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Universal discretization problem

Let Xy = {X,JV j,‘(:]. be a collection of linear subspaces Xf;, of the
Lg(R2),1 < g <oco. Wesay that aset {¢¥ € Q,v=1,...,m}
provides universal discretization for the collection Xy if,
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Universal discretization problem

Let Xy = {va j,‘(:]. be a collection of linear subspaces Xf;, of the
Lg(R2),1 < g <oco. Wesay that aset {¢¥ € Q,v=1,...,m}
provides universal discretization for the collection Xy if, in the case
1 < g < 00, there are two positive constants Ci(d, q), i = 1,2,
such that for each j € [1, k] and any f € X}, we have

Gi(d, q)lIfllg < *Zlf )17 < G(d, )l fl5- (1)
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Universal discretization problem

Let Xy = {va 1 be a collection of linear subspaces XJ of the
Lq(Q),lgqgoo We say that a set {{¥ € Q,v=1,...,m}
provides universal discretization for the collection Xy if, in the case
1 < g < 00, there are two positive constants Ci(d, q), i = 1,2,
such that for each j € [1, k] and any f € X}, we have

Gi(d, q)lIfllg < *Zlf )17 < G(d, )l fl5- (1)

In the case g = oo for each j € [1, k] and any f € X,{, we have

Cd)[flloe = max [F(£)] < [[Flloc- (2)

1<v
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Main new result

We are primarily interested in the Universal discretization for the
collection of subspaces of trigonometric polynomials with
frequencies from parallelepipeds (rectangles). For s € Zi define

R(s):={keZ%:|kj| <2%, j=1,...,d}.

Clearly, R(s) = MN(N) with N; = 2% — 1. Consider the collection
C(n,d) == {T(R(s)); lIsllr = n}.
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Main new result

We are primarily interested in the Universal discretization for the
collection of subspaces of trigonometric polynomials with
frequencies from parallelepipeds (rectangles). For s € Zi define

R(s):={keZ%:|kj| <2%, j=1,...,d}.
Clearly, R(s) = MN(N) with N; = 2% — 1. Consider the collection

C(n,d) :={T(R(s)),|ls|][1 = n}. The following result is obtained
by VT, 2017.

Theorem (1; VT, 2017)

For every 1 < q < oo there exists a large enough constant C(d, q),
which depends only on d and q, such that for any n € N there is a
set =, = {€V}m_ C T9, with m < C(d, q)2" that provides
universal discretization in L for the collection C(n, d).
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Dispersion

Let d > 2 and [0,1)9 be the d-dimensional unit cube. For
x,y € [0,1)? with x = (x1,...,x4) and y = (y1, ..., yq) we write
x <y if this inequality holds coordinate-wise.
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Dispersion

Let d > 2 and [0,1)9 be the d-dimensional unit cube. For

x,y € [0,1)? with x = (x1,...,x4) and y = (y1, ..., yq) we write
x <y if this inequality holds coordinate-wise. For x <y we write
[x,y) for the axis-parallel box [x1,y1) X - -+ X [xq4, ¥q) and define

B:={xy):xyc[0,1)%x<yl
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Dispersion

Let d > 2 and [0,1)9 be the d-dimensional unit cube. For

x,y € [0,1)? with x = (x1,...,x4) and y = (y1, ..., yq) we write
x <y if this inequality holds coordinate-wise. For x <y we write
[x,y) for the axis-parallel box [x1,y1) X - -+ X [xq4, ¥q) and define

B:={xy):xyc[0,1)%x<yl

For n > 1let T be a set of points in [0,1)9 of cardinality |T| = n.
The volume of the largest empty (from points of T) axis-parallel
box, which can be inscribed in [0,1), is called the dispersion of T:

disp(T):= sup  vol(B).
BeB:BNT=0
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A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal
dispersion of point sets of fixed cardinality:

. o . .
disp*(n, d) := Tc[o,{?df,\ﬂ:ndISp(T)
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A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal
dispersion of point sets of fixed cardinality:

