Sampling discretization of integral norms. Lecture 2

Vladimir Temlyakov

Chemnitz, September, 2019

Universal discretization problem

Let $\mathcal{X}_{N}:=\left\{X_{N}^{j}\right\}_{j=1}^{k}$ be a collection of linear subspaces X_{N}^{j} of the $L_{q}(\Omega), 1 \leq q \leq \infty$. We say that a set $\left\{\xi^{\nu} \in \Omega, \nu=1, \ldots, m\right\}$ provides universal discretization for the collection \mathcal{X}_{N} if,

Universal discretization problem

Let $\mathcal{X}_{N}:=\left\{X_{N}^{j}\right\}_{j=1}^{k}$ be a collection of linear subspaces X_{N}^{j} of the $L_{q}(\Omega), 1 \leq q \leq \infty$. We say that a set $\left\{\xi^{\nu} \in \Omega, \nu=1, \ldots, m\right\}$ provides universal discretization for the collection \mathcal{X}_{N} if, in the case $1 \leq q<\infty$, there are two positive constants $C_{i}(d, q), i=1,2$, such that for each $j \in[1, k]$ and any $f \in X_{N}^{j}$ we have

$$
\begin{equation*}
C_{1}(d, q)\|f\|_{q}^{q} \leq \frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right|^{q} \leq C_{2}(d, q)\|f\|_{q}^{q} \tag{1}
\end{equation*}
$$

Universal discretization problem

Let $\mathcal{X}_{N}:=\left\{X_{N}^{j}\right\}_{j=1}^{k}$ be a collection of linear subspaces X_{N}^{j} of the $L_{q}(\Omega), 1 \leq q \leq \infty$. We say that a set $\left\{\xi^{\nu} \in \Omega, \nu=1, \ldots, m\right\}$ provides universal discretization for the collection \mathcal{X}_{N} if, in the case $1 \leq q<\infty$, there are two positive constants $C_{i}(d, q), i=1,2$, such that for each $j \in[1, k]$ and any $f \in X_{N}^{j}$ we have

$$
\begin{equation*}
C_{1}(d, q)\|f\|_{q}^{q} \leq \frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right|^{q} \leq C_{2}(d, q)\|f\|_{q}^{q} \tag{1}
\end{equation*}
$$

In the case $q=\infty$ for each $j \in[1, k]$ and any $f \in X_{N}^{j}$ we have

$$
\begin{equation*}
C_{1}(d)\|f\|_{\infty} \leq \max _{1 \leq \nu \leq m}\left|f\left(\xi^{\nu}\right)\right| \leq\|f\|_{\infty} \tag{2}
\end{equation*}
$$

Main new result

We are primarily interested in the Universal discretization for the collection of subspaces of trigonometric polynomials with frequencies from parallelepipeds (rectangles). For $\mathbf{s} \in \mathbb{Z}_{+}^{d}$ define

$$
R(\mathbf{s}):=\left\{\mathbf{k} \in \mathbb{Z}^{d}:\left|k_{j}\right|<2^{s_{j}}, \quad j=1, \ldots, d\right\}
$$

Clearly, $R(\mathbf{s})=\Pi(\mathbf{N})$ with $N_{j}=2^{s_{j}}-1$. Consider the collection $\mathcal{C}(n, d):=\left\{\mathcal{T}(R(\mathbf{s})),\|\mathbf{s}\|_{1}=n\right\}$.

Main new result

We are primarily interested in the Universal discretization for the collection of subspaces of trigonometric polynomials with frequencies from parallelepipeds (rectangles). For $s \in \mathbb{Z}_{+}^{d}$ define

$$
R(\mathbf{s}):=\left\{\mathbf{k} \in \mathbb{Z}^{d}:\left|k_{j}\right|<2^{s_{j}}, \quad j=1, \ldots, d\right\} .
$$

Clearly, $R(\mathbf{s})=\Pi(\mathbf{N})$ with $N_{j}=2^{s_{j}}-1$. Consider the collection $\mathcal{C}(n, d):=\left\{\mathcal{T}(R(\mathbf{s})),\|\mathbf{s}\|_{1}=n\right\}$. The following result is obtained by VT, 2017.

