Approximation Properties of Neural Networks

Felix Voigtlaender
http://voigtlaender.xyz

Workshop and Summer School on Applied Analysis 2023
Chemnitz, Germany, 18-22 September 2023

Deep learning dramatically changed what computers can do

Image recognition

www.infoq.com/presentations/deepmind-q-network

Game intelligence

heise.de

Autonomous driving

www.lindsaysing.com/austin-tech-alliance/

Speech recognition

www.quantiphi.com/portfolio-posts/speech-recognition/

"Deep learning" roughly means:

Adjust weights of a deep neural network based on training data

Labelled training examples $\left(x_{i}, y_{i}\right)$

The performance of a machine learning system is influenced by Expressiveness, Generalization, and Optimization

- $\mathcal{X} \times \mathcal{Y}$: set of all possible (input, label) pairs
- \mathbb{P} : "ground truth" distribution on $\mathcal{X} \times \mathcal{Y}$ (unknown)

Goal: Minimize the (expected) risk

$$
R(f):=\mathbb{P}(f(X) \neq Y)
$$

given only training sample
$S=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right)\right) \stackrel{\text { iid }}{\sim} \mathbb{P}$.

The performance of a machine learning system is influenced by Expressiveness, Generalization, and Optimization

- $\mathcal{X} \times \mathcal{Y}$: set of all possible (input, label) pairs
- \mathbb{P} : "ground truth" distribution on $\mathcal{X} \times \mathcal{Y}$ (unknown)

Goal: Minimize the (expected) risk

$$
R(f):=\mathbb{P}(f(X) \neq Y),
$$

www.infoq.com/presentations/deepmind-q-network
given only training sample
$S=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right)\right) \stackrel{\text { iid }}{\sim} \mathbb{P}$.

e.g. $h_{S}^{*}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbb{1}_{h\left(X_{i}\right) \neq Y_{i}}$
or $\quad h_{S}^{*}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N}\left\|h\left(X_{i}\right)-Y_{i}\right\|^{2}$

The performance of a machine learning system is influenced by Expressiveness, Generalization, and Optimization

- $\mathcal{X} \times \mathcal{Y}$: set of all possible (input, label) pairs
- \mathbb{P} : "ground truth" distribution on $\mathcal{X} \times \mathcal{Y}$

(unknown)

Go
In this lecture, we only consider ${ }_{s}^{g i v}$ the approximation error!

$$
\begin{aligned}
& \text { e.g. } h_{S}^{*}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbb{1}_{h\left(X_{i}\right) \neq Y_{i}} \\
& \text { or } \quad h_{S}^{*}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N}\left\|h\left(X_{i}\right)-Y_{i}\right\|^{2}
\end{aligned}
$$

Book recommendations regarding the basics of machine learning

Practice:

OREELIY

ت

oreilly

Hands-On
Machine Learning with Scikit-Learn, Keras \& TensorFlow
Concepts, Tools, and Tecthiques

Basic principles and theory:

Foundations of
Machine Learning ,wewat antiso

Mehtrye Motri,
Afhin Rotarimaskhy Ashin Rostamizadh,
iod Ameet Taballar

Table of contents

1. The basics of neural networks
2. The universal approximation theorem
3. Quantitative approximation rates for Barron functions
4. Universal approximation for complex-valued neural networks

The basics of neural networks

1. The basics of neural networks

2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions
4. Universal approximation for complex-valued neural networks

A neural network repeatedly applies affine-linear maps and an activation function

A neural network repeatedly applies affine-linear maps

 and an activation function

- L: number of (hidden) layers,
- $\left(N_{0}, \ldots, N_{L+1}\right)$: neurons per layer
- $T_{\ell}: \mathbb{R}^{N_{\ell}} \rightarrow \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell} x+b_{\ell}:$ connections between neurons (weights),
- $\varrho: \mathbb{R} \rightarrow \mathbb{R}$: activation function.

Neural network: $\Phi=\left(T_{0}, \ldots, T_{L}\right)$
Network function (Realization):
$R_{\varrho}(\Phi): \mathbb{R}^{N_{0}} \rightarrow \mathbb{R}^{N_{L+1}}$, given by

$$
R_{\varrho}(\Phi)=T_{L} \circ\left(\varrho \circ T_{L-1}\right) \circ \cdots \circ\left(\varrho \circ T_{0}\right)
$$

with ϱ applied componentwise, i.e.,

$$
\varrho\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\left(\varrho\left(x_{1}\right), \ldots, \varrho\left(x_{k}\right)\right) .
$$

A neural network repeatedly applies affine-linear maps and an activation function

$$
\begin{aligned}
& L(\Phi)=3 \\
& N(\Phi)=13 \\
& W(\Phi)=\sum_{i=0}^{L}\left\|A_{i}\right\|_{\ell^{0}}=34
\end{aligned}
$$

- L: number of (hidden) layers,
- $\left(N_{0}, \ldots, N_{L+1}\right)$: neurons per layer
- $T_{\ell}: \mathbb{R}^{N_{\ell}} \rightarrow \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell} x+b_{\ell}:$ connections between neurons (weights),
- $\varrho: \mathbb{R} \rightarrow \mathbb{R}$: activation function.

Neural network: $\Phi=\left(T_{0}, \ldots, T_{L}\right)$
Network function (Realization): $R_{\varrho}(\Phi): \mathbb{R}^{N_{0}} \rightarrow \mathbb{R}^{N_{L+1}}$, given by

$$
R_{\varrho}(\Phi)=T_{L} \circ\left(\varrho \circ T_{L-1}\right) \circ \cdots \circ\left(\varrho \circ T_{0}\right)
$$

with ϱ applied componentwise, i.e.,

$$
\varrho\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\left(\varrho\left(x_{1}\right), \ldots, \varrho\left(x_{k}\right)\right) .
$$

A neural network repeatedly applies affine-linear maps and an activation function

$$
\begin{aligned}
& L(\Phi)=3 \\
& N(\Phi)=13 \\
& W(\Phi)=\sum_{i-n}^{L}\left\|A_{i}\right\|_{50}=34
\end{aligned}
$$

These NNs are called fully connected feed-forward NNs.
There are other important types of NNs, e.g. CNNs, RNNs, and Transformers.

- $T_{\ell}: \mathbb{R}^{N_{\ell}} \rightarrow \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell} X+b_{\ell}:$ connections between neurons (weights),
- $\varrho: \mathbb{R} \rightarrow \mathbb{R}$: activation function.

$$
R_{\varrho}(\Phi)=T_{L} \circ\left(\varrho \circ T_{L-1}\right) \circ \cdots \circ\left(\varrho \circ T_{0}\right)
$$

with ϱ applied componentwise, i.e.,

$$
\varrho\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\left(\varrho\left(x_{1}\right), \ldots, \varrho\left(x_{k}\right)\right) .
$$

The universal approximation theorem

1. The basics of neural networks
2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions

4. Universal approximation for complex-valued neural networks

The universal approximation theorem characterizes activation functions for which the associated class of NNs is universal

The universal approximation theorem characterizes activation functions for which the associated class of NNs is universal

A function class $\mathcal{F} \subset\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$ is called universal if

$$
\forall g \in C\left(\mathbb{R}^{d}\right), \quad \varepsilon>0, \quad K \subset \mathbb{R}^{d} \text { compact } \quad \exists f \in \mathcal{F}: \quad \sup _{x \in K}|g(x)-f(x)| \leq \varepsilon
$$

The universal approximation theorem characterizes activation

 functions for which the associated class of NNs is universalA function class $\mathcal{F} \subset\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$ is called universal if

$$
\forall g \in C\left(\mathbb{R}^{d}\right), \quad \varepsilon>0, \quad K \subset \mathbb{R}^{d} \text { compact } \quad \exists f \in \mathcal{F}: \quad \sup _{x \in K}|g(x)-f(x)| \leq \varepsilon .
$$

Question: For which activation functions $\varrho \in C(\mathbb{R})$ is the set

$$
\mathcal{N N}_{\varrho}^{d}:=\left\{x \mapsto \sum_{i=1}^{N} c_{i} \varrho\left(\left\langle w_{i}, x\right\rangle+b_{i}\right): N \in \mathbb{N}, w_{i} \in \mathbb{R}^{d}, b_{i}, c_{i} \in \mathbb{R}\right\}
$$

of all shallow neural networks with activation function ϱ universal?

The universal approximation theorem characterizes activation

 functions for which the associated class of NNs is universalA function class $\mathcal{F} \subset\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$ is called universal if

$$
\forall g \in C\left(\mathbb{R}^{d}\right), \quad \varepsilon>0, \quad K \subset \mathbb{R}^{d} \text { compact } \quad \exists f \in \mathcal{F}: \quad \sup _{x \in K}|g(x)-f(x)| \leq \varepsilon .
$$

Question: For which activation functions $\varrho \in C(\mathbb{R})$ is the set

$$
\mathcal{N N}_{\varrho}^{d}:=\left\{x \mapsto \sum_{i=1}^{N} c_{i} \varrho\left(\left\langle w_{i}, x\right\rangle+b_{i}\right): N \in \mathbb{N}, w_{i} \in \mathbb{R}^{d}, b_{i}, c_{i} \in \mathbb{R}\right\}
$$

of all shallow neural networks with activation function ϱ universal?

Quiz: For which activation functions does universality definitely fail?

The universal approximation theorem characterizes activation functions for which the associated class of NNs is universal

A function class $\mathcal{F} \subset\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right\}$ is called universal if

$$
\forall g \in C\left(\mathbb{R}^{d}\right), \quad \varepsilon>0, \quad K \subset \mathbb{R}^{d} \text { compact } \quad \exists f \in \mathcal{F}: \quad \sup _{x \in K}|g(x)-f(x)| \leq \varepsilon .
$$

Question: For which activation functions $\varrho \in C(\mathbb{R})$ is the set

$$
\mathcal{N N}_{\varrho}^{d}:=\left\{x \mapsto \sum_{i=1}^{N} c_{i} \varrho\left(\left\langle w_{i}, x\right\rangle+b_{i}\right): N \in \mathbb{N}, w_{i} \in \mathbb{R}^{d}, b_{i}, c_{i} \in \mathbb{R}\right\}
$$

of all shallow neural networks with activation function ϱ universal?

Quiz: For which activation functions does universality definitely fail?
Universal approximation theorem (Leshno, Lin, Pinkus, Schocken; 1993).
Let $\varrho: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Then
$\mathcal{N N}_{\varrho}^{d}$ is universal

ϱ is not a polynomial.

Proof of the universal approximation theorem - Part 0

Stone-Weierstraß theorem. Let X be a compact Hausdorff space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbb{R})$ that separates points, then either $\mathcal{A}=C(X, \mathbb{R})$ or $\mathcal{A}=\left\{f \in C(X, \mathbb{R}): f\left(x_{0}\right)=0\right\}$ for some $x_{0} \in X$.

Proof of the universal approximation theorem - Part 0

Stone-Weierstraß theorem. Let X be a compact Hausdorff space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbb{R})$ that separates points, then either $\mathcal{A}=C(X, \mathbb{R})$ or $\mathcal{A}=\left\{f \in C(X, \mathbb{R}): f\left(x_{0}\right)=0\right\}$ for some $x_{0} \in X$.

Remarks:

1. \mathcal{A} being an algebra means it is a vector space and closed under multiplication.
2. \mathcal{A} separates the points if for all $x, y \in X$ with $x \neq y$ there exists $f \in \mathcal{A}$ satisfying $f(x) \neq f(y)$.

Proof.

See Theorem 4.45 in Folland's "Real Analysis" book.

