
1/77

Randomized Low-Rank Approximation
in Finite and Infinite Dimensions

Daniel Kressner

Institute of Mathematics
daniel.kressner@epfl.ch

http://anchp.epfl.ch

Workshop and Summer School on Applied Analysis 2023

http://anchp.epfl.ch

2/77

Randomization in Numerical Linear Algebra...
... leads to new and cheap algorithms
... turns “statements that hold generically” into quantifiable results

and algorithms
... replaces expensive components in classical algorithms by

cheaper alternatives
... offers increased flexibility to exploit structure
... regularizes ill-conditioned problems

... features prominently on Netflix (The Lincoln Lawyer S1E3,
spotted by Petros Drineas)

Thesis? What is it about? Randomization in NLA

2/77

Randomization in Numerical Linear Algebra...
... leads to new and cheap algorithms
... turns “statements that hold generically” into quantifiable results

and algorithms
... replaces expensive components in classical algorithms by

cheaper alternatives
... offers increased flexibility to exploit structure
... regularizes ill-conditioned problems
... features prominently on Netflix (The Lincoln Lawyer S1E3,

spotted by Petros Drineas)

Thesis? What is it about? Randomization in NLA

3/77

Randomized Numerical Linear Algebra: Surveys

▶ Murray et al.’2023. Randomized numerical linear algebra. A
perspective on the field with an eye to software.
https://arxiv.org/abs/2302.11474v2

▶ Martinsson/Tropp’2020. Randomized numerical linear algebra:
Foundations and algorithms. Acta Numerica.

▶ Drineas/Mahoney’2018. Lectures on randomized numerical
linear algebra. AMS.

▶ Kannan/Vempala’2017. Randomized algorithms in numerical
linear algebra. Acta Numerica.

▶ Woodruff’2014. Sketching as a tool for numerical linear algebra,
Foundations and Trends in Computer Science.

▶ Halko/Martinsson/Tropp’2011. Finding structure with
randomness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM Review.

Randomized low-rank approximation
= poster child of randomized NLA.

https://arxiv.org/abs/2302.11474v2

4/77

Rest of these lectures

1. Linear algebra fundamentals
2. Low-rank approximation in finite dimensions
3. Low-rank approximation in infinite dimensions

5/77

1. Linear algebra
fundamentals

▶ Matrix rank
▶ SVD
▶ Best low-rank approximation

References: [Golub/Van Loan’2013]1, [Horn/Johnson’2013]2

1G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University
Press, Baltimore, MD, 2013.

2R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press,
Cambridge, 2013.

6/77

From http://www.niemanlab.org

... his [Aleksandr Kogan’s]
message went on to confirm
that his approach was indeed
similar to SVD or other matrix
factorization methods, like in
the Netflix Prize competi-
tion, and the Kosinki-Stillwell-
Graepel Facebook model.
Dimensionality reduction of
Facebook data was the core
of his model.

http://www.niemanlab.org

7/77

Leaked Internal Google Document, May 2023
But the uncomfortable truth
is, we aren’t positioned to
win this arms race and nei-
ther is OpenAI. While we’ve
been squabbling, a third fac-
tion has been quietly eat-
ing our lunch... Open-source
models are faster, more cus-
tomizable, more private, and
pound-for-pound more capa-
ble. They are doing things
with $100 and 13B params
that we struggle with at $10M
and 540B. And they are do-
ing so in weeks, not months.
...

In both cases, low-cost public involvement was enabled by a vastly
cheaper mechanism for fine tuning called low rank adaptation, or
LoRA [arXiv:2106.09685] ...

8/77

Rank and basic properties
Let A ∈ Rm×n. Then

rank(A) := dim(range(A)).

Quiz
1. What is the rank of this matrix?

2. What is the rank of randn(40)?

8/77

Rank and basic properties
Let A ∈ Rm×n. Then

rank(A) := dim(range(A)).

Quiz
1. What is the rank of this matrix?

2. What is the rank of randn(40)?

8/77

Rank and basic properties
Let A ∈ Rm×n. Then

rank(A) := dim(range(A)).

Quiz
1. What is the rank of this matrix?

2. What is the rank of randn(40)?

9/77

Rank and matrix factorizations
Lemma. A matrix A ∈ Rm×n of rank r admits a factorization of the
form

A = BCT , B ∈ Rm×r , C ∈ Rn×r .

We say that A has low rank if rank(A)≪ m,n.
Illustration of low-rank factorization:

A BCT

#entries mn mr + nr
▶ Generically (and in most applications), A has full rank, that is,

rank(A) = min{m,n}.
▶ Aim instead at approximating A by a low-rank matrix.

10/77

The singular value decomposition
Theorem (SVD). Let A ∈ Rm×n with m ≥ n. Then there are
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T , with Σ =

σ1

. . .

σn
0

 ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

▶ σ1, . . . , σn are called singular values
▶ u1, . . . ,un are called left singular vectors
▶ v1, . . . , vn are called right singular vectors
▶ Avi = σiui , AT ui = σivi for i = 1, . . . ,n.
▶ Singular values are always uniquely defined by A.
▶ Singular values are never unique. If σ1 > σ2 > · · ·σn > 0 then

unique up to ui ← ±ui , vi ← ±vi .

11/77

The singular value decomposition
Theorem (SVD). Let A ∈ Rm×n with m ≥ n. Then there are
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T , with Σ =

σ1

. . .

σn
0

 ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Quiz: Which properties of A can be extracted from the SVD?

r = rank(A) = number of nonzero singular values of A,
kernel(A) = span{vr+1, . . . , vn}, range(A) = span{u1, . . . ,ur}
∥A∥2 = σ1, ∥A†∥2 = 1/σr , ∥A∥2

F = σ2
1 + · · ·+ σ2

n

σ2
1 , . . . , σ

2
n eigenvalues of AAT and AT A.

11/77

The singular value decomposition
Theorem (SVD). Let A ∈ Rm×n with m ≥ n. Then there are
orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T , with Σ =

σ1

. . .

σn
0

 ∈ Rm×n

and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Quiz: Which properties of A can be extracted from the SVD?

r = rank(A) = number of nonzero singular values of A,
kernel(A) = span{vr+1, . . . , vn}, range(A) = span{u1, . . . ,ur}
∥A∥2 = σ1, ∥A†∥2 = 1/σr , ∥A∥2

F = σ2
1 + · · ·+ σ2

n

σ2
1 , . . . , σ

2
n eigenvalues of AAT and AT A.

12/77

SVD: Computational aspects
▶ Standard implementations (LAPACK, Matlab’s svd, ...) require
O(mn2) operations to compute (economy size) SVD of m × n
matrix A.