Theorem (1; VT, 2017)

For every $1 \leq q \leq \infty$ there exists a large enough constant $C(d, q)$, which depends only on d and q, such that for any $n \in \mathbb{N}$ there is a set $\Xi_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$, with $m \leq C(d, q) 2^{n}$ that provides universal discretization in L_{q} for the collection $\mathcal{C}(n, d)$.

Dispersion

Let $d \geq 2$ and $[0,1)^{d}$ be the d-dimensional unit cube. For $\mathbf{x}, \mathbf{y} \in[0,1)^{d}$ with $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right)$ we write $\mathbf{x}<\mathbf{y}$ if this inequality holds coordinate-wise.

Dispersion

Let $d \geq 2$ and $[0,1)^{d}$ be the d-dimensional unit cube. For $\mathbf{x}, \mathbf{y} \in[0,1)^{d}$ with $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right)$ we write $\mathbf{x}<\mathbf{y}$ if this inequality holds coordinate-wise. For $\mathbf{x}<\mathbf{y}$ we write $[\mathbf{x}, \mathbf{y})$ for the axis-parallel box $\left[x_{1}, y_{1}\right) \times \cdots \times\left[x_{d}, y_{d}\right]$ and define

$$
\mathcal{B}:=\left\{[\mathbf{x}, \mathbf{y}): \mathbf{x}, \mathbf{y} \in[0,1)^{d}, \mathbf{x}<\mathbf{y}\right\} .
$$

Dispersion

Let $d \geq 2$ and $[0,1)^{d}$ be the d-dimensional unit cube. For $\mathbf{x}, \mathbf{y} \in[0,1)^{d}$ with $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right)$ we write $\mathbf{x}<\mathbf{y}$ if this inequality holds coordinate-wise. For $\mathbf{x}<\mathbf{y}$ we write $[\mathbf{x}, \mathbf{y})$ for the axis-parallel box $\left[x_{1}, y_{1}\right) \times \cdots \times\left[x_{d}, y_{d}\right]$ and define

$$
\mathcal{B}:=\left\{[\mathbf{x}, \mathbf{y}): \mathbf{x}, \mathbf{y} \in[0,1)^{d}, \mathbf{x}<\mathbf{y}\right\} .
$$

For $n \geq 1$ let T be a set of points in $[0,1)^{d}$ of cardinality $|T|=n$. The volume of the largest empty (from points of T) axis-parallel box, which can be inscribed in $[0,1)^{d}$, is called the dispersion of T :

$$
\operatorname{disp}(T):=\sup _{B \in \mathcal{B}: B \cap T=\emptyset} \operatorname{vol}(B) .
$$

A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal dispersion of point sets of fixed cardinality:

$$
\operatorname{disp}^{*}(n, d):=\inf _{T \subset[0,1)^{d},|T|=n} \operatorname{disp}(T)
$$

A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal dispersion of point sets of fixed cardinality:

$$
\operatorname{disp}^{*}(n, d):=\inf _{T \subset[0,1)^{d},|T|=n} \operatorname{disp}(T) .
$$

It is known that

$$
\begin{equation*}
\operatorname{disp}^{*}(n, d) \leq C^{*}(d) / n \tag{6}
\end{equation*}
$$

A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal dispersion of point sets of fixed cardinality:

$$
\operatorname{disp}^{*}(n, d):=\inf _{T \subset[0,1)^{d},|T|=n} \operatorname{disp}(T) .
$$

It is known that

$$
\begin{equation*}
\operatorname{disp}^{*}(n, d) \leq C^{*}(d) / n \tag{6}
\end{equation*}
$$

Inequality (6) with $C^{*}(d)=2^{d-1} \prod_{i=1}^{d-1} p_{i}$, where p_{i} denotes the i th prime number, was proved by A. Dumitrescu and M. Jiang, 2013 (see also G. Rote and F. Tichy, 1996).