Proof of the universal approximation theorem - Part 0

Stone-Weierstraß theorem. Let X be a compact Hausdorff space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbb{R})$ that separates points, then either $\mathcal{A}=C(X, \mathbb{R})$ or $\mathcal{A}=\left\{f \in C(X, \mathbb{R}): f\left(x_{0}\right)=0\right\}$ for some $x_{0} \in X$.

Remarks:

1. \mathcal{A} being an algebra means it is a vector space and closed under multiplication.
2. \mathcal{A} separates the points if for all $x, y \in X$ with $x \neq y$ there exists $f \in \mathcal{A}$ satisfying $f(x) \neq f(y)$.

Proof.

See Theorem 4.45 in Folland's "Real Analysis" book.
Example applications:

1. $\mathbb{R}[X] \subset C([a, b])$ is dense for $a<b$ (why?!).

Proof of the universal approximation theorem - Part 0

Stone-Weierstraß theorem. Let X be a compact Hausdorff space. If \mathcal{A} is a closed subalgebra of $C(X, \mathbb{R})$ that separates points, then either $\mathcal{A}=C(X, \mathbb{R})$ or $\mathcal{A}=\left\{f \in C(X, \mathbb{R}): f\left(x_{0}\right)=0\right\}$ for some $x_{0} \in X$.

Remarks:

1. \mathcal{A} being an algebra means it is a vector space and closed under multiplication.
2. \mathcal{A} separates the points if for all $x, y \in X$ with $x \neq y$ there exists $f \in \mathcal{A}$ satisfying $f(x) \neq f(y)$.

Proof.

See Theorem 4.45 in Folland's "Real Analysis" book.
Example applications:

1. $\mathbb{R}[X] \subset C([a, b])$ is dense for $a<b$ (why?!).
2. $\operatorname{span}\left\{e^{\langle a, x\rangle}: a \in \mathbb{R}^{d}\right\} \subset C(K)$ is dense for any compact set $\varnothing \neq K \subset \mathbb{R}^{d}$.

Excursion: Dynkin's multiplicative system theorem is a

 "measure-theoretic analogue" of the Stone-Weierstraß theorem
Excursion: Dynkin's multiplicative system theorem is a "measure-theoretic analogue" of the Stone-Weierstraß theorem

Let $X \neq \varnothing$ be a set and $\ell^{\infty}(X)=\{f: X \rightarrow \mathbb{R}: f$ bounded $\}$.
Dynkin's multiplicative system theorem. Let $\mathcal{F} \subset \ell^{\infty}(X)$ be closed under multiplication and suppose that \mathcal{A} satisfies the following:
(1) \mathcal{A} is a subspace of $\ell^{\infty}(X)$;
(2) $\mathcal{F} \subset \mathcal{A}$ and $\mathbb{1}_{X} \in \mathcal{A}$;
(3 \mathcal{A} is closed under bounded pointwise convergence, i.e., whenever $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ satisfies $f_{n} \rightarrow f$ pointwise and $\sup _{n \in \mathbb{N}} \sup _{x \in X}\left|f_{n}(x)\right|<\infty$, then $f \in \mathcal{A}$.
Then $\left\{f \in \ell^{\infty}(X): f\right.$ measurable with respect to $\left.\sigma(\mathcal{F})\right\} \subset \mathcal{A}$.

Excursion: Dynkin's multiplicative system theorem is a "measure-theoretic analogue" of the Stone-Weierstraß theorem

Let $X \neq \varnothing$ be a set and $\ell^{\infty}(X)=\{f: X \rightarrow \mathbb{R}: f$ bounded $\}$.
Dynkin's multiplicative system theorem. Let $\mathcal{F} \subset \ell^{\infty}(X)$ be closed under multiplication and suppose that \mathcal{A} satisfies the following:
(1) \mathcal{A} is a subspace of $\ell^{\infty}(X)$;
(2) $\mathcal{F} \subset \mathcal{A}$ and $\mathbb{1}_{X} \in \mathcal{A}$;
(3) \mathcal{A} is closed under bounded pointwise convergence, i.e., whenever $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}$ satisfies $f_{n} \rightarrow f$ pointwise and $\sup _{n \in \mathbb{N}} \sup _{x \in X}\left|f_{n}(x)\right|<\infty$, then $f \in \mathcal{A}$.
Then $\left\{f \in \ell^{\infty}(X): f\right.$ measurable with respect to $\left.\sigma(\mathcal{F})\right\} \subset \mathcal{A}$.
Example application: The set $\operatorname{span}\left\{e^{-\lambda x}: \lambda>0\right\} \subset L^{2}((0, \infty))$ is dense.
Proof: Let $\mathcal{F}=\left\{e^{-\lambda x}: \lambda>0\right\} \subset \ell^{\infty}((0, \infty))$, let $g \in L^{2}((0, \infty))$ be orthogonal to \mathcal{F}, and let $\mathcal{A}=\left\{f \in \ell^{\infty}((0, \infty)): f\right.$ measurable and $\left.\left\langle g \cdot e^{-x}, f\right\rangle=0\right\}$.

Proof of Dynkin's multiplicative system theorem

Let \mathcal{A}_{0} be the minimal set satisfying properties 1 - 3 .

Proof of Dynkin's multiplicative system theorem

Let \mathcal{A}_{0} be the minimal set satisfying properties

1. It is enough to show $\mathbb{1}_{M} \in \mathcal{A}_{0} \subset \mathcal{A}$ for each $M \in \sigma(\mathcal{F})$.

Reason: Each $\sigma(\mathcal{F})$-measurable $f \in \ell^{\infty}(X)$ can be approximated by simple functions $\sum_{i=1}^{N} c_{i} \mathbb{1}_{M_{i}}$ with $M_{i} \in \sigma(\mathcal{F})$ (with bounded p.w. convergence).

Proof of Dynkin's multiplicative system theorem

Let \mathcal{A}_{0} be the minimal set satisfying properties

1. It is enough to show $\mathbb{1}_{M} \in \mathcal{A}_{0} \subset \mathcal{A}$ for each $M \in \sigma(\mathcal{F})$.

Reason: Each $\sigma(\mathcal{F})$-measurable $f \in \ell^{\infty}(X)$ can be approximated by simple functions $\sum_{i=1}^{N} c_{i} \mathbb{1}_{M_{i}}$ with $M_{i} \in \sigma(\mathcal{F})$ (with bounded p.w. convergence).
2. Let $\mathcal{G}:=\left\{M \in \sigma(\mathcal{F}): \mathbb{1}_{M} \in \mathcal{A}_{0}\right\}$. Then \mathcal{G} is a λ-system (closed under complementation and countable disjoint unions).

Proof of Dynkin's multiplicative system theorem

Let \mathcal{A}_{0} be the minimal set satisfying properties

1. It is enough to show $\mathbb{1}_{M} \in \mathcal{A}_{0} \subset \mathcal{A}$ for each $M \in \sigma(\mathcal{F})$.

Reason: Each $\sigma(\mathcal{F})$-measurable $f \in \ell^{\infty}(X)$ can be approximated by simple functions $\sum_{i=1}^{N} c_{i} \mathbb{1}_{M_{i}}$ with $M_{i} \in \sigma(\mathcal{F})$ (with bounded p.w. convergence).
2. Let $\mathcal{G}:=\left\{M \in \sigma(\mathcal{F}): \mathbb{1}_{M} \in \mathcal{A}_{0}\right\}$. Then \mathcal{G} is a λ-system (closed under complementation and countable disjoint unions).
3. Easy: \mathcal{A}_{0} is closed under multiplication, since \mathcal{F} is.
$\Longrightarrow \mathcal{G}$ is a π-system (closed under intersection).
$\Longrightarrow \mathcal{G}$ is a σ-algebra, by Dynkin's π - λ-theorem. Hence, it is enough to show that $\left\{f^{-1}((a, b)): f \in \mathcal{F}, a<b\right\} \subset \mathcal{G}$.

Proof of Dynkin's multiplicative system theorem

Let \mathcal{A}_{0} be the minimal set satisfying properties

1. It is enough to show $\mathbb{1}_{M} \in \mathcal{A}_{0} \subset \mathcal{A}$ for each $M \in \sigma(\mathcal{F})$.

Reason: Each $\sigma(\mathcal{F})$-measurable $f \in \ell^{\infty}(X)$ can be approximated by simple functions $\sum_{i=1}^{N} c_{i} \mathbb{1}_{M_{i}}$ with $M_{i} \in \sigma(\mathcal{F})$ (with bounded p.w. convergence).
2. Let $\mathcal{G}:=\left\{M \in \sigma(\mathcal{F}): \mathbb{1}_{M} \in \mathcal{A}_{0}\right\}$. Then \mathcal{G} is a λ-system (closed under complementation and countable disjoint unions).
3. Easy: \mathcal{A}_{0} is closed under multiplication, since \mathcal{F} is.
$\Longrightarrow \mathcal{G}$ is a π-system (closed under intersection).
$\Longrightarrow \mathcal{G}$ is a σ-algebra, by Dynkin's π - λ-theorem. Hence, it is enough to show that $\left\{f^{-1}((a, b)): f \in \mathcal{F}, a<b\right\} \subset \mathcal{G}$.
4. For each $\varphi \in C(\mathbb{R})$ and $f \in \mathcal{A}_{0}$, we have $\varphi \circ f \in \mathcal{A}_{0}$.

Reason: For polynomials $\varphi=p$ this is clear, since \mathcal{A}_{0} is closed under multiplication. Approximate φ uniformly on range(f) by polynomials p_{n}.

Proof of Dynkin's multiplicative system theorem

Let \mathcal{A}_{0} be the minimal set satisfying properties

1. It is enough to show $\mathbb{1}_{M} \in \mathcal{A}_{0} \subset \mathcal{A}$ for each $M \in \sigma(\mathcal{F})$.

Reason: Each $\sigma(\mathcal{F})$-measurable $f \in \ell^{\infty}(X)$ can be approximated by simple functions $\sum_{i=1}^{N} c_{i} \mathbb{1}_{M_{i}}$ with $M_{i} \in \sigma(\mathcal{F})$ (with bounded p.w. convergence).
2. Let $\mathcal{G}:=\left\{M \in \sigma(\mathcal{F}): \mathbb{1}_{M} \in \mathcal{A}_{0}\right\}$. Then \mathcal{G} is a λ-system (closed under complementation and countable disjoint unions).
3. Easy: \mathcal{A}_{0} is closed under multiplication, since \mathcal{F} is.
$\Longrightarrow \mathcal{G}$ is a π-system (closed under intersection).
$\Longrightarrow \mathcal{G}$ is a σ-algebra, by Dynkin's π - λ-theorem. Hence, it is enough to show that $\left\{f^{-1}((a, b)): f \in \mathcal{F}, a<b\right\} \subset \mathcal{G}$.
4. For each $\varphi \in C(\mathbb{R})$ and $f \in \mathcal{A}_{0}$, we have $\varphi \circ f \in \mathcal{A}_{0}$.

Reason: For polynomials $\varphi=p$ this is clear, since \mathcal{A}_{0} is closed under multiplication. Approximate φ uniformly on range (f) by polynomials p_{n}.
5. Pick $\varphi_{n} \in C(\mathbb{R})$ with $0 \leq \varphi_{n} \leq 1$ and $\varphi_{n} \rightarrow \mathbb{1}_{(a, b)}$ pointwise. Then $\varphi_{n} \circ f \rightarrow \mathbb{1}_{(a, b)} \circ f=\mathbb{1}_{f^{-1}((a, b))}$ pointwise boundedly.

