Sampling discretization of integral norms. Lecture 2

Vladimir Temlyakov

Chemnitz, September, 2019

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 2

Let $\mathcal{X}_N := \{X_N^j\}_{j=1}^k$ be a collection of linear subspaces X_N^j of the $L_q(\Omega), 1 \le q \le \infty$. We say that a set $\{\xi^{\nu} \in \Omega, \nu = 1, \dots, m\}$ provides universal discretization for the collection \mathcal{X}_N if,

Let $\mathcal{X}_N := \{X_N^j\}_{j=1}^k$ be a collection of linear subspaces X_N^j of the $L_q(\Omega), 1 \le q \le \infty$. We say that a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ provides universal discretization for the collection \mathcal{X}_N if, in the case $1 \le q < \infty$, there are two positive constants $C_i(d, q), i = 1, 2$, such that for each $j \in [1, k]$ and any $f \in X_N^j$ we have

$$C_1(d,q)\|f\|_q^q \leq \frac{1}{m} \sum_{\nu=1}^m |f(\xi^{\nu})|^q \leq C_2(d,q)\|f\|_q^q.$$
(1)

Let $\mathcal{X}_N := \{X_N^j\}_{j=1}^k$ be a collection of linear subspaces X_N^j of the $L_q(\Omega)$, $1 \le q \le \infty$. We say that a set $\{\xi^{\nu} \in \Omega, \nu = 1, ..., m\}$ provides universal discretization for the collection \mathcal{X}_N if, in the case $1 \le q < \infty$, there are two positive constants $C_i(d, q)$, i = 1, 2, such that for each $j \in [1, k]$ and any $f \in X_N^j$ we have

$$C_1(d,q) \|f\|_q^q \leq \frac{1}{m} \sum_{\nu=1}^m |f(\xi^{\nu})|^q \leq C_2(d,q) \|f\|_q^q.$$
(1)

In the case $q = \infty$ for each $j \in [1, k]$ and any $f \in X_N^j$ we have

$$C_1(d) \|f\|_{\infty} \le \max_{1 \le \nu \le m} |f(\xi^{\nu})| \le \|f\|_{\infty}.$$
 (2)

Main new result

We are primarily interested in the Universal discretization for the collection of subspaces of trigonometric polynomials with frequencies from parallelepipeds (rectangles). For $\mathbf{s} \in \mathbb{Z}_{+}^{d}$ define

$$R(\mathbf{s}) := \{\mathbf{k} \in \mathbb{Z}^d : |k_j| < 2^{s_j}, \quad j = 1, \ldots, d\}.$$

Clearly, $R(\mathbf{s}) = \Pi(\mathbf{N})$ with $N_j = 2^{s_j} - 1$. Consider the collection $C(n, d) := \{T(R(\mathbf{s})), \|\mathbf{s}\|_1 = n\}.$

Main new result

We are primarily interested in the Universal discretization for the collection of subspaces of trigonometric polynomials with frequencies from parallelepipeds (rectangles). For $\mathbf{s} \in \mathbb{Z}_+^d$ define

 $R(\mathbf{s}) := \{ \mathbf{k} \in \mathbb{Z}^d : |k_j| < 2^{s_j}, \quad j = 1, \ldots, d \}.$

Clearly, $R(\mathbf{s}) = \Pi(\mathbf{N})$ with $N_j = 2^{s_j} - 1$. Consider the collection $C(n, d) := \{T(R(\mathbf{s})), \|\mathbf{s}\|_1 = n\}$. The following result is obtained by VT, 2017.

Theorem (1; VT, 2017)

For every $1 \le q \le \infty$ there exists a large enough constant C(d,q), which depends only on d and q, such that for any $n \in \mathbb{N}$ there is a set $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$, with $m \le C(d,q)2^n$ that provides universal discretization in L_q for the collection C(n, d).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dispersion

Let $d \ge 2$ and $[0,1)^d$ be the *d*-dimensional unit cube. For $\mathbf{x}, \mathbf{y} \in [0,1)^d$ with $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$ we write $\mathbf{x} < \mathbf{y}$ if this inequality holds coordinate-wise.