A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal dispersion of point sets of fixed cardinality:

$$
\operatorname{disp}^{*}(n, d):=\inf _{T \subset[0,1)^{d},|T|=n} \operatorname{disp}(T) .
$$

It is known that

$$
\begin{equation*}
\operatorname{disp}^{*}(n, d) \leq C^{*}(d) / n \tag{6}
\end{equation*}
$$

Inequality (6) with $C^{*}(d)=2^{d-1} \prod_{i=1}^{d-1} p_{i}$, where p_{i} denotes the i th prime number, was proved by A. Dumitrescu and M. Jiang, 2013 (see also G. Rote and F. Tichy, 1996). A. Dumitrescu and M. Jiang used the Halton-Hammersly set of n points.

A bound on the minimal dispersion

An interesting extremal problem is to find (estimate) the minimal dispersion of point sets of fixed cardinality:

$$
\operatorname{disp}^{*}(n, d):=\inf _{T \subset[0,1)^{d},|T|=n} \operatorname{disp}(T)
$$

It is known that

$$
\begin{equation*}
\operatorname{disp}^{*}(n, d) \leq C^{*}(d) / n \tag{6}
\end{equation*}
$$

Inequality (6) with $C^{*}(d)=2^{d-1} \prod_{i=1}^{d-1} p_{i}$, where p_{i} denotes the i th prime number, was proved by A. Dumitrescu and M. Jiang, 2013 (see also G. Rote and F. Tichy, 1996). A. Dumitrescu and M. Jiang used the Halton-Hammersly set of n points. Inequality (6) with $C^{*}(d)=2^{7 d+1}$ was proved by C. Aistleitner, A. Hinrichs, and D. Rudolf, 2017.

Difinition of the (t, r, d)-net

C. Aistleitner, A. Hinrichs, and D. Rudolf, following G. Larcher, used the (t, r, d)-nets.

Definition

A (t, r, d)-net (in base 2) is a set T of 2^{r} points in $[0,1)^{d}$ such that each dyadic box
$\left[\left(a_{1}-1\right) 2^{-s_{1}}, a_{1} 2^{-s_{1}}\right) \times \cdots \times\left[\left(a_{d}-1\right) 2^{-s_{d}}, a_{d} 2^{-s_{d}}\right), 1 \leq a_{j} \leq 2^{s_{j}}$, $j=1, \ldots, d$, of volume 2^{t-r} contains exactly 2^{t} points of T.

Universal discretization in L_{∞}

Theorem (2; VT, 2017)
Let a set T with cardinality $|T|=2^{r}=: m$ have dispersion satisfying the bound $\operatorname{disp}(T)<C(d) 2^{-r}$ with some constant $C(d)$. Then there exists a constant $c(d) \in \mathbb{N}$ such that the set $2 \pi T:=\{2 \pi \mathbf{x}: \mathbf{x} \in T\}$ provides the universal discretization in L_{∞} for the collection $\mathcal{C}(n, d)$ with $n=r-c(d)$.

Universal discretization in L_{∞}

Theorem (2; VT, 2017)

Let a set T with cardinality $|T|=2^{r}=: m$ have dispersion satisfying the bound $\operatorname{disp}(T)<C(d) 2^{-r}$ with some constant $C(d)$. Then there exists a constant $c(d) \in \mathbb{N}$ such that the set $2 \pi T:=\{2 \pi \mathbf{x}: \mathbf{x} \in T\}$ provides the universal discretization in L_{∞} for the collection $\mathcal{C}(n, d)$ with $n=r-c(d)$.

Theorem (3; VT, 2017)

Assume that $T \subset[0,1)^{d}$ is such that the set $2 \pi T$ provides universal discretization in L_{∞} for the collection $\mathcal{C}(n, d)$. Then there exists a positive constant $C(d)$ with the following property $\operatorname{disp}(T) \leq C(d) 2^{-n}$.