▶ Beware of roundoff error when interpreting singular value plots.
Example: semilogy(svd(hilb(100)))

0 20 40 60 80 100
10

-20

10
-10

10
0

▶ Kink is caused by roundoff error and does not reflect true behavior
of singular values.

▶ Exact singular values are known to decay exponentially.3
▶ Sometimes more accuracy possible.4.

3Beckermann, B. The condition number of real Vandermonde, Krylov and positive
definite Hankel matrices. Numer. Math. 85 (2000), no. 4, 553–577.

4Drmač, Z.; Veselić, K. New fast and accurate Jacobi SVD algorithm. I. SIAM J.
Matrix Anal. Appl. 29 (2007), no. 4, 1322–1342

13/77

Best low-rank approximation

For k < n, partition SVD as

UΣV T =
[
Uk ∗

] [Σk 0
0 ∗

] [
Vk ∗

]T
, Σk =

σ1
. . .

σk

Rank-k truncation:

A ≈ Tk (A) := UkΣk V T
k .

has rank at most k . By unitary invariance of ∥ · ∥ ∈ {∥ · ∥2, ∥ · ∥F}:

∥Tk (A)− A∥ =
∥∥diag(0, . . . ,0, σk+1, . . . , σn)

∥∥.
In particular:

∥A− Tk (A)∥2 = σk+1, ∥A− Tk (A)∥F =
√
σ2

k+1 + · · ·+ σ2
n .

Nearly equal iff singular values decay quickly.

14/77

Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A ∈ Rm×n. Then

∥A− Tk (A)∥ = min
{
∥A− B∥ : B ∈ Rm×n has rank at most k

}
holds for any unitarily invariant norm ∥ · ∥.

Proof: See Section 7.4.9 in [Horn/Johnson’2013] for general case.
Proof for ∥ · ∥2: For any B ∈ Rm×n of rank ≤ k , kernel(B) has
dimension ≥ n − k . Hence, ∃w ∈ kernel(B) ∩ range(Vk+1) with
∥w∥2 = 1. Then

∥A− B∥2
2 ≥ ∥(A− B)w∥2

2 = ∥Aw∥2
2 = ∥AVk+1V T

k+1w∥2
2

= ∥Uk+1Σk+1V T
k+1w∥2

2

=
r+1∑
j=1

σj |vT
j w |2 ≥ σk+1

r+1∑
j=1

|vT
j w |2 = σk+1.

15/77

Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A ∈ Rm×n. Then

∥A− Tk (A)∥ = min
{
∥A− B∥ : B ∈ Rm×n has rank at most k

}
holds for any unitarily invariant norm ∥ · ∥.
Quiz. Is the best rank-k approximation unique if σk > σk+1?

▶ If σk > σk+1 best rank-k approximation unique wrt ∥ · ∥F .
▶ Wrt ∥ · ∥2 only unique if σk+1 = 0. For example, diag(2,1, ϵ) with

0 < ϵ < 1 has infinitely many best rank-two approximations:2 0 0
0 1 0
0 0 0

 ,
2− ϵ/2 0 0

0 1− ϵ/2 0
0 0 0

 ,
2− ϵ/3 0 0

0 1− ϵ/3 0
0 0 1

 ,
▶ If σk = σk+1 best rank-k approximation never unique.

I3 has several best rank-two approximations:1 0 0
0 1 0
0 0 0

 ,
1 0 0

0 0 0
0 0 1

 ,
0 0 0

0 1 0
0 0 1

 .

15/77

Best low-rank approximation
Theorem (Schmidt-Mirsky). Let A ∈ Rm×n. Then

∥A− Tk (A)∥ = min
{
∥A− B∥ : B ∈ Rm×n has rank at most k

}
holds for any unitarily invariant norm ∥ · ∥.
Quiz. Is the best rank-k approximation unique if σk > σk+1?
▶ If σk > σk+1 best rank-k approximation unique wrt ∥ · ∥F .
▶ Wrt ∥ · ∥2 only unique if σk+1 = 0. For example, diag(2,1, ϵ) with

0 < ϵ < 1 has infinitely many best rank-two approximations:2 0 0
0 1 0
0 0 0

 ,
2− ϵ/2 0 0

0 1− ϵ/2 0
0 0 0

 ,
2− ϵ/3 0 0

0 1− ϵ/3 0
0 0 1

 ,
▶ If σk = σk+1 best rank-k approximation never unique.

I3 has several best rank-two approximations:1 0 0
0 1 0
0 0 0

 ,
1 0 0

0 0 0
0 0 1

 ,
0 0 0

0 1 0
0 0 1

 .

16/77

Some uses of low-rank approximation

▶ Data compression.
▶ Fast solvers for linear systems: Kernel matrices, integral

operators, under the hood of sparse direct solvers (MUMPS,
PaStiX), . . .

▶ Fast solvers for dynamical systems: Dynamical low-rank method.
▶ Low-rank compression / training of neural nets.
▶ Defeating quantum supremacy claims by Google/IBM.

Science’2022:

17/77

Approximating the range of a matrix

Aim at finding a matrix Q ∈ Rm×k with orthonormal columns such that

range(Q) ≈ range(A).

QQT is orthogonal projector onto range(Q) ; Aim at minimizing

∥A−QQT A∥

for ∥ · ∥ ∈ {∥ · ∥2, ∥ · ∥F}. Because rank(QQT A) ≤ k ,

∥A−QQT A∥ ≥ ∥A− Tk (A)∥.

Setting Q = Uk one obtains

Uk UT
k A = Uk UT

k UΣV T = UkΣk V T
k = Tk (A).

; Q = Uk is optimal.
Low-rank approximation and range approximation
are essentially the same tasks!

18/77

Two popular uses of range approximation

Principal component analysis (PCA):
Dominant left singular vectors of data
matrix X = [x1, . . . , xn] (with mean sub-
tracted) provide directions of maximum
variance, 2nd maximum variance, etc.

Proper orthogonal decomposition
(POD), reduced basis methods: Col-
lect snapshots of time-dependent and/or
parameter-dependent equations and
perform model reduction by projection
to dominant left singular vectors Uk of
snapshot matrix.

19/77

When to expect good low-rank approximations
Smoothness.
Example 1: Snapshot matrix with snapshots depending smoothly on
time/parameter[

u(t1) u(t2) · · · u(tn)
]

≈
[
p1 p2 · · · pk

]︸ ︷︷ ︸
low-dim. polynomial basis

×

ℓ1(t1) ℓ1(t2) · · · ℓ1(tn)
ℓ2(t1) ℓ2(t2) · · · ℓ2(tn)
...

...
...

ℓ2(t1) ℓ2(t2) · · · ℓ2(tn)

︸ ︷︷ ︸

Vandermonde-like matrix

where u(t) ≈ p(t) = p1ℓ1(t) + · · ·+ pnℓn(t) (polynomial approximation
of degree k).

