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Sampling discretization with absolute error

Let W ⊂ Lq(Ω, µ), 1 ≤ q <∞, be a class of continuous on Ω
functions. We are interested in estimating the following optimal
errors of discretization of the Lq norm of functions from W

erm(W , Lq) := inf
ξ1,...,ξm

sup
f ∈W

∣∣∣∣∣∣‖f ‖qq − 1

m

m∑
j=1

|f (ξj)|q
∣∣∣∣∣∣,

erom(W , Lq) := inf
ξ1,...,ξm;λ1,...,λm

sup
f ∈W

∣∣∣∣∣∣‖f ‖qq −
m∑
j=1

λj |f (ξj)|q
∣∣∣∣∣∣.
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General theorem

Theorem (T1; VT, 2018)

Assume that a class of real functions W is such that for all f ∈W
we have ‖f ‖∞ ≤ M with some constant M. Also assume that the
entropy numbers of W in the uniform norm L∞ satisfy the
condition

εn(W , L∞) ≤ Cn−r , r ∈ (0, 1/2).

Then
erm(W ) := erm(W , L2) ≤ Km−r .
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Comments

Theorem T1 is a rather general theorem, which connects the
behavior of absolute errors of discretization with the rate of decay
of the entropy numbers. This theorem is derived from known
results in supervised learning theory. It is well understood in
learning theory that the entropy numbers of the class of priors
(regression functions) is the right characteristic in studying the
regression problem.

We impose a restriction r < 1/2 in Theorem T1 because the
probabilistic technique from the supervised learning theory has
a natural limitation to r ≤ 1/2.

It would be interesting to understand if Theorem T1 holds for
r ≥ 1/2.

Also, it would be interesting to obtain an analog of Theorem
T1 for discretization in the Lq, 1 ≤ q <∞, norm.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Comments

Theorem T1 is a rather general theorem, which connects the
behavior of absolute errors of discretization with the rate of decay
of the entropy numbers. This theorem is derived from known
results in supervised learning theory. It is well understood in
learning theory that the entropy numbers of the class of priors
(regression functions) is the right characteristic in studying the
regression problem.

We impose a restriction r < 1/2 in Theorem T1 because the
probabilistic technique from the supervised learning theory has
a natural limitation to r ≤ 1/2.

It would be interesting to understand if Theorem T1 holds for
r ≥ 1/2.

Also, it would be interesting to obtain an analog of Theorem
T1 for discretization in the Lq, 1 ≤ q <∞, norm.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Comments

Theorem T1 is a rather general theorem, which connects the
behavior of absolute errors of discretization with the rate of decay
of the entropy numbers. This theorem is derived from known
results in supervised learning theory. It is well understood in
learning theory that the entropy numbers of the class of priors
(regression functions) is the right characteristic in studying the
regression problem.

We impose a restriction r < 1/2 in Theorem T1 because the
probabilistic technique from the supervised learning theory has
a natural limitation to r ≤ 1/2.

It would be interesting to understand if Theorem T1 holds for
r ≥ 1/2.

Also, it would be interesting to obtain an analog of Theorem
T1 for discretization in the Lq, 1 ≤ q <∞, norm.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Comments

Theorem T1 is a rather general theorem, which connects the
behavior of absolute errors of discretization with the rate of decay
of the entropy numbers. This theorem is derived from known
results in supervised learning theory. It is well understood in
learning theory that the entropy numbers of the class of priors
(regression functions) is the right characteristic in studying the
regression problem.

We impose a restriction r < 1/2 in Theorem T1 because the
probabilistic technique from the supervised learning theory has
a natural limitation to r ≤ 1/2.

It would be interesting to understand if Theorem T1 holds for
r ≥ 1/2.

Also, it would be interesting to obtain an analog of Theorem
T1 for discretization in the Lq, 1 ≤ q <∞, norm.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Smoothness classes

For classes of smooth functions we obtained error bounds, which
do not have a restriction on smoothness r . We proved the
following bounds for the class Wr

2 of functions on d variables with
bounded in L2 mixed derivative.