Dirichlet kernel

We need some classical trigonometric polynomials. We begin with the univariate case. The Dirichlet kernel of order n :

$$
\begin{gathered}
\mathcal{D}_{n}(x):=\sum_{|k| \leq n} e^{i k x}=e^{-i n x}\left(e^{i(2 n+1) x}-1\right)\left(e^{i x}-1\right)^{-1} \\
=(\sin (n+1 / 2) x) / \sin (x / 2)
\end{gathered}
$$

is an even trigonometric polynomial.

de la Vallée Poussin kernel

The de la Vallée Poussin kernel:

$$
\mathcal{V}_{n}(x):=n^{-1} \sum_{l=n}^{2 n-1} \mathcal{D}_{l}(x)
$$

is an even trigonometric polynomial of order $2 n-1$ with the majorant

$$
\begin{equation*}
\left|\mathcal{V}_{n}(x)\right| \leq C \min \left(n,\left(n x^{2}\right)^{-1}\right), \quad|x| \leq \pi \tag{7}
\end{equation*}
$$

Simple lemma

The above relation (7) easily implies the following lemma.
Lemma (1; VT, 2017)
For a set $\Xi_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}$ satisfying the condition
$\left|\Xi_{m} \cap[x(I-1), x(I))\right| \leq b, x(I):=\pi I / 2 n, I=1, \ldots, 4 n$, we have

$$
\sum_{\nu=1}^{m}\left|\mathcal{V}_{n}\left(x-\xi^{\nu}\right)\right| \leq C b n
$$

We use the above Lemma (1) to prove a one-sided inequality.

Bounds for the operator norm

Lemma (2; VT, 2017)

For a set $\Xi_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}$ satisfying the condition
$\left|\bar{\Xi}_{m} \cap[x(I-1), x(I))\right| \leq b, x(I):=\pi I / 2 n, I=1, \ldots, 4 n$, we have for $1 \leq q \leq \infty$

$$
\left\|m^{-1} \sum_{\nu=1}^{m} a_{\nu} \mathcal{V}_{n}\left(x-\xi^{\nu}\right)\right\|_{q} \leq C(b n / m)^{1-1 / q}\left(\frac{1}{m} \sum_{\nu=1}^{m}\left|a_{\nu}\right|^{q}\right)^{1 / q}
$$

Multivariate kernel

We now proceed to the multivariate case. Denote the multivariate de la Vallée Poussin kernels:

$$
\mathcal{V}_{\mathbf{N}}(\mathbf{x}):=\prod_{j=1}^{d} \mathcal{V}_{N_{j}}\left(x_{j}\right), \quad \mathbf{N}=\left(N_{1}, \ldots, N_{d}\right)
$$

In the same way as above in the univariate case one can establish the following multivariate analog of Lemma (2).

Bounds for the operator norm

Lemma (3; VT, 2017)

For a set $\Xi_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$ satisfying the condition $\left|\Xi_{m} \cap[\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n}+\mathbf{1}))\right| \leq b, \mathbf{n} \in P^{\prime}(\mathbf{N}), \mathbf{1}$ is a vector with coordinates 1 for all j, we have for $1 \leq q \leq \infty$

$$
\left\|\frac{1}{m} \sum_{\nu=1}^{m} a_{\nu} \mathcal{V}_{\mathbf{N}}\left(\mathbf{x}-\xi^{\nu}\right)\right\|_{q} \leq C(d)(b v(\mathbf{N}) / m)^{1-1 / q}\left(\frac{1}{m} \sum_{\nu=1}^{m}\left|a_{\nu}\right|^{q}\right)^{1 / q}
$$

Upper bound for the discrete norm

Theorem (4; VT, 2017)

Let a set $\bar{\Xi}_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$ satisfy the condition $\left|\bar{Z}_{m} \cap[\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n}+\mathbf{1}))\right| \leq b(d), \mathbf{n} \in P^{\prime}(\mathbf{N}), \mathbf{1}$ is a vector with coordinates 1 for all j. Then for $m \geq v(\mathbf{N})$ we have for each $f \in \mathcal{T}(\mathbf{N})$ and $1 \leq q \leq \infty$

$$
\left(\frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right|^{q}\right)^{1 / q} \leq C(d)\|f\|_{q}
$$

