theorem for

In the case N; = 0 we assume xj(n) = 0. Denote N := max(N, 1)
and v(N) := Hj’zl N;. Then the following Marcinkiewicz-type
discretization theorem is known for all 1 < g < oo: for any

feT(MN(N))

Ci(d, @)[ltll§ < v(aN)TH D [F(x(m))| < Co(d. @)1t]g, (5)
neP’/(N)
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Marcinkiewicz-type theorem for

In the case N; = 0 we assume xj(n) = 0. Denote N := max(N, 1)
and v(N) := Hj’zl N;. Then the following Marcinkiewicz-type
discretization theorem is known for all 1 < g < oco: for any

feT(MN(N))

Ci(d, @)[ltll§ < v(aN)TH D [F(x(m))| < Co(d. @)1t]g, (5)
neP’/(N)

which implies the following relation
T(M(N)) € M(v(4N),q), 1<q<oo.

Note that v(4N) < C(d)dim T(M(N)).
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Marcinkiewicz-type theorem for

In the case N; = 0 we assume xj(n) = 0. Denote N := max(N, 1)
and v(N) := Hj’zl N;. Then the following Marcinkiewicz-type
discretization theorem is known for all 1 < g < oco: for any

feT(MN(N))

Ci(d, @)[ltll§ < v(aN)TH D [F(x(m))| < Co(d. @)1t]g, (5)
neP’/(N)

which implies the following relation
T(M(N)) € M(v(4N),q), 1<q<oo.

Note that v(4N) < C(d)dim T (M(N)). It is clear from the above

construction that the set {x(n) : n € P’(N)} depends substantially
on N. The main goal of this paper is to construct for a given g and
M a set, which satisfies an analog of (5) for all N with v(N) < M.
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Discretization for trigonometric polynomials in

Let @ be a finite subset of Z9. We denote

T(Q):={f:f= Z e X

ke
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Discretization for trigonometric polynomials in

Let @ be a finite subset of Z9. We denote

T(Q):={f:f= Z e X

ke@
The following result was obtained by VT, 2017.
Theorem (1; VT, 2017)

There are three positive absolute constants C;, Gy, and C3 with
the following properties: For any d € N and any Q C Z9 there
exists a set of m < Cy1|Q| points & € T9, j =1,..., m such that
for any f € T(Q) we have

1 <& ,
Gllf|3 < ;Zlf(éf)F < GlIf]I3.
j=1
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NOU Lemma

The above theorem is based on the following lemma from
S. Nitzan, A. Olevskii, and A. Ulanovskii, 2016.

Lemma (NOU, 2016)
Let a system of vectors vy, . ..,vy from CN have the following
properties: for all w € CN we have Zj‘il |(w,v;}|? = ||lw||3 and

|vjl|3=N/M, j=1,...,M. Then there is a subset
Jc{1,2,..., M} such that for allw € C"

M

2 2 2

collwilf < 5 D [w ) < Gollwi,
Jjed

where cg and Cy are some absolute positive constants.
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Fundamental theorem

The above Lemma was derived from the following theorem from
A. Marcus, D.A. Spielman, and N. Srivastava, 2015, which solved
the Kadison-Singer problem.

Theorem (MSS, 2015)

Let a system of vectors v1, . ..,vp from CN have the following

properties: for all w € CN we have Zjl\i1 |(w,v;)|? = ||w||3 and
2

lvjllz < e

Then there exists a partition of {1,..., M} into two sets S; and

Sy, such that for each i = 1,2 we have for all w € CN

€ 2
Sl < LE2P e

JES;

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 1



Discretization for the trigonometric polynomials in L;

Let I'I(N) = [—Nl, Nl] X - X [—Nd, Nd], Nj € Nor NJ =0,
Jj=1,....,d, N=(Ny,...,Ny). The following result is obtained
by VT, 2017.
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Discretization for the trigonometric polynomials in L;

Let I'I(N) = [—Nl,Nl] X - X [—Nd,Nd], Nj € Nor NjZO,
j=1,....d, N = (M,

..., Ng). The following result is obtained
by VT, 2017.