20/77

When to expect good low-rank approximations
Smoothness.
Example 2: Kernel matrix for smooth (low-dimensional) kernel:

K =

κ(x1, x1) · · · κ(x1, xn)
...

...
κ(xn, x1) · · · κ(xn, xn)

 , κ : Ω× Ω→ R.

Hilbert matrix:

K =
[1

i + j − 1

]n

i,j=1

Kernel κ(x , y) = 1/(x + y − 1)
smooth on Ω = [1,n] 0 20 40 60 80 100

10
-20

10
-10

10
0

semilogy(svd(hilb(100)))

21/77

When to expect good low-rank approximations
Algebraic structure.
If X satisfies low-rank Sylvester matrix equation:

AX + XB = low rank

and spectra of A,B are disjoint then singular values of X (usually)
decay exponentially5.
▶ Basis of fast solvers for matrix equations.
▶ Captures many structured matrices: Vandermonde, Cauchy,

Pick, . . . matrices.

5Bernhard Beckermann and Alex Townsend. “On the singular values of matrices
with displacement structure”. In: SIAM J. Matrix Anal. Appl. 38.4 (2017),
pp. 1227–1248.

22/77

When not to expect good low-rank approximations

In most over situations:
▶ Kernel matrices with singular/non-smooth kernels
▶ Snapshot matrices for time-dependent / parametrized solutions

featuring a slowly decaying Kolmogoroff N-width.
▶ Images
▶ White noise
▶ . . .

∃ Exceptions to these rules:

23/77

2. Randomized low-rank
approximation

(in finite dimensions)

▶ Randomized SVD / HMT
▶ Streaming and generalized Nyström
▶ Beyond Gaussian random matrices
▶ Learning structured matrices

References: [HMT]6 [Nakatsukasa]7

6N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions”. In: SIAM
Rev. 53.2 (2011), pp. 217–288.

7Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation.
2020. arXiv: 2009.11392.

https://arxiv.org/abs/2009.11392

24/77

Landscape of low-rank approximation methods
If A is small, say, m,n = O(102):
Don’t think twice, compute full SVD.
If A is large or VERY LARGE, choice of method depends on access
model:
▶ Matrix-vector products y ← Ax

Examples: Explict dense/sparse/data-sparse matrix A. Implicit,
e.g., application of A involves a solver: A = B22 − B12B−1

11 B12 with
large sparse B11.
Methods: Randomized SVD / HMT, Block Lanczos, Single-vector
Lanczos, generalized Nyström.

▶ Entries A(i , j),A(:, j),A(i , :)
Examples: Kernel method, distance matrices, boundary element
methods.
Methods: Deterministic sampling (adaptive cross approximation /
CUR, Nyström) and randomized sampling.

▶ (Semi-)analytical techniques: Exponential sum approx,
Taylor/polynomial approx, rational approx, random Fourier
features.

Other BIG DATA / streaming access models exist in TCS literature.

25/77

General idea of sketching

1. Use “thin” random matrices Ω,Ψ to create sketches of A:
▶ Sketch of columns:

= A Ω×

▶ Optional sketch of rows:

= A

ΨT

×

2. Approximate A from sketch(es).

26/77

Gaussian random matrices

Multivariate normal distribution X ∼ N (µ,Σ) with mean µ ∈ Rn and
(positive definite) covariance matrix Σ ∈ Rn×n has density

fX (x) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
X ∼ N (0, In) is called a Gaussian random vector.
Orthogonal invariance: For an orthogonal matrix Q, QX is again a
Gaussian random vector.
A matrix is a Gaussian random matrix if its columns are independent
Gaussian random vectors.

Lemma
Let [V ,V⊥] ∈ Rn×n be orthogonal and let Ω be an n ×m Gaussian
random matrix. Then V TΩ and V T

⊥Ω are independent Gaussian
random matrices.

27/77

Sketching a rank-k matrix

If A has rank k then

A = UkΣk V T
k ; AΩ = UkΣk V T

k Ω︸ ︷︷ ︸
k × k Gaussian random

V T
k Ω is invertible almost surely.

Why? Hence:
▶ range(A) = range(AΩ)
▶ A = QQT A, where Q ∈ Rm×k is ONB of AΩ

Exact recovery of range of A from sketch.

27/77

Sketching a rank-k matrix

If A has rank k then

A = UkΣk V T
k ; AΩ = UkΣk V T

k Ω︸ ︷︷ ︸
k × k Gaussian random

V T
k Ω is invertible almost surely. Why?

Hence:
▶ range(A) = range(AΩ)
▶ A = QQT A, where Q ∈ Rm×k is ONB of AΩ

Exact recovery of range of A from sketch.

27/77

Sketching a rank-k matrix

If A has rank k then

A = UkΣk V T
k ; AΩ = UkΣk V T

k Ω︸ ︷︷ ︸
k × k Gaussian random

V T
k Ω is invertible almost surely.

Why?

Hence:
▶ range(A) = range(AΩ)
▶ A = QQT A, where Q ∈ Rm×k is ONB of AΩ

Exact recovery of range of A from sketch.

28/77

A first randomized algorithm for low-rank approx
Randomized Algorithm:

1. Draw Gaussian random matrix Ω ∈ Rn×k .
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Exact recovery: If A has rank r , we recover Â = A with probability 1.

29/77

Three test matrices
(a) The 100× 100 Hilbert matrix A defined by A(i , j) = 1/(i + j − 1).
(b) The matrix A defined by A(i , j) = exp(−γ|i − j |/n) with γ = 0.1.
(c) 30× 30 diagonal matrix with diagonal entries

1,0.99,0.98,
1

10
,

0.99
10

,
0.98
10

,
1

100
,

0.99
100

,
0.98
100

, . . .