Theorem (T2; VT, 2018)

Let r > 1/2 and µ be the Lebesgue measure on [0, 2π]d . Then

erom(Wr
2, L2) � m−r (logm)(d−1)/2.
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Marcinkiewicz problem

Let Ω be a compact subset of Rd with the probability measure µ.
We say that a linear subspace XN of the Lq(Ω), 1 ≤ q <∞, admits
the Marcinkiewicz-type discretization theorem with parameters m
and q if there exist a set {ξν ∈ Ω, ν = 1, . . . ,m} and two positive
constants Cj(d , q), j = 1, 2, such that for any f ∈ XN we have

C1(d , q)‖f ‖qq ≤
1

m

m∑
ν=1

|f (ξν)|q ≤ C2(d , q)‖f ‖qq. (1)

In the case q =∞ we define L∞ as the space of continuous on Ω
functions and ask for

C1(d)‖f ‖∞ ≤ max
1≤ν≤m

|f (ξν)| ≤ ‖f ‖∞. (2)

We will also use a brief way to express the above property: the
M(m, q) theorem holds for a subspace XN or XN ∈M(m, q).
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Marcinkiewicz problem with weights

We say that a linear subspace XN of the Lq(Ω), 1 ≤ q <∞,
admits the weighted Marcinkiewicz-type discretization theorem
with parameters m and q if there exist a set of knots {ξν ∈ Ω}, a
set of weights {λν}, ν = 1, . . . ,m, and two positive constants
Cj(d , q), j = 1, 2, such that for any f ∈ XN we have

C1(d , q)‖f ‖qq ≤
m∑
ν=1

λν |f (ξν)|q ≤ C2(d , q)‖f ‖qq. (3)

Then we also say that the Mw (m, q) theorem holds for a subspace
XN or XN ∈Mw (m, q). Obviously, XN ∈M(m, q) implies that
XN ∈Mw (m, q).
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Marcinkiewicz problem with ε

We write XN ∈M(m, q, ε) if (1) holds with C1(d , q) = 1− ε and
C2(d , q) = 1 + ε. Respectively, we write XN ∈Mw (m, q, ε) if (3)
holds with C1(d , q) = 1− ε and C2(d , q) = 1 + ε.

We note that the most powerful results are for M(m, q, 0), when
the Lq norm of f ∈ XN is discretized exactly by the formula with
equal weights 1/m.
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More general setting

Sampling discretization is a natural way of estimating the quantity
of interest ‖f ‖qq. Certainly, one can ask a question of optimal
estimation of ‖f ‖qq using m function values or, even more general,
using m linear functionals. It is an interesting problem but we do
not address it in this talk. We only point out on a simple example
that we obtain very different results when we allow arbitrary linear
functionals to be used.
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Example

Consider the class Wr
2 of periodic functions with bounded in L2 the

r th mixed derivative. For N ∈ N define the hyperbolic cross

Γ(N) := {k = (k1, . . . , kd) ∈ Zd :
d∏

j=1

max(1, |kj |) ≤ N}

and for f ∈ L1

SN(f ) :=
∑

k∈Γ(N)

f̂ (k)e i(k,x), f̂ (k) := (2π)−d
∫

[0,2π]d
f (x)e−i(k,x)dx.
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Example continue

Then, it is well known and easy to prove that for any f ∈Wr
2 we

have
0 ≤ ‖f ‖2

2 − ‖SN(f )‖2
2 ≤ N−2r . (4)

With this algorithm we use m � N(logN)d−1 linear functionals
f̂ (k), k ∈ Γ(N). The bound (4) is very different from the
asymptotic behavior in Theorem T2.
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A remark on general inequalities

The sampling discretization errors erm(W , Lq) and erom(W , Lq)
are new asymptotic characteristics of a function class W .

It is natural to try to compare these characteristics with other
classical asymptotic characteristics.

Theorem T1 addresses this issue. It is known that the
sequence of entropy numbers is one of the smallest sequences
of asymptotic characteristics of a class. For instance, by Carl’s
inequality it is dominated, in a certain sense, by the sequence
of the Kolmogorov widths.
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A remark on general inequalities continue

Theorem T1 shows that the sequence {εn(W )} dominates, in
a certain sense, the sequence {erm(W )}.

Clearly, alike the Carl’s inequality, one tries to prove the
corresponding relations in as general situation as possible.