Theorem (2; VT, 2017)

Let d € N. For any n € N and any Q C IM(N) with
N = (2",...,2") there exists a set of m < Cy(d)|Q|n"/? points
g eT9 j=1,...,m such that for any f € T(Q) we have

G(d)[[fll < %Z\f(fj)! < G(d)If ]2

=
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Discretization of the uniform norm

We discussed in Kashin and Temlyakov, 2018, the following setting
of the discretization problem of the uniform norm. Let
Sm = {§j}jm:1 C T be a finite set of points. Clearly,

| Lo = F(E)] < ||Flloo-
[,y = max 1F(E)] < Ifllc
We are interested in estimating the following quantities

D(Q’ m) = D(Q7 mad) ‘= inf sup M,
Sm £e7(Q) IfllLoo(Sm)

D(N,m) := D(N,m,d):= sup D(Q,m,d).
Q,|QI=N
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Simple remarks

Certainly, one should assume that m > N. Then the characteristic
D(Q, m) guarantees that there exists a set of m points S, such
that for any f € T(Q) we have

[flloe < D(Q, m)[If]l o2 (s,0)-

In the case d =1 and Q = [—n, n] classical Marcinkiewicz theorem
gives for m > 4n that D([—n, n],4n) < C. Similar relation holds
for D([—n1, ] X -+ X [—ng, ng], (4n1) X --- X (4ng)).
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Lower bound

It was proved in Kashin and Temlyakov, 2018, that for a pair N,
m, such that m = N we have D(N, m) =< N'/2. We formulate this
result as a theorem.

Theorem (KT, 2018)

For any constant ¢ > 1 there exists a positive constant C such
that for any pair of parameters N, m, with m < cN we have

D(N, m) > CN/2,

Also, there are two positive absolute constants ¢; and C; with the
following property: For any d € N we have for m > ¢ N

D(N,m,d) < C;NY/2,
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Hyperbolic crosses

Recall that the set of hyperbolic cross polynomials is defined as

T(N):=T(N,d):= {f: f= Z Ckei(k’x)},
kel (N)

where I'(N) is the hyperbolic cross

d
F(N) == (N, d) := {k ez?: [[max{lkl 1} < N}.

j=1
Throughout this section, we define
91
Qg = J-E_‘:J' and  By:=d— ag.

We use the following notation here. For x € T? and j € {1,...,d}
we denote X/ 1= (X1, ..., Xj—1,Xj41,---,Xd)-
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Main result

The following result was obtained by Dai, Prymak, Temlyakov, and
Tikhonov, 2018.

Theorem (DPTT, 2018)

For each d € N and each N € N there exists a set W(N, d) of at
most CyN(log N’ points in [0,2m)? such that for all f € T(N),

fllo < f(w)].
[flloo < C(d)wemﬁd)l (w)

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 1



Some historical remarks

It is well known that
T(N(N)) € M(C(d)N, o),

NN) :={keZ9: |k|<N,j=1,...,d}.

In particular, this implies that
T(N) € M(C(d)N9, 0).
Theorem DPTT shows that we can improve the above relation to
T(N) € M(C(d)N“(log N)%, o).

Note that ooy < Ind.
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Lower bound

A trivial lower bound for m in the inclusion T(N) € M(m, o) is
m > dim(T(N)) < N(log N)¥~1. The following nontrivial lower
bound was obtained in Kashin and Temlyakov, 1998.

Theorem (KT, 1998)

Let a set W C T? have a property:
vVt e T(N) It]|co < b(log N)* max |t(w)]
weW
with some 0 < a < 1/2. Then

|W| > CN log Ne©P™*(log N)'>*

In particular, Theorem KT with e = 0 implies that a necessary
condition on m for inclusion T(N) € M(m, o) is
m > dim(7(N))N€¢ with positive absolute constant c.
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An operator Ty with the following properties was constructed in
Temlyakov, 1993. The operator Ty has the form

Tn(f) =D f()i(x), m<c(d)N(log N)¥t, 4 € T(N2%)
j=1

and
Tn(f)=1F, feT(N), (3)

I Tl o1 = (log N)¥1. (4)
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Points {x/} are from the Smolyak net. Properties (3) and (4)
imply that all f € T(N) satisfy the discretization inequality

I1flloc < C(d)(log N)*t max [£(x/)].