E > < E >

Dispersion

Let $d \ge 2$ and $[0,1)^d$ be the *d*-dimensional unit cube. For $\mathbf{x}, \mathbf{y} \in [0,1)^d$ with $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$ we write $\mathbf{x} < \mathbf{y}$ if this inequality holds coordinate-wise. For $\mathbf{x} < \mathbf{y}$ we write $[\mathbf{x}, \mathbf{y})$ for the axis-parallel box $[x_1, y_1) \times \cdots \times [x_d, y_d)$ and define

 $\mathcal{B} := \{ [\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in [0, 1)^d, \mathbf{x} < \mathbf{y} \}.$

Dispersion

Let $d \ge 2$ and $[0,1)^d$ be the *d*-dimensional unit cube. For $\mathbf{x}, \mathbf{y} \in [0,1)^d$ with $\mathbf{x} = (x_1, \dots, x_d)$ and $\mathbf{y} = (y_1, \dots, y_d)$ we write $\mathbf{x} < \mathbf{y}$ if this inequality holds coordinate-wise. For $\mathbf{x} < \mathbf{y}$ we write $[\mathbf{x}, \mathbf{y})$ for the axis-parallel box $[x_1, y_1) \times \cdots \times [x_d, y_d)$ and define

$$\mathcal{B} := \{ [\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in [0, 1)^d, \mathbf{x} < \mathbf{y} \}.$$

For $n \ge 1$ let T be a set of points in $[0,1)^d$ of cardinality |T| = n. The volume of the largest empty (from points of T) axis-parallel box, which can be inscribed in $[0,1)^d$, is called the dispersion of T:

$$\operatorname{disp}(T) := \sup_{B \in \mathcal{B}: B \cap T = \emptyset} \operatorname{vol}(B).$$

$$\operatorname{disp}^*(n,d) := \inf_{T \subset [0,1)^d, |T|=n} \operatorname{disp}(T).$$

$$\operatorname{disp}^*(n,d) := \inf_{T \subset [0,1)^d, |T|=n} \operatorname{disp}(T).$$

It is known that

$$disp^*(n,d) \le C^*(d)/n.$$
(6)

$$\operatorname{disp}^*(n,d) := \inf_{T \subset [0,1)^d, |T|=n} \operatorname{disp}(T).$$

It is known that

$$\operatorname{disp}^*(n,d) \leq C^*(d)/n. \tag{6}$$

Inequality (6) with $C^*(d) = 2^{d-1} \prod_{i=1}^{d-1} p_i$, where p_i denotes the *i*th prime number, was proved by A. Dumitrescu and M. Jiang, 2013 (see also G. Rote and F. Tichy, 1996).

$$\operatorname{disp}^*(n,d) := \inf_{T \subset [0,1)^d, |T|=n} \operatorname{disp}(T).$$

It is known that

$$\operatorname{disp}^*(n,d) \leq C^*(d)/n. \tag{6}$$

Inequality (6) with $C^*(d) = 2^{d-1} \prod_{i=1}^{d-1} p_i$, where p_i denotes the *i*th prime number, was proved by A. Dumitrescu and M. Jiang, 2013 (see also G. Rote and F. Tichy, 1996). A. Dumitrescu and M. Jiang used the Halton-Hammersly set of *n* points.

$$\operatorname{disp}^*(n,d) := \inf_{T \subset [0,1)^d, |T|=n} \operatorname{disp}(T).$$

It is known that

$$\operatorname{disp}^*(n,d) \le C^*(d)/n. \tag{6}$$

Inequality (6) with $C^*(d) = 2^{d-1} \prod_{i=1}^{d-1} p_i$, where p_i denotes the *i*th prime number, was proved by A. Dumitrescu and M. Jiang, 2013 (see also G. Rote and F. Tichy, 1996). A. Dumitrescu and M. Jiang used the Halton-Hammersly set of *n* points. Inequality (6) with $C^*(d) = 2^{7d+1}$ was proved by C. Aistleitner, A. Hinrichs, and D. Rudolf, 2017.