We derive Theorem T1 from known results in learning theory.
Our proof is a probabilistic one. The use of that kind of
technique results in the limitation r ∈ (0, 1/2) for the power
in the rate of decay of the entropy numbers. As we pointed
out above, we do not know if one can prove an analog of
Theorem T1 in the case r > 1/2.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



A remark on general inequalities continue

Theorem T1 shows that the sequence {εn(W )} dominates, in
a certain sense, the sequence {erm(W )}.
Clearly, alike the Carl’s inequality, one tries to prove the
corresponding relations in as general situation as possible.

We derive Theorem T1 from known results in learning theory.
Our proof is a probabilistic one. The use of that kind of
technique results in the limitation r ∈ (0, 1/2) for the power
in the rate of decay of the entropy numbers. As we pointed
out above, we do not know if one can prove an analog of
Theorem T1 in the case r > 1/2.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



A remark on general inequalities continue

Theorem T1 shows that the sequence {εn(W )} dominates, in
a certain sense, the sequence {erm(W )}.
Clearly, alike the Carl’s inequality, one tries to prove the
corresponding relations in as general situation as possible.

We derive Theorem T1 from known results in learning theory.
Our proof is a probabilistic one. The use of that kind of
technique results in the limitation r ∈ (0, 1/2) for the power
in the rate of decay of the entropy numbers. As we pointed
out above, we do not know if one can prove an analog of
Theorem T1 in the case r > 1/2.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



T1 is optimal. Upper bound

Known results on the asymptotic characteristics of the univariate
class Wr

p show that Theorem T1 cannot be improved. Namely, on
one hand it is known that

εn(Wr
p, L∞) � n−r , r > 1/p, 1 ≤ p ≤ ∞. (5)

For 2 < p <∞ and r ∈ (1/p, 1/2) relation (5) and Theorem T1
imply

erm(Wr
p) ≤ C (r , p)m−r .
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T1 is optimal. Lower bound

On the other hand, assume that a class of real functions
W ⊂ C(Ω) has the following extra property.
Property A. For any f ∈W we have f + := (f + 1)/2 ∈W and
f − := (f − 1)/2 ∈W .

In particular, this property is satisfied if W is a convex set
containing function 1.
For a function class W ⊂ C(Ω) consider the best error of numerical
integration by cubature formulas with m knots:

κm(W ) := inf
(ξ,Λ)

sup
f ∈W
|Iµ(f )− Λm(f , ξ)|,

Iµ(f ) :=

∫
Ω
fdµ, Λm(f , ξ) :=

m∑
j=1

λj f (ξj).
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Connection to numerical integration

Theorem (T3; VT, 2018)

Suppose W ⊂ C(Ω) has Property A. Then for any m ∈ N we have

erom(W , L2) ≥ 1

2
κm(W ).
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Lower bound

It is known that

κn(Wr
p) � n−r , r > 1/p, 1 ≤ p ≤ ∞. (6)

Theorem T3 and relation (6) imply

erm(Wr
p) ≥ C (r , p)m−r .
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Connection to learning theory

Let X ⊂ Rd , Y ⊂ R be Borel sets, ρ be a Borel probability
measure on a Borel set Z ⊂ X ×Y . For f : X → Y define the error

E(f ) :=

∫
Z

(f (x)− y)2dρ.

Let ρX be the marginal probability measure of ρ on X , i.e.,
ρX (S) = ρ(S × Y ) for Borel sets S ⊂ X . Define

fρ(x) := E(y |x)

to be a conditional expectation of y .
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Setting

The function fρ is known in statistics as the regression
function of ρ. In the sense of error E(·) the regression
function fρ is the best to describe the relation between inputs
x ∈ X and outputs y ∈ Y .

The goal is to find an estimator fz, on the base of given data
z := ((x1, y1), . . . , (xm, ym)) that approximates fρ well with
high probability.

We assume that (xi , yi ), i = 1, . . . ,m are independent and
distributed according to ρ.

We measure the error between fz and fρ in the L2(ρX ) norm.
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Entropy numbers

For a compact subset Θ of a Banach space B we define the
entropy numbers as follows

εn(Θ,B) := inf{ε : ∃f1, . . . , f2n ∈ Θ : Θ ⊂ ∪2n
j=1(fj + εU(B))}

where U(B) is the unit ball of a Banach space B.
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Empirical error

We define the empirical error of f as

Ez(f ) :=
1

m

m∑
i=1

(f (xi )− yi )
2.

Let f ∈ L2(ρX ). The defect function of f is

Lz(f ) := Lz,ρ(f ) := E(f )− Ez(f ); z = (z1, . . . , zm), zi = (xi , yi ).