1<j<m
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Some remarks for the case

We describe the properties of the subspace Xy in terms of a
system Uy = {u;}_, of functions such that

Xy =span{uj,i =1,...,N}. In the case Xy C Ly we assume that
the system is orthonormal on  with respect to measure . In the
case of real functions we associate with x € Q the matrix

G(x) := [ui(x)u;(x)]N ij—1- Clearly, G(x) is a symmetric positive
semi-definite matrix of rank 1. It is easy to see that for a set of
points €K € Q, k=1,...,m, and f = ZlNzl b;u; we have

ixkf(gkf —/ f(x)?dp=b" (i MG (ER) — /) b,

k=1 @ k=1
where b = (by,...,by)" is the column vector and / is the identity
matrix.
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Remarks continue

Therefore, the M"Y (m,2) problem is closely connected with a
problem of approximation (representation) of the identity matrix /
by an m-term approximant with respect to the system {G(x)}.cq-
It is easy to understand that under our assumptions on the system
Up there exist a set of knots {€4}7 | and a set of weights

{A P, with m < N? such that

1= " \G(gR)
k=1

and, therefore, we have for any Xy C L that

Xy € M"Y (N?,2,0).
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We begin with formulation of the Rudelson result from 1999. Let
Qu = {xj}j’\il be a discrete set with the probability measure
p(x¥) =1/M, j=1,....,M. Assume that {u;(x)}", is a real
orthonormal on Q) system satisfying the following condition:
Condition E. For all j

ui(x))? < Nt?
i=1

with some t > 1.
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Rudelson’s theorem

Then for every € > 0 there exists a set J C {1,..., M} of indices

with cardinality

Nt2
=|J] < C Nlog

such that for any f = Zf\lzl ciu; we have

(1—¢) ||f||2<fzf(xj 1+ I3
jed
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A slight improvement

Theorem (VT, 2017)

Let {u,-},-N:1 be an orthonormal system, satisfying condition E.
Then for every € > 0 there exists a set {¢/}; C Q with

t2

m < C—5NlogN
€

such that for any f = 25\1:1 cju; we have

1~
(1—9)Ifl5 < ;Zf(éff < (L+o)|f3.
j=1
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The Marcinkiewicz-type theorem with weights

We now comment on a recent breakthrough result by J. Batson,
D.A. Spielman, and N. Srivastava, 2012. We formulate their result
in our notations. Let as above Qp = {xj}j’\i1 be a discrete set
with the probability measure p(x/) = 1/M, j =1,..., M. Assume
that {u;(x)}; is a real orthonormal on Qy; system. Then for any
number d > 1 there exist a set of weights w; > 0 such that

[{j : wj # 0}| < dN so that for any f € span{uy,...,un} we have

M

, d+1+2V/d
12 < wif(xd)? <
I8 < w09 < 5 v i
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A comment

The proof of this result is based on a delicate study of the m-term
approximation of the identity matrix / with respect to the system
D :={G(x)}xeq, G(x):= [u,-(x)uj~(x)],(\ld-::l in the spectral norm.
The authors control the change of the maximal and minimal
eigenvalues of a matrix, when they add a rank one matrix of the
form wG(x). Their proof provides an algorithm for construction of
the weights {w;}. In particular, this implies that

Xn(Qu) € MY (m,2,¢) provided m > CNe 2

with large enough C.
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Definition of the entropy numbers

Let X be a Banach space and let Bx denote the unit ball of X with
the center at 0. Denote by Bx(y, r) a ball with center y and radius
r: {x e X :||x—yl| <r}. Foracompact set A and a positive
number ¢ we define the covering number N(A, X) as follows

N:(A, X) :=min{n: Ity W eAAC UJ'-’ZlBX(yj,e)}.
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Definition of the entropy numbers

Let X be a Banach space and let Bx denote the unit ball of X with
the center at 0. Denote by Bx(y, r) a ball with center y and radius
r: {x e X :||x—yl| <r}. Foracompact set A and a positive
number ¢ we define the covering number N(A, X) as follows

N:(A, X) :=min{n: Ity W eAAC UJ'-’ZlBX(yj,e)}.