C. Aistleitner, A. Hinrichs, and D. Rudolf, following G. Larcher, used the (t, r, d)-nets.

Definition

A (t, r, d)-net (in base 2) is a set T of 2^r points in $[0, 1)^d$ such that each dyadic box $[(a_1 - 1)2^{-s_1}, a_12^{-s_1}) \times \cdots \times [(a_d - 1)2^{-s_d}, a_d2^{-s_d}), 1 \le a_j \le 2^{s_j}, j = 1, \ldots, d$, of volume 2^{t-r} contains exactly 2^t points of T.

Theorem (2; VT, 2017)

Let a set T with cardinality $|T| = 2^r =: m$ have dispersion satisfying the bound $disp(T) < C(d)2^{-r}$ with some constant C(d). Then there exists a constant $c(d) \in \mathbb{N}$ such that the set $2\pi T := \{2\pi \mathbf{x} : \mathbf{x} \in T\}$ provides the universal discretization in L_{∞} for the collection C(n, d) with n = r - c(d).

Theorem (2; VT, 2017)

Let a set T with cardinality $|T| = 2^r =: m$ have dispersion satisfying the bound $disp(T) < C(d)2^{-r}$ with some constant C(d). Then there exists a constant $c(d) \in \mathbb{N}$ such that the set $2\pi T := \{2\pi \mathbf{x} : \mathbf{x} \in T\}$ provides the universal discretization in L_{∞} for the collection C(n, d) with n = r - c(d).

Theorem (3; VT, 2017)

Assume that $T \subset [0,1)^d$ is such that the set $2\pi T$ provides universal discretization in L_{∞} for the collection C(n,d). Then there exists a positive constant C(d) with the following property $disp(T) \leq C(d)2^{-n}$.

通 とう ヨン・ うまと

We need some classical trigonometric polynomials. We begin with the univariate case. The Dirichlet kernel of order n:

$$\mathcal{D}_n(x) := \sum_{|k| \le n} e^{ikx} = e^{-inx} (e^{i(2n+1)x} - 1)(e^{ix} - 1)^{-1}$$
$$= \left(\sin(n+1/2)x \right) / \sin(x/2)$$

is an even trigonometric polynomial.

The de la Vallée Poussin kernel:

$$\mathcal{V}_n(x) := n^{-1} \sum_{l=n}^{2n-1} \mathcal{D}_l(x),$$

is an even trigonometric polynomial of order 2n - 1 with the majorant

 $\left|\mathcal{V}_n(x)\right| \le C \min\left(n, \ (nx^2)^{-1}\right), \quad |x| \le \pi.$ (7)

医下口 医下

The above relation (7) easily implies the following lemma.

Lemma (1; VT, 2017)

For a set $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}$ satisfying the condition $|\Xi_m \cap [x(l-1), x(l))| \leq b, x(l) := \pi l/2n, l = 1, \dots, 4n,$ we have $\sum_{\nu=1}^m |\mathcal{V}_n(x - \xi^{\nu})| \leq Cbn.$

We use the above Lemma (1) to prove a one-sided inequality.

 $\nu = 1$

b) 不算下 不算下

Lemma (2; VT, 2017)

For a set $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}$ satisfying the condition $|\Xi_m \cap [x(l-1), x(l))| \leq b, x(l) := \pi l/2n, l = 1, ..., 4n$, we have for $1 \leq q \leq \infty$

$$\left\| m^{-1} \sum_{\nu=1}^{m} a_{\nu} \mathcal{V}_n(x-\xi^{\nu}) \right\|_q \leq C (bn/m)^{1-1/q} \left(\frac{1}{m} \sum_{\nu=1}^{m} |a_{\nu}|^q \right)^{1/q}.$$

- 4 国际 - 4 国际

We now proceed to the multivariate case. Denote the multivariate de la Vallée Poussin kernels:

$$\mathcal{V}_{\mathbf{N}}(\mathbf{x}) := \prod_{j=1}^{d} \mathcal{V}_{N_j}(x_j), \qquad \mathbf{N} = (N_1, \dots, N_d).$$

In the same way as above in the univariate case one can establish the following multivariate analog of Lemma (2).