Property E(b)

We now proceed to the inverse bounds for the discrete norm. Denote

$$
\Delta(\mathbf{n}):=[\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n}+\mathbf{1})), \quad \mathbf{n} \in P^{\prime}(\mathbf{N}) .
$$

Suppose that a sequence $\Xi_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$ has the following property.
Property $\mathrm{E}(b)$. There is a number $b \in \mathbb{N}$ such that for any $\mathbf{n} \in P^{\prime}(\mathbf{N})$ we have

$$
\left|\Delta(\mathbf{n}) \cap \Xi_{m}\right|=b .
$$

Clearly, in this case $m=v(\mathbf{N}) b$, where $v(\mathbf{N})=\left|P^{\prime}(\mathbf{N})\right|$.

Main lemma for the lower bound

Lemma (4; VT, 2017)

Suppose that two sequences $\bar{\Xi}_{m}:=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$ and $\Gamma_{m}:=\left\{\gamma^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$ satisfy the following condition. For a given $j \in\{1, \ldots, d\}, \gamma^{\nu}$ may only differ from ξ^{ν} in the j th coordinate. Moreover, assume that if $\xi^{\nu} \in \Delta(\mathbf{n})$ then also $\gamma^{\nu} \in \Delta(\mathbf{n})$. Finally, assume that Ξ_{m} has property $E(b)$ with $b \leq C^{\prime}(d)$. Then for $f \in \mathcal{T}(\mathbf{K})$ with $\mathbf{K} \leq \mathbf{N}$ we have

$$
\left.\left.\frac{1}{m} \sum_{\nu=1}^{m}| | f\left(\xi^{\nu}\right)\right|^{q}-\left|f\left(\gamma^{\nu}\right)\right|^{q} \right\rvert\, \leq C(d, q)\left(K_{j} / N_{j}\right)\|f\|_{q}^{q}
$$

Arbitrary trigonometric polynomials

For $n \in \mathbb{N}$ denote $\Pi_{n}:=\Pi(\mathbf{N}) \cap \mathbb{Z}^{d}$ with
$\mathbf{N}=\left(2^{n-1}-1, \ldots, 2^{n-1}-1\right)$, where, as above,
$\Pi(\mathbf{N}):=\left[-N_{1}, N_{1}\right] \times \cdots \times\left[-N_{d}, N_{d}\right]$. Then
$\left|\Pi_{n}\right|=\left(2^{n}-1\right)^{d}<2^{d n}$. Let $v \in \mathbb{N}$ and $v \leq\left|\Pi_{n}\right|$. Consider

$$
\mathcal{S}(v, n):=\left\{Q \subset \Pi_{n}:|Q|=v\right\}
$$

Arbitrary trigonometric polynomials

For $n \in \mathbb{N}$ denote $\Pi_{n}:=\Pi(\mathbf{N}) \cap \mathbb{Z}^{d}$ with
$\mathbf{N}=\left(2^{n-1}-1, \ldots, 2^{n-1}-1\right)$, where, as above,
$\Pi(\mathbf{N}):=\left[-N_{1}, N_{1}\right] \times \cdots \times\left[-N_{d}, N_{d}\right]$. Then
$\left|\Pi_{n}\right|=\left(2^{n}-1\right)^{d}<2^{d n}$. Let $v \in \mathbb{N}$ and $v \leq\left|\Pi_{n}\right|$. Consider

$$
\mathcal{S}(v, n):=\left\{Q \subset \Pi_{n}:|Q|=v\right\}
$$

Then it is easy to see that

$$
|\mathcal{S}(v, n)|=\binom{\left|\Pi_{n}\right|}{v}<2^{d n v}
$$

Universal discretization problem

We are interested in solving the following problem of universal discretization. For a given $\mathcal{S}(v, n)$ and $q \in[1, \infty)$ find a condition on m such that there exists a set $\xi=\left\{\xi^{\nu}\right\}_{\nu=1}^{m}$ with the property: for any $Q \in \mathcal{S}(v, n)$ and each $f \in \mathcal{T}(Q)$ we have

$$
C_{1}(q, d)\|f\|_{q}^{q} \leq \frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right|^{q} \leq C_{2}(q, d)\|f\|_{q}^{q}
$$