Proof of the universal approximation theorem - Part 1

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon .
$$

Proof of the universal approximation theorem - Part 1

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "):

Proof of the universal approximation theorem - Part 1

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "): If ϱ is a polynomial of degree (at most) D, then

$$
x \mapsto \varrho(\langle w, x\rangle+b)
$$

is a d-variate polynomial of degree at most D.

Proof of the universal approximation theorem - Part 1

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "): If ϱ is a polynomial of degree (at most) D, then

$$
x \mapsto \varrho(\langle w, x\rangle+b)
$$

is a d-variate polynomial of degree at most D.
\Longrightarrow If $f \in C\left(\mathbb{R}^{d}\right)$ is not a polynomial of degree at most D, it cannot be approximated by elements of $\mathcal{N} \mathcal{N}_{\varrho}^{d}$ (why?!).

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "): If ϱ is a polynomial of degree (at most) D, then

$$
x \mapsto \varrho(\langle w, x\rangle+b)
$$

is a d-variate polynomial of degree at most D.
\Longrightarrow If $f \in C\left(\mathbb{R}^{d}\right)$ is not a polynomial of degree at most D, it cannot be approximated by elements of $\mathcal{N} \mathcal{N}_{\varrho}^{d}$ (why?!).

Step 1 (Reduction to $d=1$): Claim: If $\mathcal{N N}_{\varrho}^{1}$ is universal, then so is $\mathcal{N N}_{\varrho}^{d}$.

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "): If ϱ is a polynomial of degree (at most) D, then

$$
x \mapsto \varrho(\langle w, x\rangle+b)
$$

is a d-variate polynomial of degree at most D.
\Longrightarrow If $f \in C\left(\mathbb{R}^{d}\right)$ is not a polynomial of degree at most D, it cannot be approximated by elements of $\mathcal{N} \mathcal{N}_{\varrho}^{d}$ (why?!).

Step 1 (Reduction to $d=1$): Claim: If $\mathcal{N N}_{\varrho}^{1}$ is universal, then so is $\mathcal{N N}_{\varrho}^{d}$. Substep (1): Universality of $\mathcal{N N}_{\varrho}^{1} \quad \Longrightarrow \quad \exp \in{\overline{\mathcal{N}}{ }_{\varrho}^{1}}_{\varrho}$.

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "): If ϱ is a polynomial of degree (at most) D, then

$$
x \mapsto \varrho(\langle w, x\rangle+b)
$$

is a d-variate polynomial of degree at most D.
\Longrightarrow If $f \in C\left(\mathbb{R}^{d}\right)$ is not a polynomial of degree at most D, it cannot be approximated by elements of $\mathcal{N} \mathcal{N}_{\varrho}^{d}$ (why?!).

Step 1 (Reduction to $d=1$): Claim: If $\mathcal{N N}_{\varrho}^{1}$ is universal, then so is $\mathcal{N N}_{\varrho}^{d}$. Substep (1): Universality of $\mathcal{N N}_{\varrho}^{1} \quad \Longrightarrow \quad \exp \in \overline{\mathcal{N} \mathcal{N}_{\varrho}^{1}}$.
Substep 2: This implies (how?!) that $\left(x \mapsto e^{\langle a, x\rangle}\right) \in \overline{\mathcal{N N}_{\varrho}^{d}}$ for all $a \in \mathbb{R}^{d}$.

Proof of the universal approximation theorem - Part 1

For $\mathcal{F} \subset C\left(\mathbb{R}^{d}\right)$, we write

$$
f \in \overline{\mathcal{F}} \Longleftrightarrow \forall \varepsilon>0, K \subset \mathbb{R}^{d} \text { compact } \exists \tilde{f} \in \mathcal{F}: \sup _{x \in K}|f(x)-\tilde{f}(x)| \leq \varepsilon
$$

Step 0 (Proving " \Longrightarrow "): If ϱ is a polynomial of degree (at most) D, then

$$
x \mapsto \varrho(\langle w, x\rangle+b)
$$

is a d-variate polynomial of degree at most D.
\Longrightarrow If $f \in C\left(\mathbb{R}^{d}\right)$ is not a polynomial of degree at most D, it cannot be approximated by elements of $\mathcal{N N}_{\varrho}^{d}$ (why?!).

Step 1 (Reduction to $d=1$): Claim: If $\mathcal{N N}_{\varrho}^{1}$ is universal, then so is $\mathcal{N \mathcal { N } _ { \varrho } ^ { d }}$. Substep (1): Universality of $\mathcal{N N}_{\varrho}^{1} \quad \Longrightarrow \quad \exp \in \overline{\mathcal{N N}_{\varrho}^{1}}$.

Substep 2: This implies (how?!) that $\left(x \mapsto e^{\langle a, x\rangle}\right) \in \overline{\mathcal{N N}_{\varrho}^{d}}$ for all $a \in \mathbb{R}^{d}$.
Substep (3) Universality of $\mathcal{N} \mathcal{N}_{\varrho}^{d}$ follows from the Stone-Weierstraß theorem.

Interlude: Computing higher derivatives via divided differences

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0}, \ldots, x_{n} \in \mathbb{R}$ pairwise distinct. The divided differences of f w.r.t. x_{0}, \ldots, x_{n} are defined inductively as

$$
\begin{aligned}
f\left[x_{i}\right] & :=f\left(x_{i}\right) \\
f\left[x_{i}, \ldots, x_{j+1}\right] & :=\frac{f\left[x_{i+1}, \ldots, x_{j+1}\right]-f\left[x_{i}, \ldots, x_{j}\right]}{x_{j+1}-x_{i}} .
\end{aligned}
$$

Interlude: Computing higher derivatives via divided differences

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0}, \ldots, x_{n} \in \mathbb{R}$ pairwise distinct. The divided differences of f w.r.t. x_{0}, \ldots, x_{n} are defined inductively as

$$
\begin{aligned}
f\left[x_{i}\right] & :=f\left(x_{i}\right) \\
f\left[x_{i}, \ldots, x_{j+1}\right] & :=\frac{f\left[x_{i+1}, \ldots, x_{j+1}\right]-f\left[x_{i}, \ldots, x_{j}\right]}{x_{j+1}-x_{i}} .
\end{aligned}
$$

Divided differences and interpolation polynomials. Let p be the unique polynomial of degree at most n satisfying $p\left(x_{i}\right)=f\left(x_{i}\right)$. Then $f\left[x_{0}, \ldots, x_{n}\right]$ is the leading coefficient of p.

Interlude: Computing higher derivatives via divided differences

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0}, \ldots, x_{n} \in \mathbb{R}$ pairwise distinct. The divided differences of f w.r.t. x_{0}, \ldots, x_{n} are defined inductively as

$$
\begin{aligned}
f\left[x_{i}\right] & :=f\left(x_{i}\right) \\
f\left[x_{i}, \ldots, x_{j+1}\right] & :=\frac{f\left[x_{i+1}, \ldots, x_{j+1}\right]-f\left[x_{i}, \ldots, x_{j}\right]}{x_{j+1}-x_{i}} .
\end{aligned}
$$

Divided differences and interpolation polynomials. Let p be the unique polynomial of degree at most n satisfying $p\left(x_{i}\right)=f\left(x_{i}\right)$. Then $f\left[x_{0}, \ldots, x_{n}\right]$ is the leading coefficient of p.

Mean-value theorem for divided differences. Let f be n times differentiable and $x_{0}<\cdots<x_{n}$. Then there exists $\xi \in\left[x_{0}, x_{n}\right]$ such that

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{1}{n!} \cdot f^{(n)}(\xi) .
$$

Reference: Ryaben’kii and Tsynkov: A theoretical introduction to numerical analysis, Section 2.1.2.

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{11}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial.

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{11}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{1}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.
Substep (2) For $w, x \in \mathbb{R}$, let

$$
f_{x}(w):=\varrho(w x+\theta)
$$

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{1}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.
Substep (2) For $w, x \in \mathbb{R}$, let

$$
f_{x}(w):=\varrho(w x+\theta) \quad \Longrightarrow \quad f_{x}^{(k)}(w)=x^{k} \cdot \varrho^{(k)}(w x+\theta) .
$$

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{1}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.
Substep (2) For $w, x \in \mathbb{R}$, let

$$
f_{x}(w):=\varrho(w x+\theta) \quad \Longrightarrow \quad f_{x}^{(k)}(w)=x^{k} \cdot \varrho^{(k)}(w x+\theta)
$$

By the mean-value theorem for divided differences,

$$
f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right]=f_{x}^{(k)}\left(\xi_{x, n}\right) / k!\quad \text { with } \quad 0 \leq \xi_{x, n} \leq \frac{k}{n} .
$$

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{11}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.
Substep (2) For $w, x \in \mathbb{R}$, let

$$
f_{x}(w):=\varrho(w x+\theta) \quad \Longrightarrow \quad f_{x}^{(k)}(w)=x^{k} \cdot \varrho^{(k)}(w x+\theta)
$$

By the mean-value theorem for divided differences,

$$
f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right]=f_{x}^{(k)}\left(\xi_{x, n}\right) / k!\quad \text { with } \quad 0 \leq \xi_{x, n} \leq \frac{k}{n} .
$$

Substep (3) For $n \in \mathbb{N}$, define

$$
g_{n}(x):=k!\cdot f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right] .
$$

Directly from the definitions, we see $g_{n} \in \mathcal{N N}_{\varrho}^{1}$.

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N N}_{\varrho}^{11}$ for $\varrho \in C^{\infty}$):
Substep (1) Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.
Substep (2) For $w, x \in \mathbb{R}$, let

$$
f_{x}(w):=\varrho(w x+\theta) \quad \Longrightarrow \quad f_{x}^{(k)}(w)=x^{k} \cdot \varrho^{(k)}(w x+\theta)
$$

By the mean-value theorem for divided differences,

$$
f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right]=f_{x}^{(k)}\left(\xi_{x, n}\right) / k!\quad \text { with } \quad 0 \leq \xi_{x, n} \leq \frac{k}{n}
$$

Substep (3) For $n \in \mathbb{N}$, define

$$
g_{n}(x):=k!\cdot f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right] .
$$

Directly from the definitions, we see $g_{n} \in \mathcal{N N}^{1}$. Finally,

$$
\left|g_{n}(x)-\varrho^{(k)}(\theta) \cdot x^{k}\right|=\left|f_{x}^{(k)}\left(\xi_{x, n}\right)-f_{x}^{(k)}(0)\right|=x^{k} \cdot\left|\varrho^{(k)}\left(\xi_{x, n} x+\theta\right)-\varrho^{(k)}(\theta)\right| \underset{n \rightarrow \infty}{ } 0,
$$

with locally uniform convergence (w.r.t. x).

Proof of the universal approximation theorem - Part 2

Step 2 (Universality of $\mathcal{N} \mathcal{N}_{\varrho}^{1}$ for $\varrho \in C^{\infty}$):
Substep 1: Let $\varrho \in C^{\infty}$ not a polynomial. Let $k \in \mathbb{N}$ be fixed and $\theta \in \mathbb{R}$ with $\varrho^{(k)}(\theta) \neq 0$.

