Randomized Low-Rank Approximation in Finite and Infinite Dimensions

Daniel Kressner
Institute of Mathematics
daniel.kressner@epfl.ch
http://anchp.epfl.ch
E P E D

Workshop and Summer School on Applied Analysis 2023

Randomization in Numerical Linear Algebra...

... leads to new and cheap algorithms
... turns "statements that hold generically" into quantifiable results and algorithms
... replaces expensive components in classical algorithms by cheaper alternatives
... offers increased flexibility to exploit structure
... regularizes ill-conditioned problems

Randomization in Numerical Linear Algebra...

... leads to new and cheap algorithms
... turns "statements that hold generically" into quantifiable results and algorithms
... replaces expensive components in classical algorithms by cheaper alternatives
... offers increased flexibility to exploit structure
... regularizes ill-conditioned problems
... features prominently on Netflix (The Lincoln Lawyer S1E3, spotted by Petros Drineas)

Thesis? What is it about?

Randomization in NLA

Randomized Numerical Linear Algebra: Surveys

- Murray et al.'2023. Randomized numerical linear algebra. A perspective on the field with an eye to software. https://arxiv.org/abs/2302.11474v2
- Martinsson/Tropp'2020. Randomized numerical linear algebra: Foundations and algorithms. Acta Numerica.
- Drineas/Mahoney'2018. Lectures on randomized numerical linear algebra. AMS.
- Kannan/Vempala'2017. Randomized algorithms in numerical linear algebra. Acta Numerica.
- Woodruff'2014. Sketching as a tool for numerical linear algebra, Foundations and Trends in Computer Science.
- Halko/Martinsson/Tropp'2011. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review.

Randomized low-rank approximation
= poster child of randomized NLA.

Rest of these lectures

1. Linear algebra fundamentals
2. Low-rank approximation in finite dimensions
3. Low-rank approximation in infinite dimensions

1. Linear algebra fundamentals

- Matrix rank
- SVD
- Best low-rank approximation

References: [Golub/Van Loan'2013] ${ }^{1}$, [Horn/Johnson'2013] ${ }^{2}$

[^0]
From http://www.niemanlab.org

... his [Aleksandr Kogan's] message went on to confirm that his approach was indeed similar to SVD or other matrix factorization methods, like in the Netflix Prize competition, and the Kosinki-StillwellGraepel Facebook model. Dimensionality reduction of Facebook data was the core of his model.

Leaked Internal Google Document, May 2023

But the uncomfortable truth

```
The
Economis

Subscribe

What does a leaked Google memo reveal about the future of AI?
open-source AI is booming. That makes it less likely that a handful of firms will control the technology
 is, we aren't positioned to win this arms race and neither is OpenAl. While we've been squabbling, a third faction has been quietly eating our lunch... Open-source models are faster, more customizable, more private, and pound-for-pound more capable. They are doing things with \(\$ 100\) and 13B params that we struggle with at \(\$ 10 \mathrm{M}\) and 540B. And they are doing so in weeks, not months.

In both cases, low-cost public involvement was enabled by a vastly cheaper mechanism for fine tuning called low rank adaptation, or LoRA [arXiv:2106.09685] ...

\section*{Rank and basic properties}

Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\operatorname{rank}(A):=\operatorname{dim}(\operatorname{range}(A)) .
\]

\section*{Rank and basic properties}

Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\operatorname{rank}(A):=\operatorname{dim}(\operatorname{range}(A)) .
\]

Quiz
1. What is the rank of this matrix?


\section*{Rank and basic properties}

Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\operatorname{rank}(A):=\operatorname{dim}(\operatorname{range}(A))
\]

\section*{Quiz}
1. What is the rank of this matrix?

2. What is the rank of randn (40)?


\section*{Rank and matrix factorizations}

Lemma. A matrix \(A \in \mathbb{R}^{m \times n}\) of rank \(r\) admits a factorization of the form
\[
A=B C^{T}, \quad B \in \mathbb{R}^{m \times r}, \quad C \in \mathbb{R}^{n \times r} .
\]

We say that \(A\) has low rank if \(\operatorname{rank}(A) \ll m, n\).
Illustration of low-rank factorization:

- Generically (and in most applications), \(A\) has full rank, that is, \(\operatorname{rank}(A)=\min \{m, n\}\).
- Aim instead at approximating \(A\) by a low-rank matrix.

\section*{The singular value decomposition}

Theorem (SVD). Let \(A \in \mathbb{R}^{m \times n}\) with \(m \geq n\). Then there are orthogonal matrices \(U \in \mathbb{R}^{m \times m}\) and \(V \in \mathbb{R}^{n \times n}\) such that
\[
A=U \Sigma V^{T}, \text { with } \Sigma=\left[\begin{array}{ll}
\ddots & \\
& \\
& \sigma_{n}
\end{array}\right] \in \mathbb{R}^{m \times n}
\]
and \(\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0\).
- \(\sigma_{1}, \ldots, \sigma_{n}\) are called singular values
- \(u_{1}, \ldots, u_{n}\) are called left singular vectors
- \(v_{1}, \ldots, v_{n}\) are called right singular vectors
- \(A v_{i}=\sigma_{i} u_{i}, A^{T} u_{i}=\sigma_{i} v_{i}\) for \(i=1, \ldots, n\).
- Singular values are always uniquely defined by \(A\).
- Singular values are never unique. If \(\sigma_{1}>\sigma_{2}>\cdots \sigma_{n}>0\) then unique up to \(u_{i} \leftarrow \pm u_{i}, v_{i} \leftarrow \pm v_{i}\).

\section*{The singular value decomposition}

Theorem (SVD). Let \(A \in \mathbb{R}^{m \times n}\) with \(m \geq n\). Then there are orthogonal matrices \(U \in \mathbb{R}^{m \times m}\) and \(V \in \mathbb{R}^{n \times n}\) such that
\[
A=U \Sigma V^{T}, \quad \text { with } \quad \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& 0 & \sigma_{n}
\end{array}\right] \in \mathbb{R}^{m \times n}
\]
and \(\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0\).
Quiz: Which properties of \(A\) can be extracted from the SVD?

\section*{The singular value decomposition}

Theorem (SVD). Let \(A \in \mathbb{R}^{m \times n}\) with \(m \geq n\). Then there are orthogonal matrices \(U \in \mathbb{R}^{m \times m}\) and \(V \in \mathbb{R}^{n \times n}\) such that
\[
A=U \Sigma V^{T}, \quad \text { with } \quad \Sigma=\left[\begin{array}{lll} 
& \ddots & \\
& & \sigma_{n} \\
& 0 &
\end{array}\right] \in \mathbb{R}^{m \times n}
\]
\[
\text { and } \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0
\]

Quiz: Which properties of \(A\) can be extracted from the SVD?
\(r=\operatorname{rank}(A)=\) number of nonzero singular values of \(A\), \(\operatorname{kernel}(A)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}, \operatorname{range}(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}\) \(\|A\|_{2}=\sigma_{1},\left\|A^{\dagger}\right\|_{2}=1 / \sigma_{r},\|A\|_{F}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}\) \(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\) eigenvalues of \(A A^{T}\) and \(A^{T} A\).

\section*{SVD: Computational aspects}
- Standard implementations (LAPACK, Matlab's svd, ...) require \(\mathcal{O}\left(m n^{2}\right)\) operations to compute (economy size) SVD of \(m \times n\) matrix \(A\).
- Beware of roundoff error when interpreting singular value plots.

Example: semilogy(svd(hilb(100)))

- Kink is caused by roundoff error and does not reflect true behavior of singular values.
- Exact singular values are known to decay exponentially. \({ }^{3}\)
- Sometimes more accuracy possible. \({ }^{4}\).

\footnotetext{
\({ }^{3}\) Beckermann, B. The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numer. Math. 85 (2000), no. 4, 553-577.
\({ }^{4}\) Drmač, Z.; Veselić, K. New fast and accurate Jacobi SVD algorithm. I. SIAM J. Matrix Anal. Appl. 29 (2007), no. 4, 1322-1342
}

\section*{Best low-rank approximation}

For \(k<n\), partition SVD as
\[
U \Sigma V^{T}=\left[\begin{array}{ll}
U_{k} & *
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{k} & 0 \\
0 & *
\end{array}\right]\left[\begin{array}{ll}
V_{k} & *
\end{array}\right]^{T}, \quad \Sigma_{k}=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{k}
\end{array}\right]
\]

Rank-k truncation:
\[
A \approx \mathcal{T}_{k}(A):=U_{k} \Sigma_{k} V_{k}^{T}
\]
has rank at most \(k\). By unitary invariance of \(\|\cdot\| \in\left\{\|\cdot\|_{2},\|\cdot\|_{F}\right\}\) :
\[
\left\|\mathcal{T}_{k}(A)-A\right\|=\left\|\operatorname{diag}\left(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_{n}\right)\right\|
\]

In particular:
\[
\left\|A-\mathcal{T}_{k}(A)\right\|_{2}=\sigma_{k+1}, \quad\left\|A-\mathcal{T}_{k}(A)\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}}
\]

Nearly equal iff singular values decay quickly.

\section*{Best low-rank approximation}

Theorem (Schmidt-Mirsky). Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\left\|A-\mathcal{T}_{k}(A)\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has rank at most } k\right\}
\]
holds for any unitarily invariant norm \(\|\cdot\|\).

Proof: See Section 7.4.9 in [Horn/Johnson'2013] for general case.
Proof for \(\|\cdot\|_{2}\) : For any \(B \in \mathbb{R}^{m \times n}\) of rank \(\leq k\), \(\operatorname{kernel}(B)\) has dimension \(\geq n-k\). Hence, \(\exists w \in \operatorname{kernel}(B) \cap \operatorname{range}\left(V_{k+1}\right)\) with \(\|w\|_{2}=1\). Then
\[
\begin{aligned}
\|A-B\|_{2}^{2} & \geq\|(A-B) w\|_{2}^{2}=\|A w\|_{2}^{2}=\left\|A V_{k+1} V_{k+1}^{T} w\right\|_{2}^{2} \\
& =\left\|U_{k+1} \Sigma_{k+1} V_{k+1}^{T} w\right\|_{2}^{2} \\
& =\sum_{j=1}^{r+1} \sigma_{j}\left|v_{j}^{T} w\right|^{2} \geq \sigma_{k+1} \sum_{j=1}^{r+1}\left|v_{j}^{T} w\right|^{2}=\sigma_{k+1} .
\end{aligned}
\]

\section*{Best low-rank approximation}

Theorem (Schmidt-Mirsky). Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\left\|A-\mathcal{T}_{k}(A)\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has rank at most } k\right\}
\]
holds for any unitarily invariant norm \(\|\cdot\|\).
Quiz. Is the best rank- \(k\) approximation unique if \(\sigma_{k}>\sigma_{k+1}\) ?

\section*{Best low-rank approximation}

Theorem (Schmidt-Mirsky). Let \(A \in \mathbb{R}^{m \times n}\). Then
\[
\left\|A-\mathcal{T}_{k}(A)\right\|=\min \left\{\|A-B\|: B \in \mathbb{R}^{m \times n} \text { has rank at most } k\right\}
\]

\section*{holds for any unitarily invariant norm \(\|\cdot\|\).}

Quiz. Is the best rank- \(k\) approximation unique if \(\sigma_{k}>\sigma_{k+1}\) ?
- If \(\sigma_{k}>\sigma_{k+1}\) best rank- \(k\) approximation unique wrt \(\|\cdot\|_{F}\).
- Wrt \(\|\cdot\|_{2}\) only unique if \(\sigma_{k+1}=0\). For example, \(\operatorname{diag}(2,1, \epsilon)\) with \(0<\epsilon<1\) has infinitely many best rank-two approximations:
\[
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
2-\epsilon / 2 & 0 & 0 \\
0 & 1-\epsilon / 2 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
2-\epsilon / 3 & 0 & 0 \\
0 & 1-\epsilon / 3 & 0 \\
0 & 0 & 1
\end{array}\right], \ldots .
\]
- If \(\sigma_{k}=\sigma_{k+1}\) best rank- \(k\) approximation never unique. \(I_{3}\) has several best rank-two approximations:
\[
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\]

\section*{Some uses of low-rank approximation}
- Data compression.
- Fast solvers for linear systems: Kernel matrices, integral operators, under the hood of sparse direct solvers (MUMPS, PaStiX), ...
- Fast solvers for dynamical systems: Dynamical low-rank method.
- Low-rank compression / training of neural nets.
- Defeating quantum supremacy claims by Google/IBM. Science'2022:
```