. o . .
disp*(n, d) := Tc[o,{?df,\ﬂ:ndISp(T)

It is known that
disp*(n, d) < C*(d)/n. (6)
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A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal
dispersion of point sets of fixed cardinality:

disp*(n, d) := inf disp(T).
isp*(n. d) TC[O,{I)L,\T|:n sp(T)
It is known that
disp*(n, d) < C*(d)/n. (6)

Inequality (6) with C*(d) = 297! Hf’;l pi, where p; denotes the

ith prime number, was proved by A. Dumitrescu and M. Jiang,
2013 (see also G. Rote and F. Tichy, 1996).
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A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal
dispersion of point sets of fixed cardinality:

. . . .
disp*(n, d) := Tc[o,{?df,\ﬂ:ndISp(T)

It is known that
disp*(n, d) < C*(d)/n. (6)

Inequality (6) with C*(d) = 297! Hf’;l pi, where p; denotes the
ith prime number, was proved by A. Dumitrescu and M. Jiang,
2013 (see also G. Rote and F. Tichy, 1996). A. Dumitrescu and M.

Jiang used the Halton-Hammersly set of n points.
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A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal
dispersion of point sets of fixed cardinality:

. o . .
disp*(n, d) := Tc[o,{?df,\ﬂ:ndISp(T)

It is known that
disp*(n, d) < C*(d)/n. (6)

Inequality (6) with C*(d) = 297! Hf’;ll pi, where p; denotes the
ith prime number, was proved by A. Dumitrescu and M. Jiang,
2013 (see also G. Rote and F. Tichy, 1996). A. Dumitrescu and M.
Jiang used the Halton-Hammersly set of n points. Inequality (6)
with C*(d) = 27d+1 \was proved by C. Aistleitner, A. Hinrichs, and
D. Rudolf, 2017.
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Difinition of the -net

C. Aistleitner, A. Hinrichs, and D. Rudolf, following G. Larcher,
used the (¢, r, d)-nets.

Definition

A (t,r,d)-net (in base 2) is a set T of 2" points in [0,1)9 such
that each dyadic box

[(21 = 1)2_51, 812_51) X oo X [(ad = 1)2_sd, ad2_sd), 1<a < 2%,
j=1,...,d, of volume 2!~" contains exactly 2" points of T.
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Universal discretization in

Theorem (2; VT, 2017)

Let a set T with cardinality | T| = 2" =: m have dispersion
satisfying the bound disp(T) < C(d)2~" with some constant
C(d). Then there exists a constant c(d) € N such that the set
21T .= {27x : x € T} provides the universal discretization in L
for the collection C(n, d) with n = r — c(d).
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Universal discretization in

Theorem (2; VT, 2017)

Let a set T with cardinality | T| = 2" =: m have dispersion
satisfying the bound disp(T) < C(d)2~" with some constant
C(d). Then there exists a constant c(d) € N such that the set
21T .= {27x : x € T} provides the universal discretization in L
for the collection C(n, d) with n = r — c(d).

Theorem (3; VT, 2017)

Assume that T C [0,1)9 is such that the set 21 T provides
universal discretization in L., for the collection C(n,d). Then there

exists a positive constant C(d) with the following property
disp(T) < C(d)27".
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Dirichlet kernel

We need some classical trigonometric polynomials. We begin with
the univariate case. The Dirichlet kernel of order n:

X) — Z elkx — efinx(ei(2n+1)x _ 1)(eix _ 1)71

lkl<n

= (sin(n+1/2)x) / sin(x/2)

is an even trigonometric polynomial.
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de la Vallée Poussin kernel

The de la Vallée Poussin kernel:

2n—1

Va(x) :=n"1 )" Dy(x),
I=n

is an even trigonometric polynomial of order 2n — 1 with the
majorant

[Va(x)| < Cmin(n, (nx®)7Y), x| < (7)
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Simple lemma

The above relation (7) easily implies the following lemma.
Lemma (1; VT, 2017)

For a set =, := {£"}7; C T satisfying the condition
=m0 [x(I=1),x(1))| < b, x(I) :==l/2n, | =1,...,4n, we have

Z\v x—&")| < Cbn.