Substep 2: For $w, x \in \mathbb{R}$, let

$$
f_{x}(w):=\varrho(w x+\theta) \quad \Longrightarrow \quad f_{x}^{(k)}(w)=x^{k} \cdot \varrho^{(k)}(w x+\theta)
$$

By the mean-value theorem for divided differences,

$$
f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right]=f_{x}^{(k)}\left(\xi_{x, n}\right) / k!\quad \text { with } \quad 0 \leq \xi_{x, n} \leq \frac{k}{n}
$$

Substep (3: For $n \in \mathbb{N}$, define

$$
g_{n}(x):=k!\cdot f_{x}\left[0, \frac{1}{n}, \ldots, \frac{k}{n}\right] .
$$

Directly from the definitions, we see $g_{n} \in \mathcal{N} \mathcal{N}_{\varrho}^{1}$. Finally,

$$
\left|g_{n}(x)-\varrho^{(k)}(\theta) \cdot x^{k}\right|=\left|f_{x}^{(k)}\left(\xi_{x, n}\right)-f_{x}^{(k)}(0)\right|=x^{k} \cdot\left|\varrho^{(k)}\left(\xi_{x, n} x+\theta\right)-\varrho^{(k)}(\theta)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

with locally uniform convergence (w.r.t. x).
Substep 4: We have shown $x^{k} \in \overline{\mathcal{N} \mathcal{N}_{\varrho}^{1}}$ for all $k \in \mathbb{N}$, and this also holds for $k=0$ (why?!). Now, the claim follows from the (Stone)-Weierstraß theorem.

Proof of the universal approximation theorem - Part 3

Step 3 (Showing $\varphi * \varrho \in \overline{\mathcal{N N}_{\varrho}^{1}}$ for $\varphi \in C_{c}^{\infty}(\mathbb{R})$):

Proof of the universal approximation theorem - Part 3

Step 3 (Showing $\varphi * \varrho \in \overline{\mathcal{N N}_{\varrho}^{1}}$ for $\varphi \in C_{c}^{\infty}(\mathbb{R})$):
If $\varphi * \varrho \notin \overline{\mathcal{N N}_{\varrho}^{1}}$, then there exists $K \subset \mathbb{R}$ compact such that $\varphi * \varrho \notin \overline{\mathcal{N N}}_{\varrho}{ }^{c}(\mathbb{K})$.

Proof of the universal approximation theorem - Part 3

Step 3 (Showing $\varphi * \varrho \in \overline{\mathcal{N N}_{\varrho}^{1}}$ for $\varphi \in C_{c}^{\infty}(\mathbb{R})$):
If $\varphi * \varrho \notin \overline{\mathcal{N N}_{\varrho}^{1}}$, then there exists $K \subset \mathbb{R}$ compact such that $\varphi * \varrho \notin{\overline{\mathcal{N} \mathcal{N}_{\varrho}^{1}}}^{c(k)}$. Thus, there exists a signed Borel measure μ on K satisfying

$$
\int_{K}(\varphi * \varrho)(x) d \mu(x) \neq 0 \quad \text { and } \quad \int_{K} \varrho(a x+b) d \mu(x)=0 \quad \forall a, b \in \mathbb{R} .
$$

Proof of the universal approximation theorem - Part 3

Step 3 (Showing $\varphi * \varrho \in \overline{\mathcal{N N}_{\varrho}^{1}}$ for $\varphi \in C_{c}^{\infty}(\mathbb{R})$):
If $\varphi * \varrho \notin \overline{\mathcal{N N}_{\varrho}^{-1}}$, then there exists $K \subset \mathbb{R}$ compact such that $\varphi * \varrho \notin \overline{\mathcal{N N}}_{\varrho}^{\text {1 }}$ c(k).
Thus, there exists a signed Borel measure μ on K satisfying

$$
\int_{K}(\varphi * \varrho)(x) d \mu(x) \neq 0 \quad \text { and } \quad \int_{K} \varrho(a x+b) d \mu(x)=0 \quad \forall a, b \in \mathbb{R} .
$$

But then, Fubini's theorem shows

$$
\begin{aligned}
0 \neq \int_{K}(\varphi * \varrho)(x) d \mu(x) & =\int_{K} \int_{\mathbb{R}} \varphi(y) \varrho(x-y) d y d \mu(x) \\
& =\int_{\mathbb{R}} \varphi(y) \int_{K} \varrho(x-y) d \mu(x) d y \\
& =\int_{\mathbb{R}} \varphi(y) \cdot 0 d y=0 .
\end{aligned}
$$

Contradiction.

Proof of the universal approximation theorem - Part 3

Step 3 (Showing $\varphi * \varrho \in \overline{\mathcal{N N}_{\varrho}^{1}}$ for $\varphi \in C_{c}^{\infty}(\mathbb{R})$):
If $\varphi * \varrho \notin \overline{\mathcal{N N}_{\varrho}^{-1}}$, then there exists $K \subset \mathbb{R}$ compact such that $\varphi * \varrho \notin \overline{\mathcal{N N}}_{\varrho}^{\text {1 }}$ c(k). Thus, there exists a signed Borel measure μ on K satisfying

$$
\int_{K}(\varphi * \varrho)(x) d \mu(x) \neq 0 \quad \text { and } \quad \int_{K} \varrho(a x+b) d \mu(x)=0 \quad \forall a, b \in \mathbb{R} .
$$

But then, Fubini's theorem shows

$$
\begin{aligned}
0 \neq \int_{K}(\varphi * \varrho)(x) d \mu(x) & =\int_{K} \int_{\mathbb{R}} \varphi(y) \varrho(x-y) d y d \mu(x) \\
& =\int_{\mathbb{R}} \varphi(y) \int_{K} \varrho(x-y) d \mu(x) d y \\
& =\int_{\mathbb{R}} \varphi(y) \cdot 0 d y=0 .
\end{aligned}
$$

Contradiction.
Step 4: By the above, we are done if $\varphi * \varrho$ is not a polynomial for some $\varphi \in C_{c}^{\infty}(\mathbb{R})$.

Proof of the universal approximation theorem - Part 4

Step 5 (Handling the case that $\varphi * \varrho$ is a polynomial for all $\varphi \in C_{c}^{\infty}$):

Proof of the universal approximation theorem - Part 4

Step 5 (Handling the case that $\varphi * \varrho$ is a polynomial for all $\varphi \in C_{c}^{\infty}$):
Substep (1): $C_{c}^{\infty}[-1,1]:=\left\{\varphi \in C_{c}^{\infty}(\mathbb{R}): \operatorname{supp} \varphi \subset[-1,1]\right\}$ is a complete metric space with metric

$$
d(\varphi, \psi):=\sum_{n=1}^{\infty} 2^{-n} \min \left\{1,\|\varphi-\psi\|_{C^{n}}\right\} .
$$

Proof of the universal approximation theorem - Part 4

Step 5 (Handling the case that $\varphi * \varrho$ is a polynomial for all $\varphi \in C_{c}^{\infty}$):
Substep (1): $C_{c}^{\infty}[-1,1]:=\left\{\varphi \in C_{c}^{\infty}(\mathbb{R}): \operatorname{supp} \varphi \subset[-1,1]\right\}$ is a complete metric space with metric

$$
d(\varphi, \psi):=\sum_{n=1}^{\infty} 2^{-n} \min \left\{1,\|\varphi-\psi\|_{C^{n}}\right\} .
$$

Substep 2: By assumption,

$$
C_{c}^{\infty}[-1,1]=\bigcup_{m=1}^{\infty} V_{m} \quad \text { for } \quad V_{m}:=\left\{\varphi \in C_{c}^{\infty}[-1,1]: \operatorname{deg}(\varphi * \varrho) \leq m\right\}
$$ and each V_{m} is a closed subspace.

Proof of the universal approximation theorem - Part 4

Step 5 (Handling the case that $\varphi * \varrho$ is a polynomial for all $\varphi \in C_{c}^{\infty}$):
Substep (1): $C_{c}^{\infty}[-1,1]:=\left\{\varphi \in C_{c}^{\infty}(\mathbb{R}): \operatorname{supp} \varphi \subset[-1,1]\right\}$ is a complete metric space with metric

$$
d(\varphi, \psi):=\sum_{n=1}^{\infty} 2^{-n} \min \left\{1,\|\varphi-\psi\|_{C^{n}}\right\} .
$$

Substep 2: By assumption,

$$
C_{c}^{\infty}[-1,1]=\bigcup_{m=1}^{\infty} V_{m} \quad \text { for } \quad V_{m}:=\left\{\varphi \in C_{c}^{\infty}[-1,1]: \operatorname{deg}(\varphi * \varrho) \leq m\right\}
$$

and each V_{m} is a closed subspace.
Substep (3) By Baire category, some V_{m} has non-empty interiors, which implies $V_{m}=C_{c}^{\infty}[-1,1]$.

Proof of the universal approximation theorem - Part 4

Step 5 (Handling the case that $\varphi * \varrho$ is a polynomial for all $\varphi \in C_{c}^{\infty}$):
Substep (1): $C_{c}^{\infty}[-1,1]:=\left\{\varphi \in C_{c}^{\infty}(\mathbb{R}): \operatorname{supp} \varphi \subset[-1,1]\right\}$ is a complete metric space with metric

$$
d(\varphi, \psi):=\sum_{n=1}^{\infty} 2^{-n} \min \left\{1,\|\varphi-\psi\|_{C^{n}}\right\} .
$$

Substep 2: By assumption,

$$
C_{c}^{\infty}[-1,1]=\bigcup_{m=1}^{\infty} V_{m} \quad \text { for } \quad V_{m}:=\left\{\varphi \in C_{c}^{\infty}[-1,1]: \operatorname{deg}(\varphi * \varrho) \leq m\right\}
$$

and each V_{m} is a closed subspace.
Substep (3) By Baire category, some V_{m} has non-empty interiors, which implies $V_{m}=C_{c}^{\infty}[-1,1]$.

Substep 4: Choose $\varphi_{n} \in C_{c}^{\infty}[-1,1]$ with $\varphi_{m} \rightarrow \delta_{0}$. Then $\varphi_{m} * \varrho \rightarrow \varrho$, so that ϱ is a polynomial (of degree at most m). Contradiction.

Quantitative approximation rates for Barron functions

1. The basics of neural networks

2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions
4. Universal approximation for complex-valued neural networks

Barron-regular functions can be well approximated by NNs

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called Barron-regular with constant $C>0\left(\right.$ written $f \in B_{d}(C)$), if

$$
f(x)=c+\int_{\mathbb{R}^{d}}\left(e^{i(x, \xi\rangle}-1\right) \cdot F(\xi) d \xi \quad \forall x \in \mathbb{R}^{d}
$$

with $\int_{\mathbb{R}^{d}}|\xi| \cdot|F(\xi)| d \xi \leq C$.

Andrew Barron;

Barron-regular functions can be well approximated by NNs

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called Barron-regular with constant $C>0$ (written $f \in B_{d}(C)$), if

$$
f(x)=c+\int_{\mathbb{R}^{d}}\left(e^{i\langle x, \xi\rangle}-1\right) \cdot F(\xi) d \xi \quad \forall x \in \mathbb{R}^{d},
$$

with $\int_{\mathbb{R}^{d}}|\xi| \cdot|F(\xi)| d \xi \leq C$.
Theorem (Barron; 1993).
Let ϱ be a sigmoidal activation function. Let μ be a probability measure on \mathbb{R}^{d}, let $r>0$ and $f \in B_{d}(C)$. For any $N \in \mathbb{N}$, one can achieve

$$
\int_{B_{r}}\left|f(x)-\Phi_{N}(x)\right|^{2} d \mu(x) \leq\left(\frac{2 r C}{\sqrt{N}}\right)^{2}
$$

where Φ_{N} is a shallow NN with N neurons and activation function ϱ.

Andrew Barron;

Barron-regular functions can be well approximated by NNs

$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called Barron-regular with constant $C>0$ (written $f \in B_{d}(C)$), if

$$
f(x)=c+\int_{\mathbb{R}^{d}}\left(e^{i\langle x, \xi\rangle}-1\right) \cdot F(\xi) d \xi \quad \forall x \in \mathbb{R}^{d},
$$

with $\int_{\mathbb{R}^{d}}|\xi| \cdot|F(\xi)| d \xi \leq C$.