Universal discretization problem

We are interested in solving the following problem of universal discretization. For a given $\mathcal{S}(v, n)$ and $q \in[1, \infty)$ find a condition on m such that there exists a set $\xi=\left\{\xi^{\nu}\right\}_{\nu=1}^{m}$ with the property: for any $Q \in \mathcal{S}(v, n)$ and each $f \in \mathcal{T}(Q)$ we have

$$
C_{1}(q, d)\|f\|_{q}^{q} \leq \frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right|^{q} \leq C_{2}(q, d)\|f\|_{q}^{q}
$$

We present results for $q=2$ and $q=1$.

We begin with a general construction. Let $X_{N}=\operatorname{span}\left(u_{1}, \ldots, u_{N}\right)$, where $\left\{u_{j}\right\}_{j=1}^{N}$ is a real orthonormal system on \mathbb{T}^{d}. With each $\mathbf{x} \in \mathbb{T}^{d}$ we associate the matrix $G(\mathbf{x}):=\left[u_{i}(\mathbf{x}) u_{j}(\mathbf{x})\right]_{i, j=1}^{N}$. Clearly, $G(\mathbf{x})$ is a symmetric matrix. For a set of points $\xi^{k} \in \mathbb{T}^{d}$, $k=1, \ldots, m$, and $f=\sum_{i=1}^{N} b_{i} u_{i}$ we have

$$
\frac{1}{m} \sum_{k=1}^{m} f\left(\xi^{k}\right)^{2}-\int_{\mathbb{T}^{d}} f(x)^{2} d \mu=\mathbf{b}^{T}\left(\frac{1}{m} \sum_{k=1}^{m} G\left(\xi^{k}\right)-l\right) \mathbf{b}
$$

where $\mathbf{b}=\left(b_{1}, \ldots, b_{N}\right)^{T}$ is the column vector. Therefore,

$$
\left|\frac{1}{m} \sum_{k=1}^{m} f\left(\xi^{k}\right)^{2}-\int_{\mathbb{T}^{d}} f(x)^{2} d \mu\right| \leq\left\|\frac{1}{m} \sum_{k=1}^{m} G\left(\xi^{k}\right)-l\right\|\|\mathbf{b}\|_{2}^{2}
$$

Probability bound

We recall that the system $\left\{u_{j}\right\}_{j=1}^{N}$ satisfies Condition \mathbf{E} if there exists a constant t such that

$$
w(x):=\sum_{i=1}^{N} u_{i}(x)^{2} \leq N t^{2}
$$

Probability bound

We recall that the system $\left\{u_{j}\right\}_{j=1}^{N}$ satisfies Condition \mathbf{E} if there exists a constant t such that

$$
w(x):=\sum_{i=1}^{N} u_{i}(x)^{2} \leq N t^{2}
$$

Let points $\mathbf{x}^{k}, k=1, \ldots, m$, be independent uniformly distributed on \mathbb{T}^{d} random variables. Then with a help of deep results on random matrices it was proved that

$$
\mathbb{P}\left\{\left\|\sum_{k=1}^{m}\left(G\left(\mathbf{x}^{k}\right)-I\right)\right\| \geq m \eta\right\} \leq N \exp \left(-\frac{m \eta^{2}}{c t^{2} N}\right)
$$

with an absolute constant c.