NEWS PHYSICS
Ordinary computers can beat Google's quantum computer after all
Superfast algorithm put crimp in 2019 claim that Google's machine had achieved "quantum supremacy"

```

\section*{Approximating the range of a matrix}

Aim at finding a matrix \(Q \in \mathbb{R}^{m \times k}\) with orthonormal columns such that
\[
\operatorname{range}(Q) \approx \operatorname{range}(A)
\]
\(Q Q^{T}\) is orthogonal projector onto range \((Q) \sim\) Aim at minimizing
\[
\left\|A-Q Q^{T} A\right\|
\]
for \(\|\cdot\| \in\left\{\|\cdot\|_{2},\|\cdot\|_{F}\right\}\). Because \(\operatorname{rank}\left(Q Q^{T} A\right) \leq k\),
\[
\left\|A-Q Q^{T} A\right\| \geq\left\|A-\mathcal{T}_{k}(A)\right\|
\]

Setting \(Q=U_{k}\) one obtains
\[
U_{k} U_{k}^{T} A=U_{k} U_{k}^{T} U \Sigma V^{T}=U_{k} \Sigma_{k} V_{k}^{T}=\mathcal{T}_{k}(A)
\]
\(\sim Q=U_{k}\) is optimal.
Low-rank approximation and range approximation are essentially the same tasks!

\section*{Two popular uses of range approximation}

Principal component analysis (PCA): Dominant left singular vectors of data matrix \(X=\left[x_{1}, \ldots, x_{n}\right]\) (with mean subtracted) provide directions of maximum variance, 2nd maximum variance, etc.


\section*{When to expect good low-rank approximations}

Smoothness.
Example 1: Snapshot matrix with snapshots depending smoothly on time/parameter
\[
\begin{aligned}
& {\left[\begin{array}{llll}
u\left(t_{1}\right) & u\left(t_{2}\right) & \cdots & u\left(t_{n}\right)
\end{array}\right] } \\
\approx & \underbrace{\left[\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{k}
\end{array}\right]}_{\text {low-dim. polynomial basis }} \times \underbrace{\left[\begin{array}{cccc}
\ell_{1}\left(t_{1}\right) & \ell_{1}\left(t_{2}\right) & \cdots & \ell_{1}\left(t_{n}\right) \\
\ell_{2}\left(t_{1}\right) & \ell_{2}\left(t_{2}\right) & \cdots & \ell_{2}\left(t_{n}\right) \\
\vdots & \vdots & & \vdots \\
\ell_{2}\left(t_{1}\right) & \ell_{2}\left(t_{2}\right) & \cdots & \ell_{2}\left(t_{n}\right)
\end{array}\right]}_{\text {Vandermonde-like matrix }}
\end{aligned}
\]
where \(u(t) \approx p(t)=p_{1} \ell_{1}(t)+\cdots+p_{n} \ell_{n}(t)\) (polynomial approximation of degree \(k\) ).

\section*{When to expect good low-rank approximations}

Smoothness.
Example 2: Kernel matrix for smooth (low-dimensional) kernel:
\[
K=\left[\begin{array}{ccc}
\kappa\left(x_{1}, x_{1}\right) & \cdots & \kappa\left(x_{1}, x_{n}\right) \\
\vdots & & \vdots \\
\kappa\left(x_{n}, x_{1}\right) & \cdots & \kappa\left(x_{n}, x_{n}\right)
\end{array}\right], \quad \kappa: \Omega \times \Omega \rightarrow \mathbb{R} .
\]

Hilbert matrix:
\[
K=\left[\frac{1}{i+j-1}\right]_{i, j=1}^{n}
\]

Kernel \(\kappa(x, y)=1 /(x+y-1)\) smooth on \(\Omega=[1, n]\)

semilogy(svd(hilb(100)))

\section*{When to expect good low-rank approximations}

Algebraic structure.
If \(X\) satisfies low-rank Sylvester matrix equation:
\[
A X+X B=\text { low rank }
\]
and spectra of \(A, B\) are disjoint then singular values of \(X\) (usually) decay exponentially \({ }^{5}\).
- Basis of fast solvers for matrix equations.
- Captures many structured matrices: Vandermonde, Cauchy, Pick, ... matrices.

\footnotetext{
\({ }^{5}\) Bernhard Beckermann and Alex Townsend. "On the singular values of matrices with displacement structure". In: SIAM J. Matrix Anal. Appl. 38.4 (2017),
}
pp. 1227-1248.

\section*{When not to expect good low-rank approximations}

In most over situations:
- Kernel matrices with singular/non-smooth kernels
- Snapshot matrices for time-dependent / parametrized solutions featuring a slowly decaying Kolmogoroff \(N\)-width.
- Images
- White noise
\(\exists\) Exceptions to these rules:


\section*{2. Randomized low-rank approximation}
(in finite dimensions)
- Randomized SVD / HMT
- Streaming and generalized Nyström
- Beyond Gaussian random matrices
- Learning structured matrices

References: [HMT] \({ }^{6}\left[\right.\) Nakatsukasa] \({ }^{7}\)

\footnotetext{
\({ }^{6}\) N. Halko, P. G. Martinsson, and J. A. Tropp. "Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions". In: SIAM Rev. 53.2 (2011), pp. 217-288.
\({ }^{7}\) Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation.
}

\section*{Landscape of low-rank approximation methods}

If \(A\) is small, say, \(m, n=\mathcal{O}\left(10^{2}\right)\) :
Don't think twice, compute full SVD.
If \(A\) is large or VERY LARGE, choice of method depends on access model:
- Matrix-vector products \(y \leftarrow A x\)

Examples: Explict dense/sparse/data-sparse matrix \(A\). Implicit, e.g., application of \(A\) involves a solver: \(A=B_{22}-B_{12} B_{11}^{-1} B_{12}\) with large sparse \(B_{11}\).
Methods: Randomized SVD / HMT, Block Lanczos, Single-vector Lanczos, generalized Nyström.
- Entries \(A(i, j), A(:, j), A(i,:)\)

Examples: Kernel method, distance matrices, boundary element methods.
Methods: Deterministic sampling (adaptive cross approximation / CUR, Nyström) and randomized sampling.
- (Semi-)analytical techniques: Exponential sum approx,

Taylor/polynomial approx, rational approx, random Fourier features.
Other BIG DATA / streaming access models exist in TCS literature.

\section*{General idea of sketching}
1. Use "thin" random matrices \(\Omega, \Psi\) to create sketches of \(A\) :
- Sketch of columns:

- Optional sketch of rows:

2. Approximate \(A\) from sketch(es).

\section*{Gaussian random matrices}

Multivariate normal distribution \(X \sim \mathcal{N}(\mu, \Sigma)\) with mean \(\mu \in \mathbb{R}^{n}\) and (positive definite) covariance matrix \(\Sigma \in \mathbb{R}^{n \times n}\) has density
\[
f_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
\]
\(X \sim \mathcal{N}\left(0, I_{n}\right)\) is called a Gaussian random vector.
Orthogonal invariance: For an orthogonal matrix \(Q, Q X\) is again a Gaussian random vector.
A matrix is a Gaussian random matrix if its columns are independent Gaussian random vectors.
Lemma
Let \(\left[V, V_{\perp}\right] \in \mathbb{R}^{n \times n}\) be orthogonal and let \(\Omega\) be an \(n \times m\) Gaussian random matrix. Then \(V^{\top} \Omega\) and \(V_{\perp}^{\top} \Omega\) are independent Gaussian random matrices.

\section*{Sketching a rank-k matrix}

If \(A\) has rank \(k\) then
\[
A=U_{k} \Sigma_{k} V_{k}^{T} \leadsto A \Omega=U_{k} \Sigma_{k} \underbrace{V_{k}^{T} \Omega}_{k \times k \text { Gaussian random }}