Theorem (Barron; 1993).

Let ϱ be a sigmoidal activation function. Let μ be a probability measure on \mathbb{R}^{d}, let $r>0$ and $f \in B_{d}(C)$. For any $N \in \mathbb{N}$, one can achieve

$$
\int_{B_{r}}\left|f(x)-\Phi_{N}(x)\right|^{2} d \mu(x) \leq\left(\frac{2 r C}{\sqrt{N}}\right)^{2}
$$

where Φ_{N} is a shallow NN with N neurons and activation function ϱ.
$\varrho: \mathbb{R} \rightarrow \mathbb{R}$ is sigmoidal if it is bounded, measurable, and if $\lim _{x \rightarrow \infty} \varrho(x)=1$ and $\lim _{x \rightarrow-\infty} \varrho(x)=0$.

Andrew Barron;

Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let \mathcal{H} be a Hilbert space, $G \subset \mathcal{H}$ and $b>0$ with $\|g\|_{\mathcal{H}} \leq b$ for all $g \in G$. Let $f_{0} \in \overline{\operatorname{conv} G}$ and $c>b^{2}-\left\|f_{0}\right\|_{\mathcal{H}}^{2}$.
Then for any $N \in \mathbb{N}$ there exist $g_{1}, \ldots, g_{N} \in G$ such that

$$
f_{N}=\frac{1}{N} \sum_{n=1}^{N} g_{n} \quad \text { satisfies } \quad\left\|f_{0}-f_{N}\right\|_{\mathcal{H}}^{2} \leq \frac{c}{N}
$$

Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let \mathcal{H} be a Hilbert space, $G \subset \mathcal{H}$ and $b>0$ with $\|g\|_{\mathcal{H}} \leq b$ for all $g \in G$. Let $f_{0} \in \overline{\operatorname{conv} G}$ and $c>b^{2}-\left\|f_{0}\right\|_{\mathcal{H}}^{2}$.
Then for any $N \in \mathbb{N}$ there exist $g_{1}, \ldots, g_{N} \in G$ such that

$$
f_{N}=\frac{1}{N} \sum_{n=1}^{N} g_{n} \quad \text { satisfies } \quad\left\|f_{0}-f_{N}\right\|_{\mathcal{H}}^{2} \leq \frac{c}{N}
$$

Proof (Probabilistic method): (1): Let $\delta>0$ arbitrary and choose $f^{*}=\sum_{i=1}^{M} \lambda_{i} h_{i}$ with $h_{i} \in G, \lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$ satisfying $\left\|f-f^{*}\right\|_{\mathcal{H}} \leq \delta$.

Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let \mathcal{H} be a Hilbert space, $G \subset \mathcal{H}$ and $b>0$ with $\|g\|_{\mathcal{H}} \leq b$ for all $g \in G$. Let $f_{0} \in \overline{\operatorname{conv} G}$ and $c>b^{2}-\left\|f_{0}\right\|_{\mathcal{H}}^{2}$.
Then for any $N \in \mathbb{N}$ there exist $g_{1}, \ldots, g_{N} \in G$ such that

$$
f_{N}=\frac{1}{N} \sum_{n=1}^{N} g_{n} \quad \text { satisfies } \quad\left\|f_{0}-f_{N}\right\|_{\mathcal{H}}^{2} \leq \frac{C}{N}
$$

Proof (Probabilistic method): (1): Let $\delta>0$ arbitrary and choose $f^{*}=\sum_{i=1}^{M} \lambda_{i} h_{i}$ with $h_{i} \in G, \lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$ satisfying $\left\|f-f^{*}\right\|_{\mathcal{H}} \leq \delta$.
2) Let $Z \in G$ a random vector with $\mathbb{P}\left(Z=h_{i}\right)=\lambda_{i}$ for $i \in\{1, \ldots, N\}$, and note $\mathbb{E} Z=f^{*}$.

Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let \mathcal{H} be a Hilbert space, $G \subset \mathcal{H}$ and $b>0$ with $\|g\|_{\mathcal{H}} \leq b$ for all $g \in G$. Let $f_{0} \in \overline{\operatorname{conv} G}$ and $c>b^{2}-\left\|f_{0}\right\|_{\mathcal{H}}^{2}$.
Then for any $N \in \mathbb{N}$ there exist $g_{1}, \ldots, g_{N} \in G$ such that

$$
f_{N}=\frac{1}{N} \sum_{n=1}^{N} g_{n} \quad \text { satisfies } \quad\left\|f_{0}-f_{N}\right\|_{\mathcal{H}}^{2} \leq \frac{c}{N}
$$

Proof (Probabilistic method): (1): Let $\delta>0$ arbitrary and choose $f^{*}=\sum_{i=1}^{M} \lambda_{i} h_{i}$ with $h_{i} \in G, \lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$ satisfying $\left\|f-f^{*}\right\|_{\mathcal{H}} \leq \delta$.
(2) Let $Z \in G$ a random vector with $\mathbb{P}\left(Z=h_{i}\right)=\lambda_{i}$ for $i \in\{1, \ldots, N\}$, and note $\mathbb{E} Z=f^{*}$.
(3) Let $Z_{1}, \ldots, Z_{N} \stackrel{i i d}{\sim} Z$ and note $\mathbb{E}\left\langle Z_{n}-f^{*}, Z_{m}-f^{*}\right\rangle=0$ for $n \neq m$ and

$$
\mathbb{E}\left\|Z_{n}-f^{*}\right\|_{\mathcal{H}}^{2}=\mathbb{E}\left\|Z_{n}\right\|_{\mathcal{H}}^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2} \leq b^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2}
$$

Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let \mathcal{H} be a Hilbert space, $G \subset \mathcal{H}$ and $b>0$ with $\|g\|_{\mathcal{H}} \leq b$ for all $g \in G$. Let $f_{0} \in \overline{\operatorname{conv} G}$ and $c>b^{2}-\left\|f_{0}\right\|_{\mathcal{H}}^{2}$.
Then for any $N \in \mathbb{N}$ there exist $g_{1}, \ldots, g_{N} \in G$ such that

$$
f_{N}=\frac{1}{N} \sum_{n=1}^{N} g_{n} \quad \text { satisfies } \quad\left\|f_{0}-f_{N}\right\|_{\mathcal{H}}^{2} \leq \frac{c}{N}
$$

Proof (Probabilistic method): 1: Let $\delta>0$ arbitrary and choose $f^{*}=\sum_{i=1}^{M} \lambda_{i} h_{i}$ with $h_{i} \in G, \lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$ satisfying $\left\|f-f^{*}\right\|_{\mathcal{H}} \leq \delta$.
2) Let $Z \in G$ a random vector with $\mathbb{P}\left(Z=h_{i}\right)=\lambda_{i}$ for $i \in\{1, \ldots, N\}$, and note $\mathbb{E} Z=f^{*}$.
(3) Let $Z_{1}, \ldots, Z_{N} \stackrel{i i d}{\sim} Z$ and note $\mathbb{E}\left\langle Z_{n}-f^{*}, Z_{m}-f^{*}\right\rangle=0$ for $n \neq m$ and

$$
\mathbb{E}\left\|Z_{n}-f^{*}\right\|_{\mathcal{H}}^{2}=\mathbb{E}\left\|Z_{n}\right\|_{\mathcal{H}}^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2} \leq b^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2}
$$

(4) $\mathbb{E}\left\|f^{*}-\frac{1}{N} \sum_{n=1}^{N} Z_{n}\right\|_{\mathcal{H}}^{2}=\frac{1}{N^{2}} \mathbb{E}\left\|\sum_{n=1}^{N}\left(Z_{i}-f^{*}\right)\right\|_{\mathcal{H}}^{2}=\frac{1}{N^{2}} \mathbb{E} \sum_{n, m=1}^{N}\left\langle Z_{n}-f^{*}, Z_{m}-f^{*}\right\rangle$

$$
=\frac{1}{N^{2}} \mathbb{E} \sum_{n=1}^{N}\left\|Z_{n}-f^{*}\right\|_{\mathcal{H}}^{2} \leq \frac{b^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2}}{N} .
$$

Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let \mathcal{H} be a Hilbert space, $G \subset \mathcal{H}$ and $b>0$ with $\|g\|_{\mathcal{H}} \leq b$ for all $g \in G$. Let $f_{0} \in \overline{\operatorname{conv} G}$ and $c>b^{2}-\left\|f_{0}\right\|_{\mathcal{H}}^{2}$.
Then for any $N \in \mathbb{N}$ there exist $g_{1}, \ldots, g_{N} \in G$ such that

$$
f_{N}=\frac{1}{N} \sum_{n=1}^{N} g_{n} \quad \text { satisfies } \quad\left\|f_{0}-f_{N}\right\|_{\mathcal{H}}^{2} \leq \frac{c}{N}
$$

Proof (Probabilistic method): 1: Let $\delta>0$ arbitrary and choose $f^{*}=\sum_{i=1}^{M} \lambda_{i} h_{i}$ with $h_{i} \in G, \lambda_{i} \geq 0$, and $\sum_{i} \lambda_{i}=1$ satisfying $\left\|f-f^{*}\right\|_{\mathcal{H}} \leq \delta$.
(2) Let $Z \in G$ a random vector with $\mathbb{P}\left(Z=h_{i}\right)=\lambda_{i}$ for $i \in\{1, \ldots, N\}$, and note $\mathbb{E} Z=f^{*}$.
(3) Let $Z_{1}, \ldots, Z_{N} \stackrel{i i d}{\sim} Z$ and note $\mathbb{E}\left\langle Z_{n}-f^{*}, Z_{m}-f^{*}\right\rangle=0$ for $n \neq m$ and

$$
\mathbb{E}\left\|Z_{n}-f^{*}\right\|_{\mathcal{H}}^{2}=\mathbb{E}\left\|Z_{n}\right\|_{\mathcal{H}}^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2} \leq b^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2}
$$

4. $\mathbb{E}\left\|f^{*}-\frac{1}{N} \sum_{n=1}^{N} Z_{n}\right\|_{\mathcal{H}}^{2}=\frac{1}{N^{2}} \mathbb{E}\left\|\sum_{n=1}^{N}\left(Z_{i}-f^{*}\right)\right\|_{\mathcal{H}}^{2}=\frac{1}{N^{2}} \mathbb{E} \sum_{n, m=1}^{N}\left\langle Z_{n}-f^{*}, Z_{m}-f^{*}\right\rangle$

$$
=\frac{1}{N^{2}} \mathbb{E} \sum_{n=1}^{N}\left\|Z_{n}-f^{*}\right\|_{\mathcal{H}}^{2} \leq \frac{b^{2}-\left\|f^{*}\right\|_{\mathcal{H}}^{2}}{N} .
$$

(5): For δ small enough, this implies $\mathbb{E}\left\|f_{0}-\frac{1}{N} \sum_{n=1}^{N} Z_{n}\right\|_{\mathcal{H}}^{2} \leq \frac{c}{N}$, since $\left\|f_{0}-f^{*}\right\|_{\mathcal{H}} \leq \delta$.

Integral formulas imply membership in the closed convex hull

Let (X, μ) be a finite measure space and $G \subset L^{2}(\mu)$, and let (Ω, ν) be a probability space. Let $g: X \times \Omega \rightarrow \mathbb{R}$ be measurable and such that

- $g(\cdot, \omega) \in G$ for all $\omega \in \Omega$;
- $|g(x, \omega)| \leq C$ for all $(x, \omega) \in X \times \Omega$ and some $C<\infty$;
- $f(x)=\int_{\Omega} g(x, \omega) d \nu(\omega)$ for all $x \in X$.