0 20 40 60 80 100
10

-20

10
-10

10
0

Singular values of test matrices

30/77

Randomized algorithm applied to test matrices
errors measured in spectral norm:
(a) Hilbert matrix, k = 5:

Exact mean std
0.0019 0.0092 0.0099

(b) Matrix with slower decay, k = 25:
Exact mean std

0.0034 0.012 0.002
(c) Matrix with staircase sv, k = 7:

Exact mean std
0.010 0.038 0.025

31/77

Randomized algorithm applied to test matrices
errors measured in Frobenius norm:
(a) Hilbert matrix, k = 5:

Exact mean std
0.0019 0.0093 0.0099

(b) Matrix with slower decay, k = 25:
Exact mean std
0.011 0.024 0.001

(c) Matrix with staircase sv, k = 7:
Exact mean std
0.014 0.041 0.024

32/77

Randomized SVD
Add oversampling. (usually small) integer p

Randomized Algorithm:
1. Draw standard Gaussian random matrix Ω ∈ Rn×(k+p).
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Problem: Â has rank k + p > k .
Solution: Compress B ≈ Tk (B) ; QTk (B) has rank k .
Error:

∥QTk (B)− A∥ = ∥QTk (B)−QB + QB − A∥
≤ ∥Tk (B)− B∥+ ∥(I −QQT)A∥

33/77

Randomized SVD applied to test matrices
errors measured in spectral norm:
(a) Hilbert matrix, k = 5:

Exact mean std
0.0019 0.0092 0.0099 p = 0
0.0019 0.0026 0.0019 p = 1
0.0019 0.0019 0.0001 p = 2

(b) Matrix with slower decay, k = 25:
Exact mean std

0.0034 0.012 0.002 p = 0
0.0034 0.011 0.0017 p = 1
0.0034 0.010 0.0015 p = 2
0.0034 0.0064 0.0008 p = 10
0.0034 0.0037 0.0002 p = 25

(c) Matrix with staircase sv, k = 7:
Exact mean std
0.010 0.038 0.025 p = 0
0.010 0.021 0.012 p = 1
0.010 0.012 0.005 p = 2

34/77

Analysis: general considerations

Goal: Say something sensible about ∥(I −QQT)A∥. Expected value,
failure bounds, ... wrt random matrix Ω.
Often, analysis of randomized NLA can be separated into two phases

1. Structural bound: Derive bound that holds for (almost) every Ω.

This bound usually depends on Ω and dependence needs to be
simple enough to facilitate 2nd phase.

2. Stochastic analysis: Derive expected value, failure bounds for
structural bound using random matrix theory, concentration
results, ...

35/77

Analysis: structural bound

Goal: Bound ∥(I − ΠAΩ)A∥F , where ΠAΩ = QQT is orthogonal
projector onto range of AΩ.

Problems: Implicit dependence on Ω, relation to SVD?
Important observation: Because of

(I − ΠAΩ)AΩ = 0,

the oblique projector Π̃ = Ω(V T
k Ω)†V T

k satisfies

∥(I − ΠAΩ)A∥F = ∥(I − ΠAΩ)A(I − Π̃)∥F

≤ ∥A(I − Π̃)∥F

≤ ∥A(I − Vk V T
k)(I − Π̃)∥F ,

where we used
(I − Vk V T

k)(I − Π̃) = (I − Π̃).

in the last step.

35/77

Analysis: structural bound

Goal: Bound ∥(I − ΠAΩ)A∥F , where ΠAΩ = QQT is orthogonal
projector onto range of AΩ.

Problems: Implicit dependence on Ω, relation to SVD?
Important observation: Because of

(I − ΠAΩ)AΩ = 0,

the oblique projector Π̃ = Ω(V T
k Ω)†V T

k satisfies

∥(I − ΠAΩ)A∥F = ∥(I − ΠAΩ)A(I − Π̃)∥F

≤ ∥A(I − Π̃)∥F

≤ ∥A(I − Vk V T
k)(I − Π̃)∥F ,

where we used
(I − Vk V T

k)(I − Π̃) = (I − Π̃).

in the last step.

36/77

Analysis: structural bound

∥(I − ΠAΩ)A∥F ≤ ∥A(I − Vk V T
k)(I − Π̃)∥F

Interpretation: “Gold standard” A(I − Vk V T
k) distored by oblique

projection.
Quick but suboptimal argument:

∥A(I − VV T)(I − Π̃T)∥F ≤ ∥A(I − VV T)∥F∥I − Π̃∥2 = ∥Σ2∥F∥Π̃∥2

Deviation from gold standard ∥Σ2∥F determined by
∥Π̃∥2 ≤ ∥(ΩT V)†∥2∥Ω∥2.
Drawback: Involves big matrix Ω, which will lead to suboptimal
constants for Gaussian random matrices.
Quiz: We used ∥I − Π̃∥2 = ∥Π∥2; how does one prove this relation?

37/77

Analysis: structural bound

More refined argument:

∥A(I − Vk V T
k)(I − Π̃)∥2

F = ∥A(I − Vk V T
k)∥2

F + ∥A(I − Vk V T
k)Π̃∥2

F

= ∥Σ2∥2
F + ∥Σ2(V T

⊥Ω)(V
T
k Ω)†∥2

F

Final structural bound:

∥(I −QQT)A∥2
F ≤ ∥Σ2∥2

F + ∥Σ2Ω2Ω
†
1∥

2
F .

with Ω1 = V T
k Ω and Ω2 = V T

⊥Ω.

38/77

Bounding expectation

Goal: Bound expected value of

∥(I −QQT)A∥2
F ≤ ∥Σ2∥2

F + ∥Σ2Ω2Ω
†
1∥F

for independent Gaussian random matrices Ω1,Ω2.

To analyze red term, we use

E∥Σ2Ω2Ω
†
1∥

2
F = E

(
E
(
∥Σ2Ω2Ω

†
1∥

2
F |Ω1

))
= ∥Σ2∥2

F · E∥Ω
†
1∥

2
F .

(See exercises for proof that E∥AΩB∥2
F = ∥A∥2

F∥B∥2
F for Gaussian

matrix Ω and constant matrices A,B.)

39/77

Analysis: k = 1,p = 0

For k = 1, p = 0, we have

(V T
1 Ω)† = ω−1

1 , ω1 ∼ N (0,1).

Problem: ω−1
1 (reciprocal of standard normal random variable) is

Cauchy distribution with undefined mean and variance.
Need to consider p ≥ 2.

40/77

Analysis: k = 1,p ≥ 2
For k = 1 we have ∥Ω†

1∥2
F = 1/∥Ω1∥2

F , where ∥Ω1∥2
F is a sum of p + 1

squared independent standard normal random variables.

Pdf for X ∼ N (0,1) given by fX (x) = 1√
2π

e−x2/2. Pdf for Y = X 2 zero
for nonpositive values. For y > 0, we obtain

Pr(0 ≤ Y ≤ y) = Pr(−
√

y ≤ X ≤
√

y)

=
2√
2π

∫ √
y

0
e−x2/2 dx

=
1√
2π

∫ y

0
e−t/2 dt ,

Y is called chi-squared distribution (1 degree of freedom): Y ∼ χ2
1.

∥Ω1∥2
F ∼ χ2

p+1 chi-squared distribution with p + 1 d.o.f.; pdf

fΩ1(x) =
2−(p+1)/2

Γ((p + 1)/2)
x (p+1)/2−1 exp(−x/2)), x > 0.