It is convenient to consider along with the entropy
H-(A, X) := log, N-(A, X) the entropy numbers g, (A, X):

ex(A, X) ==inf{e: 3y, ... ,yzk €eAAC UjgilBX(yj,s)}.

In our definition of N.(A, X) and £x(A, X) we require y/ € A. In a
standard definition of N.(A, X) and e4(A, X) this restriction is not
imposed. However, it is well known that these characteristics may
differ at most by a factor 2.
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Conditional theorem

Theorem (4; VT2017)

Suppose that a real N-dimensional subspace Xy satisfies the
following condition on the entropy numbers of the unit ball
Xby={f € Xy : |Ifl1 <1} with B> 1

Nk, k<N,
k(X Loo) < B{ 2f/’</N k> N.

Then there exists a set of m < C;NB(log,(2N log,(8B)))? points
& eQ,j=1,...,m, with large enough absolute constant Cy, such
that for any f € Xy we have

1 1 & . 3
ZNfll < = FEN] < 2|If]ls.
2|| ”1_ij1| (£)|_2II 1
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Concentration measure lemma

The following lemma is from J. Bourgain, J. Lindenstrauss and V.
Milman, 1989.

Lemma (BLM, 1989)

Let {gj}["; be independent random variables with Eg; = 0,
j=1,..., m, which satisfy

Then for any n € (0,1) we have the following bound on the
probability

P Zlgj > mn <2exp<—8—;\74>.
J:
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We now consider measurable functions f(x), x € Q. For
1 < g < oo define

m

1 . .
L3(f) SZEZIf(XJ)I"—HfIIZ, z:=(x},...,x").

Jj=1

Let 1 be a probabilistic measure on 2. Denote u™ 1=y X -+ - X
the probabilistic measure on Q7 := Q x --- x Q. We need the
following inequality, which is a corollary of the above Lemma.
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Key inequality

Proposition (VT, 2017)

Let f; € L1(Q2) be such that
I5h<1/2, j=12  Ifi-flo<s
Then
m 2
iz |3() - ) 2 n) < 20 (< TE). )
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Some more notations

We consider the case X is C(£2) the space of functions continuous
on a compact subset Q of RY with the norm

[flloc == sup |£(x)].
xeQ
We use the abbreviated notations
en(W) :=en(W,C).
In our case

W:=W(Q):={teT(Q):|t|=1/2}. (6)
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The entropy bound

Theorem (6; VT, 2017)

For any Q C M(N) with N = (2",...,2") we have

3/2 k), k < 2|Q,
ek(T(Q)1, Los) < 2¢k 1= 2Gu(d) { 23/29%'/(2'2?'), k> 2;8{-
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The entropy bound

Theorem (6; VT, 2017)
For any Q C M(N) with N = (2",...,2") we have

3/2 k), k < 2|Q,
el(T(Q)1, Leo) < 224 :=2C4(d){ oy sad) k;2;g{-

Specify 7 = 1/4. Denote §; := €5, j =0,1,..., and consider
minimal §;-nets Nj C W of W in C(T9). We use the notation

N; := |Nj|. Let J be the minimal j satisfying 6; < 1/16. For
J=1,...,J we define a mapping A; that associates with a
function f € W a function Aj(f) € N; closest to f in the C norm.
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Building a chain

Then, clearly,
£ = Ai(F)llc < 4.

We use the mappings A;, j = 1,..., J to associate with a function
f € W a sequence (a chain) of functions fj,f;_1,...,f in the
following way

= Adf), = Alf), j=J-1.1
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Reduction to simple events

Set
1

= — =1,...,J.
771 16nd7 ./ 9 7J

Rewriting
L2(f)) = Li(f) — Li(Fi1) + - + Li(R) — Ly(A) + L3(F)

we conclude that if [L1(f)| > 1/4 then at least one of the following
events occurs:

Lz(f;) = La(fi-1)l = m; forsome j € (1,J] or |Lz(A) > m.

In the rest of the proof we use the Proposition to estimate
accurately the probability of the above events.
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