Then $f \in \overline{\operatorname{conv} G}$, with the closure taken in $L^{2}(\mu)$.

Integral formulas imply membership in the closed convex hull

Let (X, μ) be a finite measure space and $G \subset L^{2}(\mu)$, and let (Ω, ν) be a probability space. Let $g: X \times \Omega \rightarrow \mathbb{R}$ be measurable and such that

- $g(\cdot, \omega) \in G$ for all $\omega \in \Omega$;
- $|g(x, \omega)| \leq C$ for all $(x, \omega) \in X \times \Omega$ and some $C<\infty$;
- $f(x)=\int_{\Omega} g(x, \omega) d \nu(\omega)$ for all $x \in X$.

Then $f \in \overline{\operatorname{convG}}$, with the closure taken in $L^{2}(\mu)$.
Proof: Let $\omega_{1}, \omega_{2}, \ldots \stackrel{\text { iid }}{\sim} \mu$. Then

$$
\begin{aligned}
\mathbb{E} \int_{X}\left(f(x)-\frac{1}{N} \sum_{i=1}^{N} g\left(x, \omega_{i}\right)\right)^{2} d \mu(x) & =\int_{X} \operatorname{var}\left(\frac{1}{N} \sum_{i=1}^{N} g\left(x, \omega_{i}\right)\right) d \mu(x) \\
& =\frac{1}{N^{2}} \int_{X} \sum_{i=1}^{N} \operatorname{var}\left[g\left(x, \omega_{i}\right)\right] d \mu(x) \leq \frac{C^{2}}{N} .
\end{aligned}
$$

Integral formulas imply membership in the closed convex hull

Let (X, μ) be a finite measure space and $G \subset L^{2}(\mu)$, and let (Ω, ν) be a probability space. Let $g: X \times \Omega \rightarrow \mathbb{R}$ be measurable and such that

- $g(\cdot, \omega) \in G$ for all $\omega \in \Omega$;
- $|g(x, \omega)| \leq C$ for all $(x, \omega) \in X \times \Omega$ and some $C<\infty$;
- $f(x)=\int_{\Omega} g(x, \omega) d \nu(\omega)$ for all $x \in X$.

Then $f \in \overline{\operatorname{convG}}$, with the closure taken in $L^{2}(\mu)$.
Proof: Let $\omega_{1}, \omega_{2}, \ldots \stackrel{\text { iid }}{\sim} \mu$. Then

$$
\begin{aligned}
\mathbb{E} \int_{X}\left(f(x)-\frac{1}{N} \sum_{i=1}^{N} g\left(x, \omega_{i}\right)\right)^{2} d \mu(x) & =\int_{X} \operatorname{var}\left(\frac{1}{N} \sum_{i=1}^{N} g\left(x, \omega_{i}\right)\right) d \mu(x) \\
& =\frac{1}{N^{2}} \int_{X} \sum_{i=1}^{N} \operatorname{var}\left[g\left(x, \omega_{i}\right)\right] d \mu(x) \leq \frac{C^{2}}{N} .
\end{aligned}
$$

By Fatou's lemma, this implies

$$
\mathbb{E}\left[\liminf _{N \rightarrow \infty}\left\|f-\frac{1}{N} \sum_{i=1}^{N} g\left(\cdot, \omega_{i}\right)\right\|_{L^{2}(\mu)}^{2}\right] \underset{N \rightarrow \infty}{\longrightarrow} 0
$$

Proof of Barron's result

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, write $f \in B_{d}^{*}(C)$ if

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{d}}\left(e^{i(x, \omega\rangle}-1\right) \cdot F(\omega) d \omega \quad \forall x \in \mathbb{R}^{d}, \tag{*}
\end{equation*}
$$

for some F with $C_{F}:=\int_{\mathbb{R}^{d}}|\omega| \cdot|F(\omega)| d \omega \leq C$. Thus, $B_{d}(C)=\mathbb{R}+B_{d}^{*}(C)$.

Proof of Barron's result

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, write $f \in B_{d}^{*}(C)$ if

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{d}}\left(e^{i\langle x, \omega\rangle}-1\right) \cdot F(\omega) d \omega \quad \forall x \in \mathbb{R}^{d}, \tag{*}
\end{equation*}
$$

for some F with $C_{F}:=\int_{\mathbb{R}^{d}}|\omega| \cdot|F(\omega)| d \omega \leq C$. Thus, $B_{d}(C)=\mathbb{R}+B_{d}^{*}(C)$.
Lemma: Let $c \in \mathbb{R}$ be arbitrary, and let $H(x):=\mathbb{1}_{(0, \infty)}+c \cdot \mathbb{1}_{\{0\}}$. We have $B_{d}^{*}(C) \subset \overline{\text { cons }} G_{H}$, where the closure is taken in $L^{2}\left(B_{r} ; \mu\right)$ for any finite measure μ, and where

$$
G_{H}:=\left\{\gamma \cdot H(\langle w, \bullet\rangle+b):|\gamma| \leq 2 r C, w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} .
$$

Proof of Barron's result

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, write $f \in B_{d}^{*}(C)$ if

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{d}}\left(e^{i(x, \omega\rangle}-1\right) \cdot F(\omega) d \omega \quad \forall x \in \mathbb{R}^{d}, \tag{*}
\end{equation*}
$$

for some F with $C_{F}:=\int_{\mathbb{R}^{d}}|\omega| \cdot|F(\omega)| d \omega \leq C$. Thus, $B_{d}(C)=\mathbb{R}+B_{d}^{*}(C)$.
Lemma: Let $c \in \mathbb{R}$ be arbitrary, and let $H(x):=\mathbb{1}_{(0, \infty)}+c \cdot \mathbb{1}_{\{0\}}$. We have $B_{d}^{*}(C) \subset \overline{\text { cons }} G_{H}$, where the closure is taken in $L^{2}\left(B_{r} ; \mu\right)$ for any finite measure μ, and where

$$
G_{H}:=\left\{\gamma \cdot H(\langle w, \bullet\rangle+b):|\gamma| \leq 2 r C, w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} .
$$

Proof: (1: A direct computation shows for $c>0$ and $|t| \leq c$ that

$$
e^{i t}-1=i \int_{0}^{c} \mathbb{1}_{u<t} \cdot e^{i u}-\mathbb{1}_{u<-t} \cdot e^{-i u} d u=i \int_{0}^{c} H(t-u) e^{i u}-H(-u-t) e^{-i u} d u .
$$

Proof of Barron's result

For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, write $f \in B_{d}^{*}(C)$ if

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}^{d}}\left(e^{i\langle x, \omega\rangle}-1\right) \cdot F(\omega) d \omega \quad \forall x \in \mathbb{R}^{d}, \tag{*}
\end{equation*}
$$

for some F with $C_{F}:=\int_{\mathbb{R}^{d}}|\omega| \cdot|F(\omega)| d \omega \leq C$. Thus, $B_{d}(C)=\mathbb{R}+B_{d}^{*}(C)$.
Lemma: Let $c \in \mathbb{R}$ be arbitrary, and let $H(x):=\mathbb{1}_{(0, \infty)}+c \cdot \mathbb{1}_{\{0\}}$. We have $B_{d}^{*}(C) \subset \overline{\text { conn }} G_{H}$, where the closure is taken in $L^{2}\left(B_{r} ; \mu\right)$ for any finite measure μ, and where

$$
G_{H}:=\left\{\gamma \cdot H(\langle w, \bullet\rangle+b):|\gamma| \leq 2 r C, w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} .
$$

Proof: (1: A direct computation shows for $c>0$ and $|t| \leq c$ that

$$
e^{i t}-1=i \int_{0}^{c} \mathbb{1}_{u<t} \cdot e^{i u}-\mathbb{1}_{u<-t} \cdot e^{-i u} d u=i \int_{0}^{c} H(t-u) e^{i u}-H(-u-t) e^{-i u} d u .
$$

(2) Using (*) and the formula from (1) with $t=\langle\omega, x\rangle$ and $c=r \cdot|\omega|$, and writing $F(\omega)=e^{i \theta(\omega)}|F(\omega)|$, we finally see

$$
f(x)=\operatorname{Re}\left(i \int_{\mathbb{R}^{d}} \int_{0}^{r \cdot|\omega|} F(\omega) \cdot\left(H(\langle\omega, x\rangle-u) e^{i u}-H(\langle-\omega, x\rangle-u) e^{-i u}\right) d u d \omega\right)
$$

$$
=\sum_{j=0}^{1} \int_{\mathbb{R}^{d}} \int_{0}^{1} \frac{|\omega| \cdot|F(\omega)|}{2 C_{F}} \cdot(-1)^{j+1} 2 r C_{F} \cdot \sin \left(\theta(\omega)+(-1)^{j} r|\omega| t\right) \cdot H\left(\left\langle(-1)^{j} \omega, x\right\rangle-r|\omega| t\right) d t d \omega . \square
$$

Universal approximation for complex-valued neural networks

1. The basics of neural networks

2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions
4. Universal approximation for complex-valued neural networks

The definition of complex-valued neural networks (CVNNs)

- L: number of (hidden) layers,
- N_{ℓ} : number of neurons in layer ℓ,
- $T_{\ell}: \mathbb{R}^{N_{\ell}} \rightarrow \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell} x+b_{\ell}:$ connections between neurons (weights).

$\varrho: \mathbb{R} \rightarrow \mathbb{R}$: activation function
Network function $\Phi: \mathbb{R}^{N_{0}} \rightarrow \mathbb{R}^{N_{L+1}}$ given by

$$
\Phi=T_{L} \circ\left(\varrho \circ T_{L-1}\right) \circ \cdots \circ\left(\varrho \circ T_{0}\right)
$$

with ϱ applied componentwise.

The definition of complex-valued neural networks (CVNNs)

$\sigma: \mathbb{C} \rightarrow \mathbb{C}:$ activation function
Network function $\Phi: \mathbb{C}^{N_{0}} \rightarrow \mathbb{C}^{N_{L+1}}$ given by

$$
\Phi=T_{L} \circ\left(\sigma \circ T_{L-1}\right) \circ \cdots \circ\left(\sigma \circ T_{0}\right)
$$

with σ applied componentwise.

Virtue, Yu, Lustig: Better than real: Complex-valued Neural Nets for MRI fingerprinting, ICIP, 2017:

Goal: From \mathbb{C}-valued MRI measurements, determine if tissue is benign or malignant.

66
CVNNs outperform 2-channel real-valued networks for almost all of our experiments, and this advantage cannot be explained away by the twice large model capacity.

11

Differentiability is always understood in the sense of real variables

[unless mentioned otherwise]

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.
Theorem (shallow case; FV; 2020)
The set $\mathcal{N N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not ???

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.
Theorem (shallow case; FV; 2020)
The set $\mathcal{N N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not polyharmonic.

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.
Theorem (shallow case; FV; 2020)
The set $\mathcal{N N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not polyharmonic.
Here, $g: \mathbb{C} \rightarrow \mathbb{C}$ is polyharmonic if $g \in C^{\infty}$ and $\Delta^{m} g \equiv 0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ denotes the Laplace operator on $\mathbb{C} \cong \mathbb{R}^{2}$.

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.

Theorem (shallow case; FV; 2020)

The set $\mathcal{N} \mathcal{N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not polyharmonic.
Here, $g: \mathbb{C} \rightarrow \mathbb{C}$ is polyharmonic if $g \in C^{\infty}$ and $\Delta^{m} g \equiv 0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ denotes the Laplace operator on $\mathbb{C} \cong \mathbb{R}^{2}$.