41/77

Analysis: k = 1,p ≥ 2

∥Ω†
1∥

2
F =

1
∥Ω1∥2

F
=

(p∑
i=1

Ω2
1,i

)−1
∼ Inv− χ2(p + 1),

the inverse-chi-squared distribution with p + 1 degrees of freedom.
Pdf given by

2−(p+1)/2

Γ((p + 1)/2)
x−(p+1)/2−1 exp(−1/(2x)).

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

pdf for p = 1, p = 3, p = 9

42/77

Analysis: k = 1,p ≥ 2
Textbook results:
▶ E∥Ω1∥2

F = p + 1, E∥Ω†
1∥2

F = (p − 1)−1

Tail bound by [Laurent/Massart’2000]:

▶ P
[
∥Ω1∥2

F ≤ p + 1− t
]
≤ exp

(
− t2

4(p+1)

)
Theorem
For k = 1,p ≥ 2, we have

E∥(I −QQT)A∥F ≤

√
1 +

1
p − 1

∥Σ2∥F .

Probability of deviating from this upper bound decays exponentially,
as indicated by tail bound for χ2

p+1.

43/77

Analysis: general k , p ≥ 2
Again use

E∥Σ2Ω2Ω
†
1∥

2
F = ∥Σ2∥2

F · E∥Ω
†
1∥

2
F .

By standard results in multivariate statistics, we have

E∥Ω†
1∥

2
F =

k
p − 1

.

Sketch of argument:
▶ Ω1Ω

T
1 ∼Wk (k + p) (Wishart distribution with k + p degrees of

freedom)
▶ (Ω1Ω

T
1)

−1 ∼ W−1
k (k + p) (inverse Wishart distribution with r + p

degrees of freedom)
▶ E(Ω1Ω

T
1)

−1 = 1
k−1 Ik ; see Page 96 in [Muirhead’1982]8

▶ Result follows from ∥Ω†
1∥2

F = ∥ΩT
1 (Ω1Ω

T
1)

−1∥2
F = trace

(
(Ω1Ω

T
1)

−1)

8R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, NY,
1982.

44/77

Analysis: general k , p ≥ 2
Together with E∥(I −QQT)A∥F ≤

√
E∥(I −QQT)A∥2

F , we obtain:

Theorem
For p ≥ 2, we have

E∥(I −QQT)A∥F ≤

√
1 +

k
p − 1

∥Σ2∥F ,

E∥(I −QQT)A∥2 ≤
(

1 +

√
k

p − 1

)
∥Σ2∥2 +

e
√

k + p
p

∥Σ2∥F .

For proof of spectral norm and tail bounds, see [HMT].

45/77

Variations on
the randomized SVD

▶ Streaming and generalized Nyström
▶ Beyond Gaussian random matrices
▶ Learning structured matrices

46/77

Variation 1: Streaming

Motivation of streaming models:

Matrix/data arrives in chunks.
Each chunk should be processed cheaply.

Avoid storing the matrix as whole.

Examples:
▶ Incremental POD for high-dimensional differential equations.9

▶ PCA for massive data.
▶ Repeated localized / low-rank modifications of data matrix.

All captured by
A→ A0 + A1 + A2 + · · ·

Assumption: Cheap to perform sketches of each Ak .
Goal: Design (randomized) method suitable for streamed data.

9J. A. Tropp et al. “Streaming Low-Rank Matrix Approximation with an Application to
Scientific Simulation”. In: SIAM J. Sci. Comput. 41.4 (Jan. 2019), A2430–A2463.

47/77

Variation 1: Streaming
Randomized SVD:

1. Draw standard Gaussian random matrix Ω ∈ Rn×(k+p).
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Not suitable for streaming. Why?

48/77

Variation 1: Streaming
Randomized SVD:

1. Draw standard Gaussian random matrix Ω ∈ Rn×(k+p).
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Idea:
▶ QQT is best/orthogonal projection of cols of A onto range(AΩ) ;

needs to be relaxed.
▶ Consider any Ψ ∈ Rm×k+p+ℓ with ℓ ≥ 2 such that ΨT AΩ has (full)

rank k + p. Then

ΠΩ,Ψ := (AΩ)(ΨT AΩ)†ΨT A

is (oblique) projector onto range(AΩ).

49/77

Variation 1: Streaming
Generalized Nyström = algorithm for constructing approximation
Â = ΠΩ,ΨA = (AΩ)(ΨT AΩ)†ΨT A:

1. Draw independent Gaussian random matrices Ω ∈ Rn×(k+p),
Ψ ∈ Rn×k+p+ℓ.

2. Perform block mat-vec Y = AΩ.
3. Perform block mat-vec W = ATΨ.
4. Compute S = W TΩ and Ỹ = YS† (via QR or SVD of S, possibly

regularized [Nakatsukasa]).

5. Return Â = YW T in factored form.

▶ Steps 2 and 3 linear in A and thus well suited for streaming
model:

Y = (A0 + A1 + · · ·)Ω = A0Ω+ A1Ω+ · · ·
W = (A0 + A1 + · · ·)TΨ = AT

0 Ψ+ AT
1 Ψ+ · · · .

Only compute AjΩ, AT
j Ψ (cheap) and update Y ,W in j th step.

No storage of AjΩ, AT
j Ψ or A needed.

▶ Step 4 is not linear in A/not streaming, but it is cheap.

50/77

Variation 1: Streaming
Analysis of streaming [Tropp et al.’2019, Nakatsukasa]:

∥A− Â∥2
F = ∥A− ΠΩ,ΨA∥2

F =

Rand. SVD︷ ︸︸ ︷
∥A−QQT A∥2

F +

Distortion of proj.︷ ︸︸ ︷
∥QQT A− ΠΩ,ΨA∥2

F

= · · · ≤ ∥A−QQT A∥2
F + ∥(ΨT Q)†(ΨT Q⊥)QT

⊥A∥2
F

Using

EΩ,Ψ∥(ΨT Q)†(ΨT Q⊥)QT
⊥A∥2

F

= EΩ

[
EΨ

[
∥(ΨT Q)†(ΨT Q⊥)QT

⊥A∥2
F |Ω

]]
≤

(
1 +

k + p
ℓ− 1

)
EΩ

[
∥QT

⊥A∥2
F
]

In summary:

E∥A− Â∥F ≤

√
1 +

k
p − 1

√
1 +

k + p
ℓ− 1

∥Σ2∥F .

51/77

Variation 1: Streaming

▶ Streaming algorithms useful in the context of compressing
structured tensors in Tucker format [Sun et al.’2019] and TT
format [Daas et al.’2021, Shi et al.’2021, Ma/Solomonik’2022,
Kressner et al.’2023]

▶ If A is symmetric positive definite, choose Ψ = Ω ;
approximation

Â = (AΩ)(ΩT AΩ)†ΩT A

This saves half of the matrix multiplications!
Analysis more difficult.10

10A. Gittens and M. W. Mahoney. “Revisiting the Nyström method for improved
large-scale machine learning”. In: J. Mach. Learn. Res. 17 (2016).