Consider real trigonometric polynomials from the collection $\mathcal{S}(v, n)$. Using the union bound for the probability we get that the probability of the event

$$
\left\|\sum_{k=1}^{m}\left(G_{Q}\left(\mathbf{x}^{k}\right)-l\right)\right\| \leq m \eta \quad \text { for all } \quad Q \in \mathcal{S}(v, n)
$$

is bounded from below by

$$
1-|\mathcal{S}(v, n)| v \exp \left(-\frac{m \eta^{2}}{c v}\right)
$$

For any fixed $\eta \in(0,1 / 2]$ the above number is positive provided $m \geq C(d) \eta^{-2} v^{2} n$ with large enough $C(d)$. The above argument proves the following result.

Main result for $q=2$

Theorem (Dai, Prymak, VT, Tikhonov, 2018.)

There exist three positive constants $C_{i}(d), i=1,2,3$, such that for any $n, v \in \mathbb{N}$ and $v \leq\left|\Pi_{n}\right|$ there is a set $\xi=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$, with $m \leq C_{1}(d) v^{2} n$, which provides universal discretization in L_{2} for the collection $\mathcal{S}(v, n)$: for any $f \in \cup_{Q \in \mathcal{S}(v, n)} \mathcal{T}(Q)$

$$
C_{2}(d)\|f\|_{2}^{2} \leq \frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right|^{2} \leq C_{3}(d)\|f\|_{2}^{2}
$$

Case $q=1$

Similar to the case $q=2$ a result on the universal discretization for the collection $\mathcal{S}(v, n)$ will be derived from the probabilistic result on the Marcinkiewicz-type theorem for $\mathcal{T}(Q), Q \subset \Pi_{n}$. However, the probabilistic technique used in the case of $q=1$ is different from the probabilistic technique used in the case $q=2$. The proof from VT, 2017, gives the following result.

Probability bound

Theorem (VT, 2017)

Let points $\boldsymbol{x}^{j} \in \mathbb{T}^{d}, j=1, \ldots, m$, be independently and uniformly distributed on \mathbb{T}^{d}. There exist positive constants $C_{1}(d), C_{2}, C_{3}$, and $\kappa \in(0,1)$ such that for any $Q \subset \Pi_{n}$ and $m \geq y C_{1}(d)|Q| n^{7 / 2}$, $y \geq 1$,

$$
\mathbb{P}\left\{\forall f \in \mathcal{T}(Q), \quad C_{2}\|f\|_{1} \leq \frac{1}{m} \sum_{j=1}^{m}\left|f\left(\mathbf{x}^{j}\right)\right| \leq C_{3}\|f\|_{1}\right\} \geq 1-\kappa^{y}
$$

Therefore, using the union bound for probability we obtain the Marcinkiewicz-type inequalities for all $Q \in \mathcal{S}(v, n)$ with probability at least $1-|\mathcal{S}(v, n)| \kappa^{y}$. Choosing $y=y(v, n):=C(d) v n$ with large enough $C(d)$ we get

$$
1-|\mathcal{S}(v, n)| \kappa^{y(v, n)}>0
$$

This argument implies the following result on universality in L_{1}.

Main result for $q=1$

Theorem (Dai, Prymak, VT, Tikhonov, 2018.)

There exist three positive constants $C_{1}(d), C_{2}, C_{3}$, such that for any $n, v \in \mathbb{N}$ and $v \leq\left|\Pi_{n}\right|$ there is a set $\xi=\left\{\xi^{\nu}\right\}_{\nu=1}^{m} \subset \mathbb{T}^{d}$, with $m \leq C_{1}(d) v^{2} n^{9 / 2}$, which provides universal discretization in L_{1} for the collection $\mathcal{S}(v, n)$: for any $f \in \cup_{Q \in \mathcal{S}(v, n)} \mathcal{T}(Q)$

$$
C_{2}\|f\|_{1} \leq \frac{1}{m} \sum_{\nu=1}^{m}\left|f\left(\xi^{\nu}\right)\right| \leq C_{3}\|f\|_{1} .
$$

Vladimir Temlyakov
 Sampling discretization of integral norms. Lecture 2

Vladimir Temlyakov
 Sampling discretization of integral norms. Lecture 2