Remark: g polyharm. $\Longleftrightarrow \operatorname{Re} g$ and $\operatorname{Im} g$ of the form $\operatorname{Re}\left(\sum_{k=0}^{m} \bar{z}^{k} \cdot f_{k}(z)\right)$ with all f_{k} entire.

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.
Theorem (shallow case; FV; 2020)
The set $\mathcal{N} \mathcal{N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not polyharmonic.
Here, $g: \mathbb{C} \rightarrow \mathbb{C}$ is polyharmonic if $g \in C^{\infty}$ and $\Delta^{m} g \equiv 0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ denotes the Laplace operator on $\mathbb{C} \cong \mathbb{R}^{2}$.

Remark: g polyharm. $\Longleftrightarrow \operatorname{Reg}$ and $\operatorname{Im} g$ of the form $\operatorname{Re}\left(\sum_{k=0}^{m} \bar{z}^{k} \cdot f_{k}(z)\right)$ with all f_{k} entire.

Theorem (deep case; FV; 2020)

Let $L \in \mathbb{N}_{\geq 2}$. The set $\mathcal{N} \mathcal{N}_{\sigma, L}^{d}$ of deep CVNNs with L hidden layers is universal if and only if none(!) of the following hold:

- σ is holomorphic or $\bar{\sigma}$ is holomorphic,
- $\sigma(z)=p(z, \bar{z})$ with a polynomial p.

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.
Theorem (shallow case; FV; 2020)
The set $\mathcal{N N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not polyharmonic.
Here, $g: \mathbb{C} \rightarrow \mathbb{C}$ is polyharmonic if $g \in C^{\infty}$ and $\Delta^{m} g \equiv 0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ denotes the Laplace operator on $\mathbb{C} \cong \mathbb{R}^{2}$.

Remark: g polyharm. $\Longleftrightarrow \operatorname{Re} g$ and $\operatorname{Im} g$ of the form $\operatorname{Re}\left(\sum_{k=0}^{m} \bar{z}^{k} \cdot f_{k}(z)\right)$ with all f_{k} entire.

Theorem (deep case; FV; 2020)

Let $L \in \mathbb{N}_{\geq 2}$. The set $\mathcal{N} \mathcal{N}_{\sigma, L}^{d}$ of deep CVNNs with L hidden layers is universal if and only if none(!) of the following hold:

- σ is holomorphic or $\bar{\sigma}$ is holomorphic,
- $\sigma(z)=p(z, \bar{z})$ with a polynomial p.

Example: $\sigma(z)=\bar{z} \cdot e^{z}$ is polyharmonic, but $\mathcal{N}_{\mathcal{N}}^{\sigma, L}{ }^{d}$ is universal if $L \geq 2$.

The universal approximation theorem for CVNNs

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be continuous.
Theorem (shallow case; FV; 2020)
The set $\mathcal{N N}_{\sigma}^{d}$ of shallow CVNNs is universal if and only if σ is not polyharmonic.
Here, $g: \mathbb{C} \rightarrow \mathbb{C}$ is polyharmonic if $g \in C^{\infty}$ and $\Delta^{m} g \equiv 0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ denotes the Laplace operator on $\mathbb{C} \cong \mathbb{R}^{2}$.

Remark: g polyharm. $\Longleftrightarrow \operatorname{Re} g$ and $\operatorname{Im} g$ of the form $\operatorname{Re}\left(\sum_{k=0}^{m} \bar{z}^{k} \cdot f_{k}(z)\right)$ with all f_{k} entire.

Theorem (deep case; FV; 2020)

Let $L \in \mathbb{N}_{\geq 2}$. The set $\mathcal{N} \mathcal{N}_{\sigma, L}^{d}$ of deep CVNNs with L hidden layers is universal if and only if none(!) of the following hold:

- σ is holomorphic or $\bar{\sigma}$ is holomorphic,
- $\sigma(z)=p(z, \bar{z})$ with a polynomial p.

Example: $\sigma(z)=\bar{z} \cdot e^{z}$ is polyharmonic, but $\mathcal{N}_{\mathcal{N}}^{\sigma, L}{ }^{d}$ is universal if $L \geq 2$.
Remark: Some (very) partial results were already known [Arena, Fortuna, Re, Xibilia; $1995]$

Proof ingredients

Ingredient 1: Wirtinger calculus

Identifying $f: U \subset \mathbb{C} \rightarrow \mathbb{C}$ with $(x, y) \mapsto f(x+i y)$, define

$$
\partial f:=\frac{1}{2}\left(\partial_{1} f-i \partial_{2} f\right) \quad \text { and } \quad \bar{\partial} f:=\frac{1}{2}\left(\partial_{1} f+i \partial_{2} f\right) .
$$

Ingredient 1: Wirtinger calculus

Identifying $f: U \subset \mathbb{C} \rightarrow \mathbb{C}$ with $(x, y) \mapsto f(x+i y)$, define

$$
\partial f:=\frac{1}{2}\left(\partial_{1} f-i \partial_{2} f\right) \quad \text { and } \quad \bar{\partial} f:=\frac{1}{2}\left(\partial_{1} f+i \partial_{2} f\right) .
$$

Properties:

- $f \in C^{1}(U ; \mathbb{C})$ is holomorphic $\Longleftrightarrow \bar{\partial} f \equiv 0$.

In this case, ∂f is the usual complex derivative of f.

$$
\Delta f=4 \cdot \partial \bar{\partial} f \quad \text { for } f \in C^{2}(U ; \mathbb{C})
$$

Ingredient 1: Wirtinger calculus

Identifying $f: U \subset \mathbb{C} \rightarrow \mathbb{C}$ with $(x, y) \mapsto f(x+i y)$, define

$$
\partial f:=\frac{1}{2}\left(\partial_{1} f-i \partial_{2} f\right) \quad \text { and } \quad \bar{\partial} f:=\frac{1}{2}\left(\partial_{1} f+i \partial_{2} f\right) .
$$

Properties:

- $f \in C^{1}(U ; \mathbb{C})$ is holomorphic $\Longleftrightarrow \bar{\partial} f \equiv 0$.

In this case, ∂f is the usual complex derivative of f.

- $\Delta f=4 \cdot \partial \bar{\partial} f$ for $f \in C^{2}(U ; \mathbb{C})$.
- Product rule:

$$
\partial(f \cdot g)=(\partial f) \cdot g+f \cdot \partial g \quad \text { and } \quad \bar{\partial}(f \cdot g)=(\bar{\partial} f) \cdot g+f \cdot(\bar{\partial} g)
$$

- Chain rule:

$$
\begin{aligned}
\partial(f \circ g) & =[(\partial f) \circ g] \cdot \partial g+[(\bar{\partial} f) \circ g] \cdot \bar{\partial} g \\
\text { and } \quad \bar{\partial}(f \circ g) & =[(\partial f) \circ g] \cdot \bar{\partial} g+[(\bar{\partial} f) \circ g] \cdot \bar{\partial} \bar{g} .
\end{aligned}
$$

Ingredient 2: Weyl's lemma

Weyl's lemma

Let $U \subset \mathbb{R}^{d}$ be open and suppose that $\gamma \in \mathcal{D}^{\prime}(U)$ [i.e., γ is a distribution] satisfies $\Delta \gamma=g$ for some $g \in C^{\infty}(U)$. Then $\gamma \in C^{\infty}(U)$.

Ingredient 2: Weyl's lemma

Weyl's lemma

Let $U \subset \mathbb{R}^{d}$ be open and suppose that $\gamma \in \mathcal{D}^{\prime}(U)$ [i.e., γ is a distribution] satisfies $\Delta \gamma=g$ for some $g \in C^{\infty}(U)$. Then $\gamma \in C^{\infty}(U)$.

Corollary

Suppose that $f \in L_{\text {loc }}^{1}(U)$ satisfies $\int_{U} f \cdot \Delta^{m} \theta d x=0 \quad$ for all $\theta \in C_{C}^{\infty}(U)$. Then $f \in C^{\infty}(U)$ and $\Delta^{m} f \equiv 0$.

Ingredient 2: Weyl's lemma

Weyl's lemma

Let $U \subset \mathbb{R}^{d}$ be open and suppose that $\gamma \in \mathcal{D}^{\prime}(U)$ [i.e., γ is a distribution] satisfies $\quad \Delta \gamma=g$ for some $g \in C^{\infty}(U)$. Then $\gamma \in C^{\infty}(U)$.

Corollary

Suppose that $f \in L_{\mathrm{loc}}^{1}(U)$ satisfies $\quad \int_{U} f \cdot \Delta^{m} \theta d x=0 \quad$ for all $\theta \in C_{c}^{\infty}(U)$.
Then $f \in C^{\infty}(U)$ and $\Delta^{m} f \equiv 0$.

Corollary

If $\left(f_{n}\right)_{n \in \mathbb{N}} \subset C^{\infty}(\mathbb{C} ; \mathbb{C})$ with $\Delta^{m} f_{n} \equiv 0$ for all $n \in \mathbb{N}$ and $f_{n} \rightarrow f$ with locally uniform convergence, then $f \in C^{\infty}(\mathbb{C} ; \mathbb{C})$ and $\Delta^{m} f \equiv 0$.

Necessity

(Universality $\Longrightarrow \sigma$ is not polyharmonic / ...)

Necessity for shallow networks

Suppose that $\Delta^{m} \sigma \equiv 0$ for some $m \in \mathbb{N}$.

To prove: Universality fails.

Necessity for shallow networks

Suppose that $\Delta^{m} \sigma \equiv 0$ for some $m \in \mathbb{N}$.
To prove: Universality fails.
Recall: Each shallow network $\psi \in \mathcal{N} \mathcal{N}_{\sigma}^{1}$ is of the form

$$
\Psi(z)=c+\sum c_{j} \sigma\left(a_{j} z+b_{j}\right)
$$

Necessity for shallow networks

Suppose that $\Delta^{m} \sigma \equiv 0$ for some $m \in \mathbb{N}$.
To prove: Universality fails.
Recall: Each shallow network $\psi \in \mathcal{N} \mathcal{N}_{\sigma}^{1}$ is of the form

$$
\Psi(z)=c+\sum c_{j} \sigma\left(a_{j} z+b_{j}\right) .
$$

Step (1) Using $\Delta=4 \partial \bar{\partial}$ and Wirtinger calculus shows $\Delta^{m} \Psi \equiv 0$ for $\psi \in \mathcal{N N}^{1}{ }_{\sigma}^{1}$.

Necessity for shallow networks

Suppose that $\Delta^{m} \sigma \equiv 0$ for some $m \in \mathbb{N}$.
To prove: Universality fails.
Recall: Each shallow network $\psi \in \mathcal{N} \mathcal{N}_{\sigma}^{1}$ is of the form

$$
\psi(z)=c+\sum c_{j} \sigma\left(a_{j} z+b_{j}\right) .
$$

Step (1) Using $\Delta=4 \partial \bar{\partial}$ and Wirtinger calculus shows $\Delta^{m} \Psi \equiv 0$ for $\psi \in \mathcal{N N}^{1}{ }_{\sigma}^{1}$.

Step 2: By Weyl's lemma: If $\left(\Psi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{N} \mathcal{N}_{\sigma}^{1}$ satisfies $\Psi_{n} \rightarrow F$ locally uniformly, then $F \in C^{\infty}$.