Lemma (3; VT, 2017)

For a set $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$ satisfying the condition $|\Xi_m \cap [\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n}+1))| \leq b, \mathbf{n} \in P'(\mathbf{N}), \mathbf{1}$ is a vector with coordinates 1 for all j, we have for $1 \leq q \leq \infty$

$$\left\|\frac{1}{m}\sum_{\nu=1}^m a_\nu \mathcal{V}_{\mathsf{N}}(\mathsf{x}-\xi^\nu)\right\|_q \leq C(d)(bv(\mathsf{N})/m)^{1-1/q} \left(\frac{1}{m}\sum_{\nu=1}^m |a_\nu|^q\right)^{1/q}$$

Theorem (4; VT, 2017)

Let a set $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$ satisfy the condition $|\Xi_m \cap [\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n}+1))| \leq b(d), \mathbf{n} \in P'(\mathbf{N}), 1$ is a vector with coordinates 1 for all j. Then for $m \geq v(\mathbf{N})$ we have for each $f \in \mathcal{T}(\mathbf{N})$ and $1 \leq q \leq \infty$

$$\left(rac{1}{m}\sum_{
u=1}^m |f(\xi^
u)|^q
ight)^{1/q} \leq C(d)\|f\|_q.$$

We now proceed to the inverse bounds for the discrete norm. Denote

$$\Delta(\mathbf{n}) := [\mathbf{x}(\mathbf{n}), \mathbf{x}(\mathbf{n}+\mathbf{1})), \quad \mathbf{n} \in P'(\mathbf{N}).$$

Suppose that a sequence $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$ has the following property. **Property** E(*b*). There is a number $b \in \mathbb{N}$ such that for any

 $\mathbf{n} \in P'(\mathbf{N})$ we have

 $|\Delta(\mathbf{n})\cap \Xi_m|=b.$

Clearly, in this case $m = v(\mathbf{N})b$, where $v(\mathbf{N}) = |P'(\mathbf{N})|$.

Lemma (4; VT, 2017)

Suppose that two sequences $\Xi_m := \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$ and $\Gamma_m := \{\gamma^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$ satisfy the following condition. For a given $j \in \{1, \ldots, d\}, \gamma^{\nu}$ may only differ from ξ^{ν} in the jth coordinate. Moreover, assume that if $\xi^{\nu} \in \Delta(\mathbf{n})$ then also $\gamma^{\nu} \in \Delta(\mathbf{n})$. Finally, assume that Ξ_m has property E(b) with $b \leq C'(d)$. Then for $f \in \mathcal{T}(\mathbf{K})$ with $\mathbf{K} \leq \mathbf{N}$ we have

 $\frac{1}{m}\sum_{\nu=1}^{m} ||f(\xi^{\nu})|^{q} - |f(\gamma^{\nu})|^{q}| \leq C(d,q)(K_{j}/N_{j})||f||_{q}^{q}.$

• • = • • = •

Arbitrary trigonometric polynomials

For $n \in \mathbb{N}$ denote $\Pi_n := \Pi(\mathbf{N}) \cap \mathbb{Z}^d$ with $\mathbf{N} = (2^{n-1} - 1, \dots, 2^{n-1} - 1)$, where, as above, $\Pi(\mathbf{N}) := [-N_1, N_1] \times \dots \times [-N_d, N_d]$. Then $|\Pi_n| = (2^n - 1)^d < 2^{dn}$. Let $v \in \mathbb{N}$ and $v \leq |\Pi_n|$. Consider