52/77

Variation 2: Beyond Gaussian random matrices
Johnson–Lindenstrauss lemma: N points in Rn can be embedded (by
linear projection) into a subspace of dimension O(ε−2 logN) such that
distances are preserved up to factor 1± ε.
Scaled Gaussian random matrices produce such embeddings
x 7→ ΩT x with high probability. More generally:

JL property. A distribution over Rn×ℓ has the (ε, δ)-JL property if a
random matrix Ω satisfies

P
(∣∣∥ΩT x∥2

2 − 1
∣∣ > ε

)
< δ

for an arbitrary but fixed x ∈ Rn, ∥x∥2 = 1.

▶ A Gaussian random matrix (divided by
√
ℓ) has the JL property

when ℓ = O(ε−2 log(1/δ)).
▶ JL lemma is obtained from union bound: To preserve N2 pairwise

distances ∥xi − xj∥2 use (ε, δ/N2) JL-property ;
ℓ = O

(
ε−2(logN + log(1/δ))

)

53/77

Variation 2: Beyond Gaussian random matrices
JL property. An n × ℓ random matrix Ω has the (ε, δ)-JL property if

P
(∣∣∥ΩT x∥2

2 − 1
∣∣ > ε

)
< δ

for an arbitrary but fixed x ∈ Rn, ∥x∥2 = 1.

Generalization to subspaces:
Obvlious subspace embedding (OSE) property [Sarlos’2006]. An
n × ℓ random matrix Ω has the (k , ε, δ)-OSE property if

P
(∣∣∥ΩT x∥2

2 − 1
∣∣ > ε

)
< δ, ∀x ∈ V,

for an arbitrary but fixed k -dimensional subspace V ⊂ Rn.

JL property→ OSE property: Given ONB V of V, OSE is equivalent
to

yT (ΩT V)TΩT Vy ≈ 1, ∀y ∈ Rk , ∥y∥2 = 1,

It is “enough” to test with 2100k vectors on the unit sphere in order to
capture norm of a matrix within factor 4. Union bound:
(ε/4, δ/2100k)-JL turns into (k , ε, δ)-OSE.
Gaussian random matrices: ℓ = O

(
ε−2(k + log(1/δ)

)
gives OSE.

54/77

Variation 2: Beyond Gaussian random matrices

OSE property. An n × ℓ random matrix Ω has the (k , ε, δ)-OSE
property if

P
(∣∣∥ΩT x∥2

2 − 1
∣∣ > ε

)
< δ, ∀x ∈ V,

for an arbitrary but fixed k -dimensional subspace V ⊂ Rn.

Given ONB V of V, OSE implies∥∥(ΩT V)†
∥∥

2 =
1

σmin(ΩT V)
=

1
min{∥ΩT x : ∥x∥2 = 1, x ∈ V}

≤ 1
1− ε

.

Recall structural bound for randomized SVD:

∥(I −QQT)A∥2
F ≤ (1 + ∥(V T

k Ω)†∥2
2∥V T

⊥Ω∥2
2)∥Σ2∥2

F ,

where Vk contains k dominant right singular vectors of A.
∥(V T

k Ω)†∥2
2 controlled through OSE (with, say, ε = 1/2, while

∥V T
⊥Ω∥2 ≤ ∥Ω∥2 is usually bounded (except for Gaussian).

55/77

Variation 2: Beyond Gaussian random matrices

Examples:
▶ (scaled) Rademacher matrices

= n × ℓ matrices with iid ±1 (50%/50%) entries.
OSE holds11 for ℓ = O

(
k + log(1/δ)

)
▶ SRHT = sub-sampled randomized Hadamard transform

Ω =
√

n/ℓDHR, where
D = diagonal with Rademacher diagonal entries
R = n × ℓ uniform random sampling matrix

H = 1√
n

[
1 1
1 −1

]
⊗
[
1 1
1 −1

]
⊗ · · · ⊗

[
1 1
1 −1

]
(zero padding if n is not a power of 2)
OSE holds for ℓ = O

(
k log(1/δ) log(n/δ)

)
[Boutsidis/Gittens’2013]

▶ Subsampled Fourier transform.
OSE holds for ℓ = O

(
(
√

k +
√
log(kn))2 log k

)
with probability

≥ 1− 1/k [HMT]

11Generally true for all matrices with columns from sub-Gaussian distribution.

56/77

Variation 2: Beyond Gaussian random matrices

▶ Sparse transforms
One nonzero entry per row in Ω:
OSE holds for ℓ = O(k2) with prob. > 2/3.
[Nelson/Nguyen’2013].
O(log(k/δ)) entries per row in Ω:
OSE holds for ℓ = O(k log(k/δ). [Cohen’2016].

▶ TensorSketch
▶ CountSketch
▶ . . .

Many of these embeddings become computationally advantageous
over Gaussian random matrices iff k is sufficiently large.

57/77

Variation 3: Learning structured matrices
Motivation: Consider kernel matrix

K =

κ(x1, x1) · · · κ(x1, xn)
...

...
κ(xn, x1) · · · κ(xn, xn)

 , κ : D × D → R.

for 1D-kernel κ with diagonal singularity/non-smoothness. Example:

κ(x , y) = exp(−|x − y |), x , y ∈ [0,1]

Function Singular values

0 20 40 60 80 100
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

58/77

Variation 3: Learning structured matrices
Block partition K :

K =

[
K11 K12
K21 K22

]
=

K11 0 10 20 30 40 50

10
-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K22

Basic idea of peeling method [Lin/Lu/Ying’2011]: Off-diagonal blocks
can be “learnt” from

K
[
Ω1 0
0 Ω2

]
=

[
⋆ K12Ω2

K21Ω1 ⋆

]
Compute QR decompositions

K12Ω2 = Q1R1, K21Ω1 = Q2R2.

58/77

Variation 3: Learning structured matrices
Block partition K :

K =

[
K11 K12
K21 K22

]
=

K11 0 10 20 30 40 50

10
-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K22

Basic idea of peeling method [Lin/Lu/Ying’2011]: Off-diagonal blocks
can be “learnt” from

K
[
Ω1 0
0 Ω2

]
=

[
⋆ K12Ω2

K21Ω1 ⋆

]
Compute QR decompositions

K12Ω2 = Q1R1, K21Ω1 = Q2R2.