\]
\(V_{k}^{T} \Omega\) is invertible almost surely.

\section*{Sketching a rank-k matrix}

If \(A\) has rank \(k\) then
\[
A=U_{k} \Sigma_{k} V_{k}^{T} \leadsto A \Omega=U_{k} \Sigma_{k} \underbrace{V_{k}^{T} \Omega}_{k \times k \text { Gaussian random }}
\]
\(V_{k}^{\top} \Omega\) is invertible almost surely. Why?

\section*{Sketching a rank-k matrix}

If \(A\) has rank \(k\) then
\[
A=U_{k} \Sigma_{k} V_{k}^{T} \leadsto A \Omega=U_{k} \Sigma_{k} \underbrace{V_{k}^{T} \Omega}_{k \times k \text { Gaussian random }}
\]
\(V_{k}^{T} \Omega\) is invertible almost surely. Hence:
- \(\operatorname{range}(A)=\operatorname{range}(A \Omega)\)
- \(A=Q Q^{T} A\), where \(Q \in \mathbb{R}^{m \times k}\) is ONB of \(A \Omega\)

Exact recovery of range of \(A\) from sketch.

\section*{A first randomized algorithm for low-rank approx}

Randomized Algorithm:
1. Draw Gaussian random matrix \(\Omega \in \mathbb{R}^{n \times k}\).
2. Perform block mat-vec \(Y=A \Omega\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

Exact recovery: If \(A\) has rank \(r\), we recover \(\widehat{A}=A\) with probability 1 .

\section*{Three test matrices}
(a) The \(100 \times 100\) Hilbert matrix \(A\) defined by \(A(i, j)=1 /(i+j-1)\).
(b) The matrix \(A\) defined by \(A(i, j)=\exp (-\gamma|i-j| / n)\) with \(\gamma=0.1\).
(c) \(30 \times 30\) diagonal matrix with diagonal entries
\[
1,0.99,0.98, \frac{1}{10}, \frac{0.99}{10}, \frac{0.98}{10}, \frac{1}{100}, \frac{0.99}{100}, \frac{0.98}{100}, \ldots
\]


Singular values of test matrices

\section*{Randomized algorithm applied to test matrices}
errors measured in spectral norm:
(a) Hilbert matrix, \(k=5\) :
\begin{tabular}{ccc}
\hline Exact & mean & std \\
0.0019 & 0.0092 & 0.0099 \\
\hline
\end{tabular}
(b) Matrix with slower decay, \(k=25\) :
\begin{tabular}{ccc}
\hline Exact & mean & std \\
0.0034 & 0.012 & 0.002 \\
\hline
\end{tabular}
(c) Matrix with staircase \(\mathrm{sv}, k=7\) :
\begin{tabular}{ccc}
\hline Exact & mean & std \\
0.010 & 0.038 & 0.025 \\
\hline
\end{tabular}

\section*{Randomized algorithm applied to test matrices}
errors measured in Frobenius norm:
(a) Hilbert matrix, \(k=5\) :
\begin{tabular}{ccc}
\hline Exact & mean & std \\
0.0019 & 0.0093 & 0.0099 \\
\hline
\end{tabular}
(b) Matrix with slower decay, \(k=25\) :
\begin{tabular}{ccc}
\hline Exact & mean & std \\
0.011 & 0.024 & 0.001 \\
\hline
\end{tabular}
(c) Matrix with staircase \(\mathrm{sv}, k=7\) :
\begin{tabular}{ccc}
\hline Exact & mean & std \\
0.014 & 0.041 & 0.024 \\
\hline
\end{tabular}

\section*{Randomized SVD}

Add oversampling. (usually small) integer \(p\)
Randomized Algorithm:
1. Draw standard Gaussian random matrix \(\Omega \in \mathbb{R}^{n \times(k+p)}\).
2. Perform block mat-vec \(Y=A \Omega\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

Problem: \(\hat{A}\) has rank \(k+p>k\).
Solution: Compress \(B \approx \mathcal{T}_{k}(B) \sim Q \mathcal{T}_{k}(B)\) has rank \(k\).
Error:
\[
\begin{aligned}
\left\|Q \mathcal{T}_{k}(B)-A\right\| & =\left\|Q \mathcal{T}_{k}(B)-Q B+Q B-A\right\| \\
& \leq\left\|\mathcal{T}_{k}(B)-B\right\|+\left\|\left(I-Q Q^{T}\right) A\right\|
\end{aligned}
\]

\section*{Randomized SVD applied to test matrices}
errors measured in spectral norm:
(a) Hilbert matrix, \(k=5\) :
\begin{tabular}{cccc}
\hline Exact & mean & std & \\
0.0019 & 0.0092 & 0.0099 & \(p=0\) \\
0.0019 & 0.0026 & 0.0019 & \(p=1\) \\
0.0019 & 0.0019 & 0.0001 & \(p=2\) \\
\hline
\end{tabular}
(b) Matrix with slower decay, \(k=25\) :
\begin{tabular}{cccc}
\hline Exact & mean & std & \\
0.0034 & 0.012 & 0.002 & \(p=0\) \\
0.0034 & 0.011 & 0.0017 & \(p=1\) \\
0.0034 & 0.010 & 0.0015 & \(p=2\) \\
0.0034 & 0.0064 & 0.0008 & \(p=10\) \\
0.0034 & 0.0037 & 0.0002 & \(p=25\) \\
\hline
\end{tabular}
(c) Matrix with staircase \(\mathrm{sv}, k=7\) :
\begin{tabular}{cccc}
\hline Exact & mean & std & \\
0.010 & 0.038 & 0.025 & \(p=0\) \\
0.010 & 0.021 & 0.012 & \(p=1\) \\
0.010 & 0.012 & 0.005 & \(p=2\) \\
\hline
\end{tabular}

\section*{Analysis: general considerations}

Goal: Say something sensible about \(\left\|\left(I-Q Q^{T}\right) A\right\|\). Expected value, failure bounds, ... wrt random matrix \(\Omega\).
Often, analysis of randomized NLA can be separated into two phases
1. Structural bound: Derive bound that holds for (almost) every \(\Omega\).

This bound usually depends on \(\Omega\) and dependence needs to be simple enough to facilitate 2nd phase.
2. Stochastic analysis: Derive expected value, failure bounds for structural bound using random matrix theory, concentration results, ...

\section*{Analysis: structural bound}

Goal: Bound \(\left\|\left(I-\Pi_{A \Omega}\right) A\right\|_{F}\), where \(\Pi_{A \Omega}=Q Q^{T}\) is orthogonal projector onto range of \(A \Omega\).

\section*{Analysis: structural bound}

Goal: Bound \(\left\|\left(I-\Pi_{A \Omega}\right) A\right\|_{F}\), where \(\Pi_{A \Omega}=Q Q^{T}\) is orthogonal projector onto range of \(A \Omega\).

Problems: Implicit dependence on \(\Omega\), relation to SVD?
Important observation: Because of
\[
\left(I-\Pi_{A \Omega}\right) A \Omega=0
\]
the oblique projector \(\tilde{\Pi}=\Omega\left(V_{k}^{\top} \Omega\right)^{\dagger} V_{k}^{\top}\) satisfies
\[
\begin{aligned}
\left\|\left(I-\Pi_{A \Omega}\right) A\right\|_{F} & =\left\|\left(I-\Pi_{A \Omega}\right) A(I-\tilde{\Pi})\right\|_{F} \\
& \leq\|A(I-\tilde{\Pi})\|_{F} \\
& \leq\left\|A\left(I-V_{k} V_{k}^{T}\right)(I-\tilde{\Pi})\right\|_{F}
\end{aligned}
\]
where we used
\[
\left(I-V_{k} V_{k}^{T}\right)(I-\tilde{\Pi})=(I-\tilde{\Pi})
\]
in the last step.

\section*{Analysis: structural bound}
\[
\left\|\left(I-\Pi_{A \Omega}\right) A\right\|_{F} \leq\left\|A\left(I-V_{k} V_{k}^{T}\right)(I-\tilde{\Pi})\right\|_{F}
\]

Interpretation: "Gold standard" \(A\left(I-V_{k} V_{k}^{T}\right)\) distored by oblique projection.
Quick but suboptimal argument:
\[
\left\|A\left(I-V V^{T}\right)\left(I-\tilde{\Pi}^{T}\right)\right\|_{F} \leq\left\|A\left(I-V V^{T}\right)\right\|_{F}\|I-\tilde{\Pi}\|_{2}=\left\|\Sigma_{2}\right\|_{F}\|\tilde{\Pi}\|_{2}
\]

Deviation from gold standard \(\left\|\Sigma_{2}\right\|_{F}\) determined by \(\|\tilde{\Pi}\|_{2} \leq\left\|\left(\Omega^{\top} V\right)^{\dagger}\right\|_{2}\|\Omega\|_{2}\).