 $\mathcal{S}(v,n):=\{Q\subset \Pi_n: |Q|=v\}.$

Arbitrary trigonometric polynomials

For $n \in \mathbb{N}$ denote $\Pi_n := \Pi(\mathbf{N}) \cap \mathbb{Z}^d$ with $\mathbf{N} = (2^{n-1} - 1, \dots, 2^{n-1} - 1)$, where, as above, $\Pi(\mathbf{N}) := [-N_1, N_1] \times \dots \times [-N_d, N_d]$. Then $|\Pi_n| = (2^n - 1)^d < 2^{dn}$. Let $v \in \mathbb{N}$ and $v \leq |\Pi_n|$. Consider

$$\mathcal{S}(v,n):=\{Q\subset \Pi_n: |Q|=v\}.$$

Then it is easy to see that

$$|\mathcal{S}(v,n)| = \binom{|\Pi_n|}{v} < 2^{dnv}$$

We are interested in solving the following problem of universal discretization. For a given S(v, n) and $q \in [1, \infty)$ find a condition on *m* such that there exists a set $\xi = \{\xi^{\nu}\}_{\nu=1}^{m}$ with the property: for any $Q \in S(v, n)$ and each $f \in \mathcal{T}(Q)$ we have

$$C_1(q,d)\|f\|_q^q \leq rac{1}{m}\sum_{
u=1}^m |f(\xi^{
u})|^q \leq C_2(q,d)\|f\|_q^q.$$

We are interested in solving the following problem of universal discretization. For a given S(v, n) and $q \in [1, \infty)$ find a condition on *m* such that there exists a set $\xi = \{\xi^{\nu}\}_{\nu=1}^{m}$ with the property: for any $Q \in S(v, n)$ and each $f \in \mathcal{T}(Q)$ we have

$$C_1(q,d) \|f\|_q^q \leq rac{1}{m} \sum_{
u=1}^m |f(\xi^{
u})|^q \leq C_2(q,d) \|f\|_q^q.$$

We present results for q = 2 and q = 1.

The case q = 2

We begin with a general construction. Let $X_N = \operatorname{span}(u_1, \ldots, u_N)$, where $\{u_j\}_{j=1}^N$ is a real orthonormal system on \mathbb{T}^d . With each $\mathbf{x} \in \mathbb{T}^d$ we associate the matrix $G(\mathbf{x}) := [u_i(\mathbf{x})u_j(\mathbf{x})]_{i,j=1}^N$. Clearly, $G(\mathbf{x})$ is a symmetric matrix. For a set of points $\xi^k \in \mathbb{T}^d$, $k = 1, \ldots, m$, and $f = \sum_{i=1}^N b_i u_i$ we have

$$\frac{1}{m}\sum_{k=1}^m f(\xi^k)^2 - \int_{\mathbb{T}^d} f(x)^2 d\mu = \mathbf{b}^T \left(\frac{1}{m}\sum_{k=1}^m G(\xi^k) - I\right) \mathbf{b},$$

where $\mathbf{b} = (b_1, \dots, b_N)^T$ is the column vector. Therefore,

$$\left|\frac{1}{m}\sum_{k=1}^{m}f(\xi^{k})^{2}-\int_{\mathbb{T}^{d}}f(x)^{2}d\mu\right|\leq\left\|\frac{1}{m}\sum_{k=1}^{m}G(\xi^{k})-I\right\|\|\mathbf{b}\|_{2}^{2}.$$

Probability bound

We recall that the system $\{u_j\}_{j=1}^N$ satisfies Condition **E** if there exists a constant t such that

$$w(x):=\sum_{i=1}^N u_i(x)^2 \leq Nt^2.$$

• • = • • = •

We recall that the system $\{u_j\}_{j=1}^N$ satisfies Condition **E** if there exists a constant t such that

$$w(x):=\sum_{i=1}^N u_i(x)^2 \leq Nt^2.$$

Let points \mathbf{x}^k , k = 1, ..., m, be independent uniformly distributed on \mathbb{T}^d random variables. Then with a help of deep results on random matrices it was proved that

$$\mathbb{P}\left\{\left\|\sum_{k=1}^{m} (G(\mathbf{x}^{k}) - I)\right\| \ge m\eta\right\} \le N \exp\left(-\frac{m\eta^{2}}{ct^{2}N}\right)$$

with an absolute constant c.