We use the above Lemma (1) to prove a one-sided inequality.
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Bounds for the operator norm

Lemma (2; VT, 2017)

For a set =, := {£"}" ; C T satisfying the condition

|=m N [x(I —1),x(1)] < b, x(I) :==xl/2n, | =1,...,4n, we have
forl1 < g < oo

m 1 Z a,Vn(x — &)
v=1

1 m 1/q
1-1/q | = q
< C(bn/m) <m2|ay|> .
q

v=1
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Multivariate kernel

We now proceed to the multivariate case. Denote the multivariate
de la Vallée Poussin kernels:

d

Un(x) =[] Vn (), N=(M,..., Ng).
j=1

In the same way as above in the univariate case one can establish
the following multivariate analog of Lemma (2).
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Bounds for the operator norm

Lemma (3; VT, 2017)

For a set =, :={&"}, C T satisfying the condition
|=m N [x(n), x(n + 1))\ < b, n€ P'(N), 1 is a vector with
coordinates 1 for all j, we have for1 < g <

. 1/q
%Za,,VN(x —€)|| < C(d)(bv(N)/m)'=a ( Z |a”|q>
v=1 q

V.
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Upper bound for the discrete norm

Theorem (4; VT, 2017)

Let aset =, :={&"}]; C T9 satisfy the condition

|Z=m N [x(n),x(n+1))| < b(d), n € P'(N), 1 is a vector with
coordinates 1 for all j. Then for m > v(N) we have for each
feT(N)and1l<qg<oo

m 1/q
(%Z |f<£”)|") < C(d)lIfq-
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Property E(b)

We now proceed to the inverse bounds for the discrete norm.
Denote
A(n) :=[x(n),x(n +1)), ne P'(N).

Suppose that a sequence =, := {£}™_; C T9 has the following
property.
Property E(b). There is a number b € N such that for any
n € P'(N) we have
|A(n)N=,| = b.

Clearly, in this case m = v(N)b, where v(N) = |P'(N)].
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Main lemma for the lower bound

Lemma (4; VT, 2017)

Suppose that two sequences =, := {¢V}™_, c T9 and

Cm = {7}, C T satisfy the following condition. For a given
J€A{1,....d}, v¥ may only differ from £ in the jth coordinate.
Moreover, assume that if ¥ € A(n) then also v” € A(n). Finally,
assume that =, has property E(b) with b < C'(d). Then for

f € T(K) with K <N we have

%ZW(&”N" = 1f(v)1%] < C(d, q)(K;/ NI 113
v=1
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Arbitrary trigonometric polynomials

For n € N denote I, := IM(N) N Z9 with

N =(2""1 —1,...,2"1 — 1), where, as above,

H(N) = [—Nl, Nl] X X [—Nd, Nd]. Then

Myl = (2" —1)? <297 Let v € N and v < |M,]. Consider

S(v,n):={Q CN,:|Q|=v}
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Arbitrary trigonometric polynomials

For n € N denote MM, := M(N) N Z9 with

N =(2""1 —1,...,2"1 — 1), where, as above,

H(N) = [—Nl, Nl] X X [—Nd, Nd]. Then

Myl = (2" —1)? <297 Let v € N and v < |M,]. Consider
S(v,n):={Q CN,:|Q|=v}

Then it is easy to see that

st = (1) <20
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Universal discretization problem

We are interested in solving the following problem of universal
discretization. For a given S(v, n) and g € [1,00) find a condition
on m such that there exists a set £ = {¢”}_; with the property:
for any Q € S(v, n) and each f € T(Q) we have

1 m
Gla, d)Ifllg = — D IF(ENT < Calq, d)IIFI1G-
v=1
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Universal discretization problem