Drawback: Involves big matrix \(\Omega\), which will lead to suboptimal constants for Gaussian random matrices.
Quiz: We used \(\|I-\tilde{\Pi}\|_{2}=\|\Pi\|_{2}\); how does one prove this relation?

\section*{Analysis: structural bound}

More refined argument:
\[
\begin{aligned}
\left\|A\left(I-V_{k} V_{k}^{T}\right)(I-\tilde{\Pi})\right\|_{F}^{2} & =\left\|A\left(I-V_{k} V_{k}^{T}\right)\right\|_{F}^{2}+\left\|A\left(I-V_{k} V_{k}^{T}\right) \tilde{\Pi}\right\|_{F}^{2} \\
& =\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2}\left(V_{\perp}^{T} \Omega\right)\left(V_{k}^{T} \Omega\right)^{\dagger}\right\|_{F}^{2}
\end{aligned}
\]

Final structural bound:
\[
\left\|\left(I-Q Q^{T}\right) A\right\|_{F}^{2} \leq\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2} \Omega_{2} \Omega_{1}^{\dagger}\right\|_{F}^{2}
\]
with \(\Omega_{1}=V_{k}^{\top} \Omega\) and \(\Omega_{2}=V_{\perp}^{\top} \Omega\).

\section*{Bounding expectation}

Goal: Bound expected value of
\[
\left\|\left(I-Q Q^{T}\right) A\right\|_{F}^{2} \leq\left\|\Sigma_{2}\right\|_{F}^{2}+\left\|\Sigma_{2} \Omega_{2} \Omega_{1}^{\dagger}\right\|_{F}
\]
for independent Gaussian random matrices \(\Omega_{1}, \Omega_{2}\).
To analyze red term, we use
\[
\mathbb{E}\left\|\Sigma_{2} \Omega_{2} \Omega_{1}^{\dagger}\right\|_{F}^{2}=\mathbb{E}\left(\mathbb{E}\left(\left\|\Sigma_{2} \Omega_{2} \Omega_{1}^{\dagger}\right\|_{F}^{2} \mid \Omega_{1}\right)\right)=\left\|\Sigma_{2}\right\|_{F}^{2} \cdot \mathbb{E}\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2} .
\]
(See exercises for proof that \(\mathbb{E}\|A \Omega B\|_{F}^{2}=\|A\|_{F}^{2}\|B\|_{F}^{2}\) for Gaussian matrix \(\Omega\) and constant matrices \(A, B\).)

\section*{Analysis: \(k=1, p=0\)}

For \(k=1, p=0\), we have
\[
\left(V_{1}^{\top} \Omega\right)^{\dagger}=\omega_{1}^{-1}, \quad \omega_{1} \sim \mathcal{N}(0,1)
\]

Problem: \(\omega_{1}^{-1}\) (reciprocal of standard normal random variable) is Cauchy distribution with undefined mean and variance. Need to consider \(p \geq 2\).

\section*{Analysis: \(k=1, p \geq 2\)}

For \(k=1\) we have \(\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2}=1 /\left\|\Omega_{1}\right\|_{F}^{2}\), where \(\left\|\Omega_{1}\right\|_{F}^{2}\) is a sum of \(p+1\) squared independent standard normal random variables.
Pdf for \(X \sim \mathcal{N}(0,1)\) given by \(f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\). Pdf for \(Y=X^{2}\) zero for nonpositive values. For \(y>0\), we obtain
\[
\begin{aligned}
\operatorname{Pr}(0 \leq Y \leq y) & =\operatorname{Pr}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{\sqrt{y}} e^{-x^{2} / 2} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{y} e^{-t / 2} \mathrm{~d} t
\end{aligned}
\]
\(Y\) is called chi-squared distribution (1 degree of freedom): \(Y \sim \chi_{1}^{2}\). \(\left\|\Omega_{1}\right\|_{F}^{2} \sim \chi_{p+1}^{2}\) chi-squared distribution with \(p+1\) d.o.f.; pdf
\[
\left.f_{\Omega_{1}}(x)=\frac{2^{-(p+1) / 2}}{\Gamma((p+1) / 2)} x^{(p+1) / 2-1} \exp (-x / 2)\right), \quad x>0
\]

\section*{Analysis: \(k=1, p \geq 2\)}
\[
\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2}=\frac{1}{\left\|\Omega_{1}\right\|_{F}^{2}}=\left(\sum_{i=1}^{p} \Omega_{1, i}^{2}\right)^{-1} \sim \operatorname{lnv}-\chi^{2}(p+1),
\]
the inverse-chi-squared distribution with \(p+1\) degrees of freedom. Pdf given by
\[
\frac{2^{-(p+1) / 2}}{\Gamma((p+1) / 2)} x^{-(p+1) / 2-1} \exp (-1 /(2 x))
\]

pdf for \(p=1, p=3, p=9\)

\section*{Analysis: \(k=1, p \geq 2\)}

Textbook results:
- \(\mathbb{E}\left\|\Omega_{1}\right\|_{F}^{2}=p+1, \quad \mathbb{E}\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2}=(p-1)^{-1}\)

Tail bound by [Laurent/Massart'2000]:
- \(\mathbb{P}\left[\left\|\Omega_{1}\right\|_{F}^{2} \leq p+1-t\right] \leq \exp \left(-\frac{t^{2}}{4(p+1)}\right)\)

Theorem
For \(k=1, p \geq 2\), we have
\[
\mathbb{E}\left\|\left(I-Q Q^{T}\right) A\right\|_{F} \leq \sqrt{1+\frac{1}{p-1}}\left\|\Sigma_{2}\right\|_{F}
\]

Probability of deviating from this upper bound decays exponentially, as indicated by tail bound for \(\chi_{p+1}^{2}\).

\section*{Analysis: general \(k, p \geq 2\)}

Again use
\[
\mathbb{E}\left\|\Sigma_{2} \Omega_{2} \Omega_{1}^{\dagger}\right\|_{F}^{2}=\left\|\Sigma_{2}\right\|_{F}^{2} \cdot \mathbb{E}\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2} .
\]

By standard results in multivariate statistics, we have
\[
\mathbb{E}\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2}=\frac{k}{p-1} .
\]

Sketch of argument:
- \(\Omega_{1} \Omega_{1}^{T} \sim W_{k}(k+p)\) (Wishart distribution with \(k+p\) degrees of freedom)
- \(\left(\Omega_{1} \Omega_{1}^{T}\right)^{-1} \sim \mathcal{W}_{k}^{-1}(k+p)\) (inverse Wishart distribution with \(r+p\) degrees of freedom)
- \(\mathbb{E}\left(\Omega_{1} \Omega_{1}^{T}\right)^{-1}=\frac{1}{k-1} I_{k}\); see Page 96 in [Muirhead'1982] \({ }^{8}\)
- Result follows from \(\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2}=\left\|\Omega_{1}^{T}\left(\Omega_{1} \Omega_{1}^{T}\right)^{-1}\right\|_{F}^{2}=\operatorname{trace}\left(\left(\Omega_{1} \Omega_{1}^{T}\right)^{-1}\right)\)

\footnotetext{
\({ }^{8}\) R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, NY, 1982.
}

\section*{Analysis: general \(k, p \geq 2\)}

Together with \(\mathbb{E}\left\|\left(I-Q Q^{T}\right) A\right\|_{F} \leq \sqrt{\mathbb{E}\left\|\left(I-Q Q^{T}\right) A\right\|_{F}^{2}}\), we obtain:
Theorem
For \(p \geq 2\), we have
\[
\begin{gathered}
\mathbb{E}\left\|\left(I-Q Q^{T}\right) A\right\|_{F} \leq \sqrt{1+\frac{k}{p-1}}\left\|\Sigma_{2}\right\|_{F}, \\
\mathbb{E}\left\|\left(I-Q Q^{T}\right) A\right\|_{2} \leq\left(1+\sqrt{\frac{k}{p-1}}\right)\left\|\Sigma_{2}\right\|_{2}+\frac{e \sqrt{k+p}}{p}\left\|\Sigma_{2}\right\|_{F} .
\end{gathered}
\]

For proof of spectral norm and tail bounds, see [HMT].

\section*{Variations on
randomized SVD}
- Streaming and generalized Nyström
- Beyond Gaussian random matrices
- Learning structured matrices

\section*{Variation 1: Streaming}

Motivation of streaming models:
Matrix/data arrives in chunks.
Each chunk should be processed cheaply. Avoid storing the matrix as whole.

Examples:
- Incremental POD for high-dimensional differential equations. \({ }^{9}\)
- PCA for massive data.
- Repeated localized / low-rank modifications of data matrix.

All captured by
\[