We are interested in estimating Lz(f ) for functions f coming from
a given class W . We assume that ρ and W satisfy the following
condition: for all f ∈W and any (x, y) ∈ Z

|f (x)− y | ≤ M. (7)
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|f (x)− y | ≤ M. (7)
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Estimate for the defect function

Theorem (S. Konyagin and VT, 2004)

Assume ρ, W satisfy (7) and

εn(W , L∞) ≤ Dn−r , r ∈ (0, 1/2).

Then for m, η satisfying mη1/r ≥ C1(M,D, r) we have

ρm{z : sup
f ∈W
|Lz(f )| ≥ η} ≤ C (M,D, r) exp(−c(M,D, r)mη1/r ).
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An interesting phenomenon

There are results (see G.W. Wasilkowski, 1984) on optimal
estimation of the ‖f ‖ under assumption that f ∈W .

At a first glance the problems of estimation of ‖f ‖ and, say,
estimation of ‖f ‖2, like in our case, are very close.

A simple inequality |a2 − b2| ≤ 2M|a− b| for numbers
satisfying |a| ≤ M and |b| ≤ M shows that normally we can
get an upper bound for estimation of ‖f ‖2 in terms of the
error of estimation of ‖f ‖.

However, it turns out that the above two problems are different.
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An interesting phenomenon continue

It is proved in G.W. Wasilkowski, 1984 that the error of
optimal estimation of the ‖ · ‖ is of the same order as the
optimal error of approximation. For instance, in case of the
class Wr

2 this error is of the order m−r (logm)r(d−1), which is
larger than the corresponding error erom(Wr

2, L2) in Theorem
T2.

The above Example shows that the optimal error for
estimation of the ‖f ‖ may be different from the optimal error
of estimation of the ‖f ‖2.

Detailed comparison of my paper with G.W. Wasilkowski,
1984 shows that the problems of optimal errors in estimation
of ‖f ‖ and ‖f ‖2 are different.
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Quasi-algebra property.

We begin with a very simple general observation on a connection
between norm discretization and numerical integration.
Quasi-algebra property. We say that a function class W has the
quasi-algebra property if there exists a constant a such that for any
f , g ∈W we have fg/a ∈W .

The above property was introduced and studied in detail by H.
Triebel. He introduced this property under the name multiplication
algebra. Normally, the term algebra refers to the corresponding
property with parameter a = 1. To avoid any possible confusions
we call it quasi-algebra. We refer the reader to the very resent
book of Triebel, 2018, which contains results on the multiplication
algebra (quasi-algebra) property for a broad range of function
spaces.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Quasi-algebra property.

We begin with a very simple general observation on a connection
between norm discretization and numerical integration.
Quasi-algebra property. We say that a function class W has the
quasi-algebra property if there exists a constant a such that for any
f , g ∈W we have fg/a ∈W .
The above property was introduced and studied in detail by H.
Triebel. He introduced this property under the name multiplication
algebra. Normally, the term algebra refers to the corresponding
property with parameter a = 1. To avoid any possible confusions
we call it quasi-algebra. We refer the reader to the very resent
book of Triebel, 2018, which contains results on the multiplication
algebra (quasi-algebra) property for a broad range of function
spaces.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Upper bound

Proposition (P1; VT, 2018)

Suppose that a function class W has the quasi-algebra property
and for any f ∈W we have for the complex conjugate function
f̄ ∈W . Then for a cubature formula Λm(·, ξ) we have: for any
f ∈W

|‖f ‖2
2 − Λm(|f |2, ξ)| ≤ a sup

g∈W

∣∣∣∣∫
Ω
gdµ− Λm(g , ξ)

∣∣∣∣.
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Function classes

We discuss some classical classes of smooth periodic functions. We
begin with a general scheme and then give a concrete example.
Let F ∈ L1(Td) be such that F̂ (k) 6= 0 for all k ∈ Zd , where

F̂ (k) := F(F , k) := (2π)−d
∫
Td

F (x)e−i(k,x)dx.