59/77

Variation 3: Learning structured matrices
Block partition K :

K =

[
K11 K12
K21 K22

]
=

K11 0 10 20 30 40 50

10
-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K22

Compute [

Q1 0
0 Q2

]T

K =

[
⋆ QT

1 K12
QT

2 K21 ⋆

]
Level 1 of peeling: Use randomized SVD to approximate off-diagonal
blocks:

K1 =

[
0 Q1QT

1 K12
Q2QT

2 K21 0

]

60/77

Variation 3: Learning structured matrices

Level 2: Partition diagonal blocks of remainder:

K − K1 ≈

K11 K12
K21 K22

0

0 K33 K34
K43 K44

=

K11 0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K22

0

0 K33 0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 5 10 15 20 25
10

-20

10
-15

10
-10

10
-5

10
0

10
5

K44

61/77

Variation 3: Learning structured matrices

Level 2:

(K − K1)

Ω1 0
0 Ω2
Ω3 0
0 Ω4

 =

⋆ K12Ω2

K21Ω1 ⋆
⋆ K34Ω4

K43Ω3 ⋆

Use 4 randomized SVDs to reconstruct off-diagonal blocks on Level 2
; K2.
Level 3 considers K − K1 − K2, etc.
▶ If every off-diagonal block on every level admits good rank-k

approximation ; Recovery from O(k log n) matrix-vector
products.

▶ K is approximated in the HODLR format, one of the simplest
hierarchical matrix formats.

62/77

Variation 3: Learning structured matrices

During the last years, several extensions/improvements:
▶ General H-matrices = general recursive block partition.
▶ HSS/H2-matrices impose additional nestedness conditions on

the low-rank factors on different levels of the recursion and can
be reconstruced with O(k) matrix-vector products.

Most recent developments:
▶ D. Halikias and A. Townsend. Structured matrix recovery from

matrix-vector products. arXiv:2212.09841, (2022).
▶ J. Levitt and P.-G. Martinsson. Linear-complexity black-box

randomized compression of rank-structured matrices,
arXiv:2205.02990, (2022).

63/77

3. Randomized low-rank
approximation

(in infinite dimensions)

Primary reference: [Boullé/Townsend]12

12Nicolas Boullé and Alex Townsend. “Learning elliptic partial differential equations
with randomized linear algebra”. In: Found. Comput. Math. (2022), pp. 1–31.

64/77

Infinite randomized SVD?
First step of randomized SVD applied to A ∈ Rm×n:

Y = AΩ, Ω is n × k Gaussian random matrix.

What is a suitable extension to a (Hilbert-Schmidt) operator
A : H1 → H2 for infinite-dimensional Hilbert spaces H1,H2?

Example: Integral operator A : L2(Dy)→ L2(Dx) with

(Af)(x) =
∫

Dy

g(x , y)f (y) dy , x ∈ Dx ,

for some kernel g ∈ L2(Dx × Dy).
Goal:

Learn A from applying it to a few “random” f .

Proposal by [Boullé/Townsend]: Choose samples from Gaussian
processes with prescribed regularity.

64/77

Infinite randomized SVD?
First step of randomized SVD applied to A ∈ Rm×n:

Y = AΩ, Ω is n × k Gaussian random matrix.

What is a suitable extension to a (Hilbert-Schmidt) operator
A : H1 → H2 for infinite-dimensional Hilbert spaces H1,H2?

Example: Integral operator A : L2(Dy)→ L2(Dx) with

(Af)(x) =
∫

Dy

g(x , y)f (y) dy , x ∈ Dx ,

for some kernel g ∈ L2(Dx × Dy).
Goal:

Learn A from applying it to a few “random” f .

Proposal by [Boullé/Townsend]: Choose samples from Gaussian
processes with prescribed regularity.

65/77

Preliminaries: HS operators
Assume that A : L2(Dy)→ L2(Dx) is Hilbert-Schmidt (HS), that is, for
any ONB {ei}∞i=1 of L2(Dy) one has

∥A∥HS :=
(∑

i

∥Aei∥L2(Dx)

)1/2
<∞.

Most important property: HS operators admit SVD. ∃ ONB {ui}∞i=1 of
L2(Dx) and {vi}∞i=1 of L2(Dy) such that

A =
∞∑
i=1

σiui⟨vi , ·⟩L2(Dy), σ1 ≥ σ2 ≥ · · · ≥ 0.

Implies that ∥A∥2
HS = σ2

1 + σ2
2 + · · · and

Tk (A) :=
k∑

i=1

σiui⟨vi , ·⟩L2(Dy), ∥A − Tk (A)∥2
HS = σ2

k+1 + σ2
k+2 + · · ·

is best rank-k approximation (gold standard).

66/77

Preliminaries: Gaussian processes

For symm. pos. def. K ∈ Rn×n, let N (0,K) denote multivariante
normal distribution with zero mean and covariance matrix K .
Infinite-dimensional analogue: Stochastic process F := {Ft , t ∈ D} is
Gaussian if (Ft1 , . . . ,Ftn) is multivariate Gaussian for every finite set of
indices t1, . . . , tn ∈ D.

Specific setting: Given continuous symm. pos. def. kernel
κ : D × D → R, suppose that (Ft1 , . . . ,Ftn) is multivariate Gaussian
with zero mean and covariance matrix

(K)ij = κ(ti , tj), i , j = 1, . . . ,n.

Corresponding integral operator K : L2(D)→ L2(D) admits spectral
decomposition (⇔ Mercer representation of kernel):

K(v(·)) :=
∫

D
κ(·, y)v(y) dy =

∞∑
i=1

λi⟨ψi , v⟩ψi(·),

with orthon. eigenfunctions ψi and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0.

66/77

Preliminaries: Gaussian processes

For symm. pos. def. K ∈ Rn×n, let N (0,K) denote multivariante
normal distribution with zero mean and covariance matrix K .
Infinite-dimensional analogue: Stochastic process F := {Ft , t ∈ D} is
Gaussian if (Ft1 , . . . ,Ftn) is multivariate Gaussian for every finite set of
indices t1, . . . , tn ∈ D.
Specific setting: Given continuous symm. pos. def. kernel
κ : D × D → R, suppose that (Ft1 , . . . ,Ftn) is multivariate Gaussian
with zero mean and covariance matrix

(K)ij = κ(ti , tj), i , j = 1, . . . ,n.

Corresponding integral operator K : L2(D)→ L2(D) admits spectral
decomposition (⇔ Mercer representation of kernel):

K(v(·)) :=
∫

D
κ(·, y)v(y) dy =

∞∑
i=1

λi⟨ψi , v⟩ψi(·),

with orthon. eigenfunctions ψi and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0.

67/77

Preliminaries: Gaussian processes
Diagonalization of K implies Karhune-Loève expansion of stochastic
field

Ft =
∞∑
i=1

λiXiψi(t), Xi ∼ N (0,1) iid.