A \rightarrow A_{0}+A_{1}+A_{2}+\cdots
\]

Assumption: Cheap to perform sketches of each \(A_{k}\).
Goal: Design (randomized) method suitable for streamed data.

\footnotetext{
\({ }^{9}\) J. A. Tropp et al. "Streaming Low-Rank Matrix Approximation with an Application to Scientific Simulation". In: SIAM J. Sci. Comput. 41.4 (Jan. 2019), A2430-A2463.
}

\section*{Variation 1: Streaming}

Randomized SVD:
1. Draw standard Gaussian random matrix \(\Omega \in \mathbb{R}^{n \times(k+p)}\).
2. Perform block mat-vec \(Y=A \Omega\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

Not suitable for streaming. Why?

\section*{Variation 1: Streaming}

Randomized SVD:
1. Draw standard Gaussian random matrix \(\Omega \in \mathbb{R}^{n \times(k+p)}\).
2. Perform block mat-vec \(Y=A \Omega\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

\section*{Idea:}
- \(Q Q^{T}\) is best/orthogonal projection of cols of \(A\) onto range \((A \Omega) \sim\) needs to be relaxed.
- Consider any \(\Psi \in \mathbb{R}^{m \times k+p+\ell}\) with \(\ell \geq 2\) such that \(\Psi^{T} A \Omega\) has (full) rank \(k+p\). Then
\[
\Pi_{\Omega, \psi}:=(A \Omega)\left(\Psi^{\top} A \Omega\right)^{\dagger} \Psi^{\top} A
\]
is (oblique) projector onto range \((A \Omega)\).

\section*{Variation 1: Streaming}

Generalized Nyström = algorithm for constructing approximation \(\widehat{A}=\Pi_{\Omega, \psi} A=(A \Omega)\left(\Psi^{\top} A \Omega\right)^{\dagger} \Psi^{\top} A\) :
1. Draw independent Gaussian random matrices \(\Omega \in \mathbb{R}^{n \times(k+p)}\), \(\psi \in \mathbb{R}^{n \times k+p+\ell}\).
2. Perform block mat-vec \(Y=A \Omega\).
3. Perform block mat-vec \(W=A^{T} \Psi\).
4. Compute \(S=W^{\top} \Omega\) and \(\tilde{Y}=Y S^{\dagger}\) (via QR or SVD of \(S\), possibly regularized [Nakatsukasa]).
5. Return \(\widehat{A}=Y W^{T}\) in factored form.
- Steps 2 and 3 linear in \(A\) and thus well suited for streaming model:
\[
\begin{aligned}
Y & =\left(A_{0}+A_{1}+\cdots\right) \Omega=A_{0} \Omega+A_{1} \Omega+\cdots \\
W & =\left(A_{0}+A_{1}+\cdots\right)^{T} \Psi=A_{0}^{T} \Psi+A_{1}^{T} \Psi+\cdots .
\end{aligned}
\]

Only compute \(A_{j} \Omega, A_{j}^{T} \Psi\) (cheap) and update \(Y, W\) in \(j\) th step. No storage of \(A_{j} \Omega, A_{j}^{T} \psi\) or \(A\) needed.
- Step 4 is not linear in \(A /\) not streaming, but it is cheap.

\section*{Variation 1: Streaming}

Analysis of streaming [Tropp et al.'2019, Nakatsukasa]:
\[
\begin{aligned}
\|A-\widehat{A}\|_{F}^{2} & =\left\|A-\Pi_{\Omega, \psi} A\right\|_{F}^{2}=\overbrace{\left\|A-Q Q^{T} A\right\|_{F}^{2}}^{\text {Rand. SvD }}+\overbrace{\left\|Q Q^{T} A-\Pi_{\Omega, \Psi} A\right\|_{F}^{2}}^{\text {Distortion of proj. }} \\
& =\cdots \leq\left\|A-Q Q^{T} A\right\|_{F}^{2}+\left\|\left(\Psi^{T} Q\right)^{\dagger}\left(\Psi^{T} Q_{\perp}\right) Q_{\perp}^{T} A\right\|_{F}^{2}
\end{aligned}
\]

Using
\[
\begin{aligned}
& \mathbb{E}_{\Omega, \psi}\left\|\left(\Psi^{T} Q\right)^{\dagger}\left(\Psi^{T} Q_{\perp}\right) Q_{\perp}^{T} A\right\|_{F}^{2} \\
= & \mathbb{E}_{\Omega}\left[\mathbb{E}_{\Psi}\left[\left\|\left(\Psi^{T} Q\right)^{\dagger}\left(\Psi^{T} Q_{\perp}\right) Q_{\perp}^{T} A\right\|_{F}^{2} \mid \Omega\right]\right] \\
\leq & \left(1+\frac{k+p}{\ell-1}\right) \mathbb{E}_{\Omega}\left[\left\|Q_{\perp}^{T} A\right\|_{F}^{2}\right]
\end{aligned}
\]

In summary:
\[
\mathbb{E}\|A-\widehat{A}\|_{F} \leq \sqrt{1+\frac{k}{p-1}} \sqrt{1+\frac{k+p}{\ell-1}}\left\|\Sigma_{2}\right\|_{F}
\]

\section*{Variation 1: Streaming}
- Streaming algorithms useful in the context of compressing structured tensors in Tucker format [Sun et al.'2019] and TT format [Daas et al.'2021, Shi et al.'2021, Ma/Solomonik'2022, Kressner et al.'2023]
- If \(A\) is symmetric positive definite, choose \(\psi=\Omega \sim\) approximation
\[
\widehat{A}=(A \Omega)\left(\Omega^{T} A \Omega\right)^{\dagger} \Omega^{T} A
\]

This saves half of the matrix multiplications!
Analysis more difficult. \({ }^{10}\)

\footnotetext{
\({ }^{10}\) A. Gittens and M. W. Mahoney. "Revisiting the Nyström method for improved large-scale machine learning". In: J. Mach. Learn. Res. 17 (2016).
}

\section*{Variation 2: Beyond Gaussian random matrices}

Johnson-Lindenstrauss lemma: \(N\) points in \(\mathbb{R}^{n}\) can be embedded (by linear projection) into a subspace of dimension \(\mathcal{O}\left(\varepsilon^{-2} \log N\right)\) such that distances are preserved up to factor \(1 \pm \varepsilon\).
Scaled Gaussian random matrices produce such embeddings \(x \mapsto \Omega^{T} x\) with high probability. More generally:
JL property. A distribution over \(\mathbb{R}^{n \times \ell}\) has the \((\varepsilon, \delta)\)-JL property if a random matrix \(\Omega\) satisfies
\[
\mathbb{P}\left(\left|\left\|\Omega^{T} x\right\|_{2}^{2}-1\right|>\varepsilon\right)<\delta
\]
for an arbitrary but fixed \(x \in \mathbb{R}^{n},\|x\|_{2}=1\).
- A Gaussian random matrix (divided by \(\sqrt{\ell}\) ) has the JL property when \(\ell=\mathcal{O}\left(\varepsilon^{-2} \log (1 / \delta)\right)\).
- JL lemma is obtained from union bound: To preserve \(N^{2}\) pairwise distances \(\left\|x_{i}-x_{j}\right\|_{2}\) use \(\left(\varepsilon, \delta / N^{2}\right)\) JL-property \(\sim\)
\(\ell=O\left(\varepsilon^{-2}(\log N+\log (1 / \delta))\right)\)

\section*{Variation 2: Beyond Gaussian random matrices}

JL property. An \(n \times \ell\) random matrix \(\Omega\) has the \((\varepsilon, \delta)\)-JL property if
\[
\mathbb{P}\left(\left|\left\|\Omega^{T} x\right\|_{2}^{2}-1\right|>\varepsilon\right)<\delta
\]
for an arbitrary but fixed \(x \in \mathbb{R}^{n},\|x\|_{2}=1\).
Generalization to subspaces:
Obvlious subspace embedding (OSE) property [Sarlos'2006]. An \(n \times \ell\) random matrix \(\Omega\) has the ( \(k, \varepsilon, \delta\) )-OSE property if
\[
\mathbb{P}\left(\left|\left\|\Omega^{T} x\right\|_{2}^{2}-1\right|>\varepsilon\right)<\delta, \quad \forall x \in \mathcal{V}
\]
for an arbitrary but fixed \(k\)-dimensional subspace \(\mathcal{V} \subset \mathbb{R}^{n}\).
\(J\) j property \(\rightarrow\) OSE property: Given ONB \(V\) of \(\mathcal{V}\), OSE is equivalent to
\[
y^{T}\left(\Omega^{T} V\right)^{T} \Omega^{T} V y \approx 1, \quad \forall y \in \mathbb{R}^{k},\|y\|_{2}=1
\]