Consider real trigonometric polynomials from the collection S(v, n). Using the union bound for the probability we get that the probability of the event

$$\left\|\sum_{k=1}^m (\mathcal{G}_Q(\mathbf{x}^k) - I)
ight\| \le m\eta \quad ext{for all} \quad Q\in \mathcal{S}(v,n)$$

is bounded from below by

$$1 - |\mathcal{S}(v, n)| v \exp\left(-\frac{m\eta^2}{cv}\right).$$

For any fixed $\eta \in (0, 1/2]$ the above number is positive provided $m \ge C(d)\eta^{-2}v^2n$ with large enough C(d). The above argument proves the following result.

Theorem (Dai, Prymak, VT, Tikhonov, 2018.)

There exist three positive constants $C_i(d)$, i = 1, 2, 3, such that for any $n, v \in \mathbb{N}$ and $v \leq |\Pi_n|$ there is a set $\xi = \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$, with $m \leq C_1(d)v^2n$, which provides universal discretization in L_2 for the collection S(v, n): for any $f \in \bigcup_{Q \in S(v, n)} \mathcal{T}(Q)$

$$C_2(d) \|f\|_2^2 \leq rac{1}{m} \sum_{
u=1}^m |f(\xi^{
u})|^2 \leq C_3(d) \|f\|_2^2.$$

Similar to the case q = 2 a result on the universal discretization for the collection S(v, n) will be derived from the probabilistic result on the Marcinkiewicz-type theorem for $\mathcal{T}(Q)$, $Q \subset \prod_n$. However, the probabilistic technique used in the case of q = 1 is different from the probabilistic technique used in the case q = 2. The proof from VT, 2017, gives the following result.

Theorem (VT, 2017)

Let points $\mathbf{x}^{j} \in \mathbb{T}^{d}$, j = 1, ..., m, be independently and uniformly distributed on \mathbb{T}^{d} . There exist positive constants $C_{1}(d)$, C_{2} , C_{3} , and $\kappa \in (0, 1)$ such that for any $Q \subset \prod_{n}$ and $m \geq yC_{1}(d)|Q|n^{7/2}$, $y \geq 1$,

$$\mathbb{P}\left\{ orall f \in \mathcal{T}(\mathcal{Q}), \quad C_2 \|f\|_1 \leq rac{1}{m} \sum_{j=1}^m |f(\mathbf{x}^j)| \leq C_3 \|f\|_1
ight\} \geq 1-\kappa^{arphi}.$$

Therefore, using the union bound for probability we obtain the Marcinkiewicz-type inequalities for all $Q \in S(v, n)$ with probability at least $1 - |S(v, n)| \kappa^{y}$. Choosing y = y(v, n) := C(d)vn with large enough C(d) we get

 $1-|\mathcal{S}(v,n)|\kappa^{y(v,n)}>0.$

This argument implies the following result on universality in L_1 .

• • = • • = •

Theorem (Dai, Prymak, VT, Tikhonov, 2018.)

There exist three positive constants $C_1(d)$, C_2 , C_3 , such that for any $n, v \in \mathbb{N}$ and $v \leq |\Pi_n|$ there is a set $\xi = \{\xi^{\nu}\}_{\nu=1}^m \subset \mathbb{T}^d$, with $m \leq C_1(d)v^2n^{9/2}$, which provides universal discretization in L_1 for the collection S(v, n): for any $f \in \bigcup_{Q \in S(v, n)} \mathcal{T}(Q)$

$$C_2 \|f\|_1 \leq rac{1}{m} \sum_{
u=1}^m |f(\xi^
u)| \leq C_3 \|f\|_1.$$

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 2

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三</p>

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 2

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三</p>