We are interested in solving the following problem of universal
discretization. For a given S(v, n) and g € [1,00) find a condition
on m such that there exists a set £ = {¢”}_; with the property:
for any Q € S(v, n) and each f € T(Q) we have

1 & ,
Gi(q,d)|Ifllg < ;Z 1£(€)]9 < Go(q, d)IF]E-
v=1

We present results for g =2 and g = 1.
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The case g =2

We begin with a general construction. Let Xy = span(us, ..., uy),
where {uj}jN:1 is a real orthonormal system on T9. With each

d : : -
x € T9 we associate the matrix G(x) := [u;(x)u;(x)]N 1
G(x) is a symmetric matrix. For a set of points £¢¥ € T9,
k=1,...,m, and f = SN biu; we have

Clearly,

1 ¢ 1 o
m 2 (€ = | FOdu=bT| 3 G(€)~1]b
k=1 k=1
where b = (by,...,by)" is the column vector. Therefore,
A€ = [ el < |36~ 1) IbiE
M= T M=
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Probability bound

We recall that the system {uj-}jN:1 satisfies Condition E if there
exists a constant t such that

w(x) = Z ui(x)? < Nt2,

i=1
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Probability bound

We recall that the system {uj} ' , satisfies Condition E if there
exists a constant t such that

ui(x)? <
i=1

I
M=

Let points xX, k = 1,..., m, be independent uniformly distributed
on T9 random variables. Then with a help of deep results on
random matrices it was proved that

2
{ >m17} < Nexp (:ZZN>

with an absolute constant c.

m

2 (6

k=
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The union bound

Consider real trigonometric polynomials from the collection
S(v, n). Using the union bound for the probability we get that the
probability of the event

m

D (Ge

k=1

<mn forall Qe S(v,n)

is bounded from below by

2
1—|S(v,n)|vexp <_mn>

cv

For any fixed n € (0,1/2] the above number is positive provided
m > C(d)n~2v2n with large enough C(d). The above argument
proves the following result.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 2



Main result for g = 2

Theorem (Dai, Prymak, VT, Tikhonov, 2018.)

There exist three positive constants C;(d), i = 1,2,3, such that for
any n,v € N and v < |M,| there is a set £ = {¢€V}™_; C TY, with
m < Cl(d)vzn, which provides universal discretization in L for the
collection S(v, n): for any f € Uges(v,nT(Q)

1 m
G < =D IF(E < Ga)lIFII5

v=1
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Similar to the case g = 2 a result on the universal discretization for
the collection S(v, n) will be derived from the probabilistic result
on the Marcinkiewicz-type theorem for 7(Q), Q C INM,. However,
the probabilistic technique used in the case of g = 1 is different
from the probabilistic technique used in the case g = 2. The proof
from VT, 2017, gives the following result.
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Probability bound

Theorem (VT, 2017)

Let points X} € T9, j =1,..., m, be independently and uniformly
distributed on T9. There exist positive constants Ci(d), Gy, Cs,
and r € (0,1) such that for any @ C T, and m > yCy(d)|Q|n"/?,
y =1

1 <& .
PV e T(Q), Czllf\llsE;If(XJ)ISCzllfﬂl >1-r.
J:
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The union bound

Therefore, using the union bound for probability we obtain the
Marcinkiewicz-type inequalities for all Q € S(v, n) with probability
at least 1 — |S(v, n)|x”. Choosing y = y(v, n) := C(d)vn with
large enough C(d) we get

1—[S(v,n)|’™" > 0.

This argument implies the following result on universality in Lj.
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Main result for g =1

Theorem (Dai, Prymak, VT, Tikhonov, 2018.)

There exist three positive constants Ci(d), Ca, C3, such that for
any n,v € N and v < |M,| there is a set £ = {¢€V}™_; C TY, with
m < Cl(d)v2 n%2, which provides universal discretization in Ly for
the collection S(v, n): for any f € Uges(v,nT(Q)

m

1 14
Gllffl < ;Z £ < GlIf 1

v=1
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