Consider the space

W F
2 := {f : f (x) = JF (ϕ)(x) := (2π)−d

∫
Td

F (x− y)ϕ(y)dy,

‖ϕ‖2 <∞}.
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Quasi-algebra property for function classes

For f ∈W F
2 we have f̂ (k) = F̂ (k)ϕ̂(k) and, therefore, our

assumption F̂ (k) 6= 0 for all k ∈ Zd implies that function ϕ is
uniquely defined by f . Introduce a norm on W F

2 by

‖f ‖W F
2

:= ‖ϕ‖2, f = JF (ϕ).

For convenience, with a little abuse of notation we use notation
W F

2 for the unit ball of the space W F
2 . We are interested in the

following question. Under what conditions on F the fact that
f , g ∈W F

2 implies that fg ∈W F
2 and

‖fg‖W F
2
≤ C0‖f ‖W F

2
‖g‖W F

2
?

In other words: Which properties of F guarantee that the class
W F

2 has the quasi-algebra property? We give a simple sufficient
condition.
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Sufficient condition for quasi-algebra prperty

Proposition (P2; VT, 2018)

Suppose that for each n ∈ Zd we have∑
k∈Zd

|F̂ (k)F̂ (n− k)|2 ≤ C 2
0 |F̂ (n)|2. (8)

Then, for any f , g ∈W F
2 we have fg ∈W F

2 and

‖fg‖W F
2
≤ C0‖f ‖W F

2
‖g‖W F

2
.
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Classes with mixed smoothness

As an example consider the class Wr
2 of functions with bounded

mixed derivative. By the definition Wr
2 := W Fr

2 with function Fr (x)
defined as follows. For a number k ∈ Z denote k∗ := max(|k|, 1).
Then for r > 0 we define Fr by its Fourier coefficients

F̂r (k) =
d∏

j=1

(k∗j )−r . (9)

Lemma (L1)

Function F = Fr with r > 1/2 satisfies condition (8) with
C0 = C (r , d).

Lemma L1 and Proposition P1 imply that the class Wr
2 has the

quasi-algebra property.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Classes with mixed smoothness

As an example consider the class Wr
2 of functions with bounded

mixed derivative. By the definition Wr
2 := W Fr

2 with function Fr (x)
defined as follows. For a number k ∈ Z denote k∗ := max(|k|, 1).
Then for r > 0 we define Fr by its Fourier coefficients

F̂r (k) =
d∏

j=1

(k∗j )−r . (9)

Lemma (L1)

Function F = Fr with r > 1/2 satisfies condition (8) with
C0 = C (r , d).

Lemma L1 and Proposition P1 imply that the class Wr
2 has the

quasi-algebra property.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Classes with mixed smoothness

As an example consider the class Wr
2 of functions with bounded

mixed derivative. By the definition Wr
2 := W Fr

2 with function Fr (x)
defined as follows. For a number k ∈ Z denote k∗ := max(|k|, 1).
Then for r > 0 we define Fr by its Fourier coefficients

F̂r (k) =
d∏

j=1

(k∗j )−r . (9)

Lemma (L1)

Function F = Fr with r > 1/2 satisfies condition (8) with
C0 = C (r , d).

Lemma L1 and Proposition P1 imply that the class Wr
2 has the

quasi-algebra property.

Vladimir Temlyakov Sampling discretization of integral norms. Lecture 3



Fibonacci cubature formulas

We now illustrate how a combination of Proposition P1 and known
results on numerical integration gives results on discretization. We
discuss classes of periodic functions of two variables. Let {bn}∞n=0,
b0 = b1 = 1, bn = bn−1 + bn−2, n ≥ 2, – be the Fibonacci
numbers.

For continuous functions of two variables, which are
2π-periodic in each variable, we define cubature formulas

Φn(f ) := b−1
n

bn∑
µ=1

f
(
2πµ/bn, 2π{µbn−1/bn}

)
,

which are called the Fibonacci cubature formulas. In this definition
{a} is the fractional part of the number a.
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Known result for numerical integration

For a function class W denote

Φn(W ) := sup
f ∈W
|Φn(f )− f̂ (0)|.

The following result is known

Φn(Wr
2) � b−rn (log bn)1/2, r > 1/2. (10)

Combining (10) with Proposition P1 we obtain the following
discretization result.
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Discretization result

Theorem (T4; VT, 2018)

Let d = 2, r > 1/2 and µ be the Lebesgue measure on [0, 2π]2.
Then

erm(Wr
2, L2) ≤ C (r)m−r (logm)1/2.
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The End

Thank you!
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