It is "enough" to test with \(2^{100 k}\) vectors on the unit sphere in order to capture norm of a matrix within factor 4 . Union bound:
\(\left(\varepsilon / 4, \delta / 2^{100 k}\right)\)-JL turns into ( \(k, \varepsilon, \delta\) )-OSE.
Gaussian random matrices: \(\ell=O\left(\varepsilon^{-2}(k+\log (1 / \delta))\right.\) gives OSE.

\section*{Variation 2: Beyond Gaussian random matrices}

OSE property. An \(n \times \ell\) random matrix \(\Omega\) has the ( \(k, \varepsilon, \delta\) )-OSE property if
\[
\mathbb{P}\left(\left|\left\|\Omega^{\top} x\right\|_{2}^{2}-1\right|>\varepsilon\right)<\delta, \quad \forall x \in \mathcal{V}
\]
for an arbitrary but fixed \(k\)-dimensional subspace \(\mathcal{V} \subset \mathbb{R}^{n}\).
Given ONB \(V\) of \(\mathcal{V}\), OSE implies
\[
\left\|\left(\Omega^{T} V\right)^{\dagger}\right\|_{2}=\frac{1}{\sigma_{\min }\left(\Omega^{T} V\right)}=\frac{1}{\min \left\{\left\|\Omega^{T} x:\right\| x \|_{2}=1, x \in \mathcal{V}\right\}} \leq \frac{1}{1-\varepsilon}
\]

Recall structural bound for randomized SVD:
\[
\left\|\left(I-Q Q^{T}\right) A\right\|_{F}^{2} \leq\left(1+\left\|\left(V_{k}^{T} \Omega\right)^{\dagger}\right\|_{2}^{2}\left\|V_{\perp}^{T} \Omega\right\|_{2}^{2}\right)\left\|\Sigma_{2}\right\|_{F}^{2}
\]
where \(V_{k}\) contains \(k\) dominant right singular vectors of \(A\). \(\left\|\left(V_{k}^{\top} \Omega\right)^{\dagger}\right\|_{2}^{2}\) controlled through OSE (with, say, \(\varepsilon=1 / 2\), while \(\left\|V_{\perp}^{\dagger} \Omega\right\|_{2} \leq\|\Omega\|_{2}\) is usually bounded (except for Gaussian).

\section*{Variation 2: Beyond Gaussian random matrices}

Examples:
- (scaled) Rademacher matrices
\(=n \times \ell\) matrices with iid \(\pm 1(50 \% / 50 \%)\) entries.
OSE holds \({ }^{11}\) for \(\ell=\mathcal{O}(k+\log (1 / \delta))\)
- SRHT = sub-sampled randomized Hadamard transform
\(\Omega=\sqrt{n / \ell} D H R\), where
\(D=\) diagonal with Rademacher diagonal entries
\(R=n \times \ell\) uniform random sampling matrix
\(H=\frac{1}{\sqrt{n}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \otimes\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \otimes \cdots \otimes\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\)
(zero padding if \(n\) is not a power of 2)
OSE holds for \(\ell=\mathcal{O}(k \log (1 / \delta) \log (n / \delta))\)
[Boutsidis/Gittens'2013]
- Subsampled Fourier transform.

OSE holds for \(\ell=\mathcal{O}\left((\sqrt{k}+\sqrt{\log (k n)})^{2} \log k\right)\) with probability \(\geq 1-1 / k[H M T]\)

\footnotetext{
\({ }^{11}\) Generally true for all matrices with columns from sub-Gaussian distribution.
}

\section*{Variation 2: Beyond Gaussian random matrices}
- Sparse transforms

One nonzero entry per row in \(\Omega\) :
OSE holds for \(\ell=\mathcal{O}\left(k^{2}\right)\) with prob. \(>2 / 3\).
[Nelson/Nguyen'2013].
\(\mathcal{O}(\log (k / \delta))\) entries per row in \(\Omega\) :
OSE holds for \(\ell=\mathcal{O}(k \log (k / \delta)\). [Cohen'2016].
- TensorSketch
- CountSketch
- ...

Many of these embeddings become computationally advantageous over Gaussian random matrices iff \(k\) is sufficiently large.

\section*{Variation 3: Learning structured matrices}

Motivation: Consider kernel matrix
\[
K=\left[\begin{array}{ccc}
\kappa\left(x_{1}, x_{1}\right) & \cdots & \kappa\left(x_{1}, x_{n}\right) \\
\vdots & & \vdots \\
\kappa\left(x_{n}, x_{1}\right) & \cdots & \kappa\left(x_{n}, x_{n}\right)
\end{array}\right], \quad \kappa: D \times D \rightarrow \mathbb{R} .
\]
for 1D-kernel \(\kappa\) with diagonal singularity/non-smoothness. Example:
\[
\kappa(x, y)=\exp (-|x-y|), \quad x, y \in[0,1]
\]

Function
Singular values



\section*{Variation 3: Learning structured matrices}

Block partition K:


\section*{Variation 3: Learning structured matrices}

Block partition \(K\) :
\[
K=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]=\left[\begin{array}{cccc}
K_{11} & \\
& K_{22}
\end{array}\right]
\]

Basic idea of peeling method [Lin/Lu/Ying'2011]: Off-diagonal blocks can be "learnt" from
\[
K\left[\begin{array}{cc}
\Omega_{1} & 0 \\
0 & \Omega_{2}
\end{array}\right]=\left[\begin{array}{cc}
\star & K_{12} \Omega_{2} \\
K_{21} \Omega_{1} & \star
\end{array}\right]
\]

Compute QR decompositions
\[
K_{12} \Omega_{2}=Q_{1} R_{1}, \quad K_{21} \Omega_{1}=Q_{2} R_{2}
\]

\section*{Variation 3: Learning structured matrices}

Block partition \(K\) :
\[
K=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]=\left[\begin{array}{cccc}
K_{11} & \\
& K_{22}
\end{array}\right]
\]

Compute
\[
\left[\begin{array}{cc}
Q_{1} & 0 \\
0 & Q_{2}
\end{array}\right]^{T} K=\left[\begin{array}{cc}
\star{ }^{\star} & Q_{1}^{T} K_{12} \\
Q_{2}^{T} K_{21} & \star
\end{array}\right]
\]

Level 1 of peeling: Use randomized SVD to approximate off-diagonal blocks:
\[
K_{1}=\left[\begin{array}{cc}
0 & Q_{1} Q_{1}^{T} K_{12} \\
Q_{2} Q_{2}^{T} K_{21} & 0
\end{array}\right]
\]

\section*{Variation 3: Learning structured matrices}

Level 2: Partition diagonal blocks of remainder:
\[
\begin{aligned}
K-K_{1} & \approx\left[\begin{array}{cccc}
K_{11} & K_{12} & & 0 \\
K_{21} & K_{22} & K_{33} & K_{34} \\
0 & K_{43} & K_{44}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
K_{11} & \square & 0 \\
\square & K_{22} & & \\
& 0 & K_{33} & \square
\end{array}\right]
\end{aligned}
\]

\section*{Variation 3: Learning structured matrices}

Level 2:
\[
\left(K-K_{1}\right)\left[\begin{array}{cc}
\Omega_{1} & 0 \\
0 & \Omega_{2} \\
\Omega_{3} & 0 \\
0 & \Omega_{4}
\end{array}\right]=\left[\begin{array}{cc}
\star & K_{12} \Omega_{2} \\
K_{21} \Omega_{1} & \star \\
\star & K_{34} \Omega_{4} \\
K_{43} \Omega_{3} & \star
\end{array}\right]
\]

Use 4 randomized SVDs to reconstruct off-diagonal blocks on Level 2 \(\sim K_{2}\).
Level 3 considers \(K-K_{1}-K_{2}\), etc.
- If every off-diagonal block on every level admits good rank- \(k\) approximation \(\sim\) Recovery from \(\mathcal{O}(k \log n)\) matrix-vector products.
- \(K\) is approximated in the HODLR format, one of the simplest hierarchical matrix formats.

\section*{Variation 3: Learning structured matrices}

During the last years, several extensions/improvements:
- General \(\mathcal{H}\)-matrices = general recursive block partition.
- \(\mathrm{HSS} / \mathcal{H}^{2}\)-matrices impose additional nestedness conditions on the low-rank factors on different levels of the recursion and can be reconstruced with \(\mathcal{O}(k)\) matrix-vector products.