Decay of λi ∼ smoothness of κ ∼ characterization of regularity of F .
Popular: Squared-exp. κ(x , y) = exp(−|x − y |2/(2ℓ)2) for D = [−1,1]

Kernel and samples for different ℓ (Picture taken from [BT]).

Other popular choice: Matérn kernel.

68/77

Preliminaries: Gaussian processes
Diagonalization of K implies Karhune-Loève expansion of stochastic
field

Ft =
∞∑
i=1

λiXiψi(t), Xi ∼ N (0,1) iid.

Decay of λi ∼ smoothness of κ ∼ characterization of regularity of F .
To (approximately) sample from Ft : Consider truncated KL expansion

m∑
i=1

λiXiψi(t), Xi ∼ N (0,1) iid

+ finite element / spectral discretization in space.
Prescribe KL expansion: functions (polynomials) ψi and eigenvalues
λi instead of κ to impose smoothness.

69/77

Randomized SVD→ Hilbert-Schmidt operators
1. Draw standard Gaussian random matrix Ω ∈ Rn×(k+p).
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Line 1 replaced by
Sample f1, . . . , fk+p ∼ F (Gaussian process).

70/77

Randomized SVD→ Hilbert-Schmidt operators
1. Sample f1, . . . , fk+p ∼ F (Gaussian process).
2. Perform block mat-vec Y = AΩ.
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Line 2 replaced by
Apply operator: h1 = A(f1), . . . ,hk+p = A(fk+p).

71/77

Randomized SVD→ Hilbert-Schmidt operators
1. Sample f1, . . . , fk+p ∼ F (Gaussian process).
2. Apply operator: h1 = A(f1), . . . ,hk+p = A(fk+p).
3. Compute (economic) QR decomposition Y = QR.
4. Form B = QT A.
5. Return Â = QB (in factorized form)

Lines 3–5 replaced by
Return ΠHA, where ΠH is orthogonal projection onto

span{h1, . . . ,hk+p}

72/77

Randomized SVD for Hilbert-Schmidt operators
1. Sample f1, . . . , fk+p ∼ F (Gaussian process).
2. Apply operator: h1 = A(f1), . . . ,hk+p = A(fk+p).
3. Return ΠHA

Implementation of Step 3 depends on A. For an integral op:

(ΠHAf)(x) =

∫
Dy

H(x)(H∗H)−1H∗g(·, y)︸ ︷︷ ︸
=:gk+p(x,y)

f (y) dy ,

where
▶ H(x) = [h1(x), . . . ,hk+p(x)]

▶ H∗H =

 ⟨h1,h1⟩ · · · ⟨h1,hk+p⟩
...

...
⟨hk+p,h1⟩ · · · ⟨hk+p,hk+p⟩

,

H∗g(·, y) =

 ⟨h1,g(·, y)⟩
...

⟨hk+p,g(·, y)⟩

▶ gk+p is a reduced kernel of rank k + p

73/77

Analysis of randomized SVD for HS
Structural bound carries through without difficulties [BT]:

∥A − ΠHA∥2
HS ≤ ∥Σ2∥2

HS + ∥Σ2Ω2Ω
†
1∥

2
HS

where:
▶ A is HS with SVD

A = U1ΣV ∗
1 +

∞∑
i=k+1

ui⟨vi , ·⟩

▶ Σ2 = diag(σ1, σ2, . . .)

▶ “Ω2 = V ∗
2 F ”

▶ Ω1 = V ∗
1 F =

⟨v1, f1⟩ · · · ⟨v1, fk+p⟩
...

...
⟨vk , f1⟩ · · · ⟨vk , fk+p⟩

Two key differences to analysis in fd case:
▶ Ω1,Ω2 are not independent
▶ Ω1 is not a Gaussian matrix

74/77

Analysis of randomized SVD for HS

On the distribution of Ω1:
▶ In finite dimensions:

If f ∼ N (0,K) then V ∗
1 f ∼ N (0,V ∗

1 KV1).
▶ In infinite dimensions, continuity argument via (truncated) KL

expansion: Each column of Ω1 = V ∗
1 F is independent and

∼ N (0,K), with

kij =

∫
Dy

∫
Dx

vi(x)κ(x , y)vj(y) dxdy

Difficulty: Eigenvalues of κ(x , y) decay.

On the bright side: Ω1Ω
T
1 has Wishart distribution (with covariance

matrix K) covered by textbooks [Muirhead’09]:

E
[
∥Ω†

1∥
2
F
]
=

trace(K−1)

p − 1
.

74/77

Analysis of randomized SVD for HS

On the distribution of Ω1:
▶ In finite dimensions:

If f ∼ N (0,K) then V ∗
1 f ∼ N (0,V ∗

1 KV1).
▶ In infinite dimensions, continuity argument via (truncated) KL

expansion: Each column of Ω1 = V ∗
1 F is independent and

∼ N (0,K), with

kij =

∫
Dy

∫
Dx

vi(x)κ(x , y)vj(y) dxdy

Difficulty: Eigenvalues of κ(x , y) decay.
On the bright side: Ω1Ω

T
1 has Wishart distribution (with covariance

matrix K) covered by textbooks [Muirhead’09]:

E
[
∥Ω†

1∥
2
F
]
=

trace(K−1)

p − 1
.

75/77

Analysis of randomized SVD for HS

E
[
∥A − ΠHA∥HS

]
≤

1 +

√
trace(K−1)λ1(k + p)

p − 1

× best rank-k approximation error

Interpretation of trace(K−1):
To avoid dominating best rank-k approximation error, KL eigenvalues
(of GP) need to decay more slowly than (squared) singular values of
A.
Intiution: Kernel κ of GP less regular than kernel g of A.

76/77

Randomized SVD for learning PDEs
Goal: Learn solution operator / Green’s kernel for linear PDE from
input (=source term) / output (= solution) pairs.
GreenLearning13 = peeling + infinite-dimensional randomized SVD.

13N. Boullé, D. Halikias, and A. Townsend. Elliptic PDE learning is provably
data-efficient. 2023. arXiv: 2302.12888.

https://arxiv.org/abs/2302.12888

77/77

Conclusions

▶ Finite-dimensional randomized SVD preferred method for
low-rank approximation if matrix-vector products is access
model. Basic algorithm well understood.

▶ Infinite-dimensional setting still in its infancy.

Selected ongoing developments not discussed:
▶ Randomized SVD for trace estimation ; Hutch++ [Meyer et

al.’2021].
▶ Randomized SVD for matrix function approximation

[DK/Persson’2023].
▶ Potential of OSE for numerical linear algebra continues being

explored: Solving least squares problems = BLENDENPIK,
sketching Krylov subspaces for accelerating classical algorithms
(CG, GMRES, ...), computing nullspaces, . . .