Most recent developments:
- D. Halikias and A. Townsend. Structured matrix recovery from matrix-vector products. arXiv:2212.09841, (2022).
- J. Levitt and P.-G. Martinsson. Linear-complexity black-box randomized compression of rank-structured matrices, arXiv:2205.02990, (2022).

\section*{3. Randomized low-rank approximation \\ (in infinite dimensions)}

Primary reference: [Boullé/Townsend] \({ }^{12}\)

\footnotetext{
\({ }^{12}\) Nicolas Boullé and Alex Townsend. "Learning elliptic partial differential equations with randomized linear algebra". In: Found. Comput. Math. (2022), pp. 1-31.
}

\section*{Infinite randomized SVD?}

First step of randomized SVD applied to \(A \in \mathbb{R}^{m \times n}\) :
\[
Y=A \Omega, \quad \Omega \text { is } n \times k \text { Gaussian random matrix. }
\]

What is a suitable extension to a (Hilbert-Schmidt) operator \(\mathcal{A}: H_{1} \rightarrow H_{2}\) for infinite-dimensional Hilbert spaces \(H_{1}, H_{2}\) ?

Example: Integral operator \(\mathcal{A}: L^{2}\left(D_{y}\right) \rightarrow L^{2}\left(D_{x}\right)\) with
\[
(\mathcal{A} f)(x)=\int_{D_{y}} g(x, y) f(y) \mathrm{d} y, \quad x \in D_{x}
\]
for some kernel \(g \in L^{2}\left(D_{x} \times D_{y}\right)\).
Goal:
Learn \(\mathcal{A}\) from applying it to a few "random" \(f\).

\section*{Infinite randomized SVD?}

First step of randomized SVD applied to \(A \in \mathbb{R}^{m \times n}\) :
\[
Y=A \Omega, \quad \Omega \text { is } n \times k \text { Gaussian random matrix. }
\]

\section*{What is a suitable extension to a (Hilbert-Schmidt) operator \(\mathcal{A}: H_{1} \rightarrow H_{2}\) for infinite-dimensional Hilbert spaces \(H_{1}, H_{2}\) ?}

Example: Integral operator \(\mathcal{A}: L^{2}\left(D_{y}\right) \rightarrow L^{2}\left(D_{x}\right)\) with
\[
(\mathcal{A} f)(x)=\int_{D_{y}} g(x, y) f(y) \mathrm{d} y, \quad x \in D_{x}
\]
for some kernel \(g \in L^{2}\left(D_{x} \times D_{y}\right)\).
Goal:
Learn \(\mathcal{A}\) from applying it to a few "random" \(f\).

Proposal by [Boullé/Townsend]: Choose samples from Gaussian processes with prescribed regularity.

\section*{Preliminaries: HS operators}

Assume that \(\mathcal{A}: L^{2}\left(D_{y}\right) \rightarrow L^{2}\left(D_{x}\right)\) is Hilbert-Schmidt (HS), that is, for any ONB \(\left\{e_{i}\right\}_{i=1}^{\infty}\) of \(L^{2}\left(D_{y}\right)\) one has
\[
\|\mathcal{A}\|_{\mathrm{HS}}:=\left(\sum_{i}\left\|\mathcal{A} e_{i}\right\|_{L^{2}\left(D_{x}\right)}\right)^{1 / 2}<\infty .
\]

Most important property: HS operators admit SVD. \(\exists\) ONB \(\left\{u_{i}\right\}_{i=1}^{\infty}\) of \(L^{2}\left(D_{x}\right)\) and \(\left\{v_{i}\right\}_{i=1}^{\infty}\) of \(L^{2}\left(D_{y}\right)\) such that
\[
\mathcal{A}=\sum_{i=1}^{\infty} \sigma_{i} u_{i}\left\langle v_{i}, \cdot\right\rangle_{L^{2}\left(D_{y}\right)}, \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0
\]

Implies that \(\|\mathcal{A}\|_{\text {HS }}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots\) and
\[
\mathcal{T}_{k}(\mathcal{A}):=\sum_{i=1}^{k} \sigma_{i} u_{i}\left\langle v_{i}, \cdot\right\rangle_{L^{2}\left(D_{y}\right)}, \quad\left\|\mathcal{A}-\mathcal{T}_{k}(\mathcal{A})\right\|_{\mathrm{HS}}^{2}=\sigma_{k+1}^{2}+\sigma_{k+2}^{2}+\cdots
\]
is best rank- \(k\) approximation (gold standard).

\section*{Preliminaries: Gaussian processes}

For symm. pos. def. \(K \in \mathbb{R}^{n \times n}\), let \(\mathcal{N}(0, K)\) denote multivariante normal distribution with zero mean and covariance matrix \(K\). Infinite-dimensional analogue: Stochastic process \(F:=\left\{F_{t}, t \in D\right\}\) is Gaussian if \(\left(F_{t_{1}}, \ldots, F_{t_{n}}\right)\) is multivariate Gaussian for every finite set of indices \(t_{1}, \ldots, t_{n} \in D\).

\section*{Preliminaries: Gaussian processes}

For symm. pos. def. \(K \in \mathbb{R}^{n \times n}\), let \(\mathcal{N}(0, K)\) denote multivariante normal distribution with zero mean and covariance matrix \(K\). Infinite-dimensional analogue: Stochastic process \(F:=\left\{F_{t}, t \in D\right\}\) is Gaussian if \(\left(F_{t_{1}}, \ldots, F_{t_{n}}\right)\) is multivariate Gaussian for every finite set of indices \(t_{1}, \ldots, t_{n} \in D\).
Specific setting: Given continuous symm. pos. def. kernel \(\kappa: D \times D \rightarrow \mathbb{R}\), suppose that \(\left(F_{t_{1}}, \ldots, F_{t_{n}}\right)\) is multivariate Gaussian with zero mean and covariance matrix
\[
(K)_{i j}=\kappa\left(t_{i}, t_{j}\right), \quad i, j=1, \ldots, n .
\]

Corresponding integral operator \(\mathcal{K}: L^{2}(D) \rightarrow L^{2}(D)\) admits spectral decomposition ( \(\Leftrightarrow\) Mercer representation of kernel):
\[
\mathcal{K}(v(\cdot)):=\int_{D} \kappa(\cdot, y) v(y) \mathrm{d} y=\sum_{i=1}^{\infty} \lambda_{i}\left\langle\psi_{i}, v\right\rangle \psi_{i}(\cdot),
\]
with orthon. eigenfunctions \(\psi_{i}\) and eigenvalues \(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\).

\section*{Preliminaries: Gaussian processes}

Diagonalization of \(\mathcal{K}\) implies Karhune-Loève expansion of stochastic field
\[
F_{t}=\sum_{i=1}^{\infty} \lambda_{i} X_{i} \psi_{i}(t), \quad X_{i} \sim \mathcal{N}(0,1) \text { iid }
\]

Decay of \(\lambda_{i} \sim\) smoothness of \(\kappa \sim\) characterization of regularity of \(F\). Popular: Squared-exp. \(\kappa(x, y)=\exp \left(-|x-y|^{2} /(2 \ell)^{2}\right)\) for \(D=[-1,1]\)


Kernel and samples for different \(\ell\) (Picture taken from [BT]). Other popular choice: Matérn kernel.

\section*{Preliminaries: Gaussian processes}

Diagonalization of \(\mathcal{K}\) implies Karhune-Loève expansion of stochastic field
\[
F_{t}=\sum_{i=1}^{\infty} \lambda_{i} X_{i} \psi_{i}(t), \quad X_{i} \sim \mathcal{N}(0,1) \text { iid }
\]

Decay of \(\lambda_{i} \sim\) smoothness of \(\kappa \sim\) characterization of regularity of \(F\).
To (approximately) sample from \(F_{t}\) : Consider truncated KL expansion
\[
\sum_{i=1}^{m} \lambda_{i} X_{i} \psi_{i}(t), \quad X_{i} \sim \mathcal{N}(0,1) \text { iid }
\]
+ finite element / spectral discretization in space.
Prescribe KL expansion: functions (polynomials) \(\psi_{i}\) and eigenvalues \(\lambda_{i}\) instead of \(\kappa\) to impose smoothness.

\section*{Randomized SVD \(\rightarrow\) Hilbert-Schmidt operators}
1. Draw standard Gaussian random matrix \(\Omega \in \mathbb{R}^{n \times(k+p)}\).
2. Perform block mat-vec \(Y=A \Omega\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

Line 1 replaced by
Sample \(f_{1}, \ldots, f_{k+p} \sim F\) (Gaussian process).

\section*{Randomized SVD \(\rightarrow\) Hilbert-Schmidt operators}
1. Sample \(f_{1}, \ldots, f_{k+p} \sim F\) (Gaussian process).
2. Perform block mat-vec \(Y=A \Omega\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

Line 2 replaced by
Apply operator: \(h_{1}=\mathcal{A}\left(f_{1}\right), \ldots, h_{k+p}=\mathcal{A}\left(f_{k+p}\right)\).

\section*{Randomized SVD \(\rightarrow\) Hilbert-Schmidt operators}
1. Sample \(f_{1}, \ldots, f_{k+p} \sim F\) (Gaussian process).
2. Apply operator: \(h_{1}=\mathcal{A}\left(f_{1}\right), \ldots, h_{k+p}=\mathcal{A}\left(f_{k+p}\right)\).
3. Compute (economic) QR decomposition \(Y=Q R\).
4. Form \(B=Q^{T} A\).
5. Return \(\widehat{A}=Q B\) (in factorized form)

Lines 3-5 replaced by Return \(\Pi_{H} \mathcal{A}\), where \(\Pi_{H}\) is orthogonal projection onto
\[
\operatorname{span}\left\{h_{1}, \ldots, h_{k+p}\right\}
\]

\section*{Randomized SVD for Hilbert-Schmidt operators}
1. Sample \(f_{1}, \ldots, f_{k+p} \sim F\) (Gaussian process).
2. Apply operator: \(h_{1}=\mathcal{A}\left(f_{1}\right), \ldots, h_{k+p}=\mathcal{A}\left(f_{k+p}\right)\).
3. Return \(\Pi_{H} \mathcal{A}\)

Implementation of Step 3 depends on \(\mathcal{A}\). For an integral op:
\[
\left(\Pi_{H} A f\right)(x)=\int_{D_{y}} \underbrace{H(x)\left(H^{*} H\right)^{-1} H^{*} g(\cdot, y)}_{=g_{k+p}(x, y)} f(y) \mathrm{d} y
\]
where
- \(H(x)=\left[h_{1}(x), \ldots, h_{k+p}(x)\right]\)
- \(H^{*} H=\left[\begin{array}{ccc}\left\langle h_{1}, h_{1}\right\rangle & \cdots & \left\langle h_{1}, h_{k+p}\right\rangle \\ \vdots & & \vdots \\ \left\langle h_{k+p}, h_{1}\right\rangle & \cdots & \left\langle h_{k+p}, h_{k+p}\right\rangle\end{array}\right]\),
\(H^{*} g(\cdot, y)=\left[\begin{array}{c}\left\langle h_{1}, g(\cdot, y)\right\rangle \\ \vdots \\ \left\langle h_{k+p}, g(\cdot, y)\right\rangle\end{array}\right]\)
- \(g_{k+p}\) is a reduced kernel of rank \(k+p\)

\section*{Analysis of randomized SVD for HS}

Structural bound carries through without difficulties [BT]:
\[
\left\|\mathcal{A}-\Pi_{H} \mathcal{A}\right\|_{\mathrm{HS}}^{2} \leq\left\|\Sigma_{2}\right\|_{\mathrm{HS}}^{2}+\left\|\Sigma_{2} \Omega_{2} \Omega_{1}^{\dagger}\right\|_{\mathrm{HS}}^{2}
\]
where:
- \(\mathcal{A}\) is HS with SVD
\[
\mathcal{A}=U_{1} \Sigma V_{1}^{*}+\sum_{i=k+1}^{\infty} u_{i}\left\langle v_{i}, \cdot\right\rangle
\]
- \(\Sigma_{2}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots\right)\)
- " \(\Omega_{2}=V_{2}^{*} F\) "
- \(\Omega_{1}=V_{1}^{*} F=\left[\begin{array}{ccc}\left\langle v_{1}, f_{1}\right\rangle & \cdots & \left\langle v_{1}, f_{k+p}\right\rangle \\ \vdots & & \vdots \\ \left\langle v_{k}, f_{1}\right\rangle & \cdots & \left\langle v_{k}, f_{k+p}\right\rangle\end{array}\right]\)

Two key differences to analysis in fd case:
- \(\Omega_{1}, \Omega_{2}\) are not independent
- \(\Omega_{1}\) is not a Gaussian matrix

\section*{Analysis of randomized SVD for HS}

On the distribution of \(\Omega_{1}\) :
- In finite dimensions: If \(f \sim \mathcal{N}(0, K)\) then \(V_{1}^{*} f \sim \mathcal{N}\left(0, V_{1}^{*} K V_{1}\right)\).
- In infinite dimensions, continuity argument via (truncated) KL expansion: Each column of \(\Omega_{1}=V_{1}^{*} F\) is independent and \(\sim \mathcal{N}(0, K)\), with
\[
k_{i j}=\int_{D_{y}} \int_{D_{x}} v_{i}(x) \kappa(x, y) v_{j}(y) \mathrm{d} x \mathrm{~d} y
\]

Difficulty: Eigenvalues of \(\kappa(x, y)\) decay.

\section*{Analysis of randomized SVD for HS}

On the distribution of \(\Omega_{1}\) :
- In finite dimensions: If \(f \sim \mathcal{N}(0, K)\) then \(V_{1}^{*} f \sim \mathcal{N}\left(0, V_{1}^{*} K V_{1}\right)\).
- In infinite dimensions, continuity argument via (truncated) KL expansion: Each column of \(\Omega_{1}=V_{1}^{*} F\) is independent and \(\sim \mathcal{N}(0, K)\), with
\[
k_{i j}=\int_{D_{y}} \int_{D_{x}} v_{i}(x) \kappa(x, y) v_{j}(y) \mathrm{d} x \mathrm{~d} y
\]

Difficulty: Eigenvalues of \(\kappa(x, y)\) decay.
On the bright side: \(\Omega_{1} \Omega_{1}^{T}\) has Wishart distribution (with covariance matrix \(K\) ) covered by textbooks [Muirhead'09]:
\[
\mathbb{E}\left[\left\|\Omega_{1}^{\dagger}\right\|_{F}^{2}\right]=\frac{\operatorname{trace}\left(K^{-1}\right)}{p-1}
\]

\section*{Analysis of randomized SVD for HS}
\[
\begin{aligned}
\mathbb{E}\left[\left\|\mathcal{A}-\Pi_{H} \mathcal{A}\right\|_{\mathrm{HS}}\right] \leq & \left(1+\sqrt{\frac{\operatorname{trace}\left(K^{-1}\right) \lambda_{1}(k+p)}{p-1}}\right) \\
& \times \text { best rank- } k \text { approximation error }
\end{aligned}
\]

Interpretation of trace \(\left(K^{-1}\right)\) :
To avoid dominating best rank- \(k\) approximation error, KL eigenvalues (of GP) need to decay more slowly than (squared) singular values of \(\mathcal{A}\).
Intiution: Kernel \(\kappa\) of GP less regular than kernel \(g\) of \(\mathcal{A}\).

\section*{Randomized SVD for learning PDEs}

Goal: Learn solution operator / Green's kernel for linear PDE from input (=source term) / output (= solution) pairs.
GreenLearning \({ }^{13}=\) peeling + infinite-dimensional randomized SVD.


\footnotetext{
\({ }^{13}\) N. Boullé, D. Halikias, and A. Townsend. Elliptic PDE learning is provably data-efficient. 2023. arXiv: 2302 .12888.
}

\section*{Conclusions}
- Finite-dimensional randomized SVD preferred method for low-rank approximation if matrix-vector products is access model. Basic algorithm well understood.
- Infinite-dimensional setting still in its infancy.

Selected ongoing developments not discussed:
- Randomized SVD for trace estimation \(\sim\) Hutch++ [Meyer et al.'2021].
- Randomized SVD for matrix function approximation [DK/Persson'2023].
- Potential of OSE for numerical linear algebra continues being explored: Solving least squares problems = BLENDENPIK, sketching Krylov subspaces for accelerating classical algorithms (CG, GMRES, ...), computing nullspaces, ...```


[^0]:    ${ }^{1}$ G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, Baltimore, MD, 2013.
    ${ }^{2}$ R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 2013.