Necessity for shallow networks

Suppose that $\Delta^{m} \sigma \equiv 0$ for some $m \in \mathbb{N}$.
To prove: Universality fails.
Recall: Each shallow network $\psi \in \mathcal{N N}_{\sigma}^{1}$ is of the form

$$
\Psi(z)=c+\sum c_{j} \sigma\left(a_{j} z+b_{j}\right) .
$$

Step (1) Using $\Delta=4 \partial \bar{\partial}$ and Wirtinger calculus shows $\Delta^{m} \Psi \equiv 0$ for $\psi \in \mathcal{N N}_{\sigma}^{1}$.

Step 2: By Weyl's lemma: If $\left(\Psi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{N} \mathcal{N}_{\sigma}^{1}$ satisfies $\Psi_{n} \rightarrow F$ locally uniformly, then $F \in C^{\infty}$.

$$
\Longrightarrow \quad \text { Universality fails if } \Delta^{m} \sigma \equiv 0 .
$$

Necessity for shallow networks

Suppose that $\Delta^{m} \sigma \equiv 0$ for some $m \in \mathbb{N}$.
To prove: Universality fails.
Recall: Each shallow network $\Psi \in \mathcal{N} \mathcal{N}_{\sigma}^{1}$ is of the form

$$
\Psi(z)=c+\sum c_{j} \sigma\left(a_{j} z+b_{j}\right) .
$$

Step 1: Using $\Delta=4 \partial \bar{\partial}$ and Wirtinger calculus shows $\Delta^{m} \Psi \equiv 0$ for $\psi \in \mathcal{N N}^{1}{ }_{\sigma}$.

Step 2: By Weyl's lemma: If $\left(\Psi_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{N} \mathcal{N}_{\sigma}^{1}$ satisfies $\Psi_{n} \rightarrow F$ locally uniformly, then $F \in C^{\infty}$.

$$
\Longrightarrow \quad \text { Universality fails if } \Delta^{m} \sigma \equiv 0 .
$$

Necessity for deep networks

Necessity for deep networks

Case 1: σ holomorphic.
Then ψ is holomorphic for any $\psi \in \mathcal{N N}_{\sigma, L}$.
\rightsquigarrow Locally uniform limits also holomorphic
\rightsquigarrow Universality fails!

Necessity for deep networks

Case 1: σ holomorphic.
Then ψ is holomorphic for any $\psi \in \mathcal{N N}_{\sigma, L}^{1}$.
\rightsquigarrow Locally uniform limits also holomorphic
\rightsquigarrow Universality fails!

Case 2: σ is anti-holomorphic (i.e., $\bar{\sigma}$ is holomorphic).
Then ψ is holomorphic or anti-holomorphic for any $\Psi \in \mathcal{N N}_{\sigma, L}^{1}$.
\rightsquigarrow As above: Universality fails!

Necessity for deep networks

Case 1: σ holomorphic.
Then ψ is holomorphic for any $\psi \in \mathcal{N N}_{\sigma, L}^{1}$.
\rightsquigarrow Locally uniform limits also holomorphic
\rightsquigarrow Universality fails!

Case 2: σ is anti-holomorphic (i.e., $\bar{\sigma}$ is holomorphic).
Then ψ is holomorphic or anti-holomorphic for any $\Psi \in \mathcal{N N}_{\sigma, L}^{1}$.
\rightsquigarrow As above: Universality fails!

Case (3) $\sigma(z)=p(z, \bar{z})$ for a polynomial p.
Then ψ is a polynomial of degree $N=N(L, p)$ for any $\Psi \in \mathcal{N} \mathcal{N}_{\sigma, L}^{1}$.
\rightsquigarrow Universality fails!

Sufficiency

Sufficiency: It is enough to consider networks with 1D input

Lemma

If $\mathcal{N} \mathcal{N}_{\sigma, L}^{1}$ is universal, then so is $\mathcal{N N}_{\sigma, L}^{d}$ for any $d \in \mathbb{N}$.

Sufficiency: It is enough to consider networks with 1D input

Lemma

If $\mathcal{N N}_{\sigma, L}^{1}$ is universal, then so is $\mathcal{N N}_{\sigma, L}^{d}$ for any $d \in \mathbb{N}$.

Proof.

Step 1: Assumption ensures:

$$
\left(z \mapsto e^{\operatorname{Re} z}\right) \in \overline{\mathcal{N N}_{\sigma, L}^{1}} .
$$

Step 2: This implies

$$
\left(z \mapsto e^{\operatorname{Re}(a, z\rangle)}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, L}^{d}} \quad \forall a \in \mathbb{C}^{d} .
$$

Step (3) By Stone-Weierstraß: The functions from Step 2 span a dense subspace of $C(K)$ for $K \subset \mathbb{C}^{d}$ compact.

Proof of sufficiency for shallow complex-valued networks

Proof of sufficiency for shallow complex-valued networks

For simplicity: Assume $\sigma \in C^{\infty}$ is smooth

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.
Proof sketch: (1) Wirtinger calculus shows

$$
\partial_{w}^{m} \bar{\partial}_{w}^{\ell}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(w z+\theta)
$$

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.
Proof sketch: (1) Wirtinger calculus shows

$$
\partial_{w}^{m} \bar{\partial}_{w}^{\ell}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(w z+\theta)
$$

and hence

$$
\left.\partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(\theta) .
$$

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.
Proof sketch: (1) Wirtinger calculus shows

$$
\partial_{w}^{m} \bar{\partial}_{w}^{\ell}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(w z+\theta)
$$

and hence

$$
\left.\partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(\theta)
$$

2. We have $\left[\left.z \mapsto \partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0} \sigma(w z+\theta)\right] \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.
Proof sketch: (1) Wirtinger calculus shows

$$
\partial_{w}^{m} \bar{\partial}_{w}^{\ell}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(w z+\theta)
$$

and hence

$$
\left.\partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(\theta) .
$$

(2. We have $\left[\left.z \mapsto \partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0} \sigma(w z+\theta)\right] \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.

Proof idea: approximate derivative via difference quotient:

$$
\frac{\partial}{\partial a} \sigma((a+i b) z+\theta)=\lim _{h \rightarrow 0} \frac{1}{h}[\underbrace{\sigma((a+h+i b) z+\theta)-\sigma((a+i b) z+\theta)}_{\in \mathcal{N N}_{\sigma, 1}^{1}, \text { as a function of } z}],
$$

with locally uniform convergence.

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.
Proof sketch: (1) Wirtinger calculus shows

$$
\partial_{w}^{m} \bar{\partial}_{w}^{\ell}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(w z+\theta)
$$

and hence

$$
\left.\partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(\theta) .
$$

2. We have $\left[\left.z \mapsto \partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0} \sigma(w z+\theta)\right] \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.

Proof idea: approximate derivative via difference quotient:

$$
\frac{\partial}{\partial a} \sigma((a+i b) z+\theta)=\lim _{h \rightarrow 0} \frac{1}{h}[\underbrace{\sigma((a+h+i b) z+\theta)-\sigma((a+i b) z+\theta)}_{\in \mathcal{N N}_{\sigma, 1}^{1}, \text { as a function of } z}],
$$

with locally uniform convergence.
Corollary. If σ is not polyharmonic, then $\overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}=C(\mathbb{C} ; \mathbb{C})$.

Proof of sufficiency for shallow complex-valued networks

Proposition. If $m, \ell \in \mathbb{N}_{0}$ such that $\partial^{m} \bar{\partial}^{\ell} \sigma \not \equiv 0$, then $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.
Proof sketch: (1) Wirtinger calculus shows

$$
\partial_{w}^{m} \bar{\partial}_{w}^{\ell}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(w z+\theta)
$$

and hence

$$
\left.\partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0}[\sigma(w z+\theta)]=z^{m} \bar{z}^{\ell} \cdot\left(\partial^{m} \bar{\partial}^{\ell} \sigma\right)(\theta) .
$$

(2. We have $\left[\left.z \mapsto \partial_{w}^{m} \bar{\partial}_{w}^{\ell}\right|_{w=0} \sigma(w z+\theta)\right] \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$.

Proof idea: approximate derivative via difference quotient:

$$
\frac{\partial}{\partial a} \sigma((a+i b) z+\theta)=\lim _{h \rightarrow 0} \frac{1}{h}[\underbrace{\sigma((a+h+i b) z+\theta)-\sigma((a+i b) z+\theta)}_{\in \mathcal{N N}_{\sigma, 1}^{1}, \text { as a function of } z}],
$$

with locally uniform convergence.
Corollary. If σ is not polyharmonic, then $\overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}=C(\mathbb{C} ; \mathbb{C})$.
Proof: 1: We have $0 \not \equiv \Delta^{k} \sigma=4^{k} \cdot \partial^{k} \bar{\partial}^{k} \sigma$ for all $k \in \mathbb{N}$.
2: By the proposition, $\left(z \mapsto z^{m} \bar{z}^{\ell}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}$ for all m, ℓ.

Sufficiency for deep networks

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be smooth, but not holomorphic, anti-holomorphic, or a polynomial.

Sufficiency for deep networks

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be smooth, but not holomorphic, anti-holomorphic, or a polynomial.
$\left.\begin{array}{l}\sigma \text { not holom. } \Longrightarrow \bar{\partial} \sigma \not \equiv 0 \xlongequal{\text { as before }}(z \mapsto \bar{z}) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}} \\ \sigma \text { not anti-holom. } \Longrightarrow \partial \sigma \not \equiv 0 \xlongequal{\text { as before }}(z \mapsto z) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}}\end{array}\right\} \Longrightarrow(z \mapsto \operatorname{Re} z) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}}$.

Sufficiency for deep networks

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be smooth, but not holomorphic, anti-holomorphic, or a polynomial.

1
$\left.\begin{array}{l}\sigma \text { not holom. } \Longrightarrow \bar{\partial} \sigma \not \equiv 0 \stackrel{\text { as before }}{\Longrightarrow}(z \mapsto \bar{z}) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}} \\ \sigma \text { not anti-holom. } \Longrightarrow \partial \sigma \not \equiv 0 \xlongequal{\text { as before }} \\ (z \mapsto z) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}}\end{array}\right\} \Longrightarrow(z \mapsto \operatorname{Re} z) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}}$.
(2) Since σ is not a polynomial, we have

$$
\begin{array}{lll}
& \forall m \in \mathbb{N}_{0}: & \partial^{m} \sigma \not \equiv 0
\end{array} \quad \text { or } \bar{\partial}^{m} \sigma \not \equiv 0
$$

Sufficiency for deep networks

Let $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ be smooth, but not holomorphic, anti-holomorphic, or a polynomial.

1
$\left.\begin{array}{l}\sigma \text { not holom. } \Longrightarrow \bar{\partial} \sigma \not \equiv 0 \xlongequal{\text { as before }}(z \mapsto \bar{z}) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}} \\ \sigma \text { not anti-holom. } \Longrightarrow \partial \sigma \not \equiv 0 \xlongequal{\text { as before }} \\ (z \mapsto z) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}}\end{array}\right\} \Longrightarrow(z \mapsto \operatorname{Re} z) \in \overline{\mathcal{N N}_{\sigma, 1}^{1}}$.
(2) Since σ is not a polynomial, we have

$$
\begin{array}{lll}
& \forall m \in \mathbb{N}_{0}: & \partial^{m} \sigma \not \equiv 0
\end{array} \quad \text { or } \bar{\partial}^{m} \sigma \not \equiv 0, ~=\overline{\mathcal{N N}_{\sigma, 1}^{1}} \text { or }\left(z \mapsto \bar{z}^{m}\right) \in \overline{\mathcal{N} \mathcal{N}_{\sigma, 1}^{1}}
$$

(3) Since we consider deep networks ($L \geq 2$), (1) and (2) imply

$$
\forall m \in \mathbb{N}_{0}:\left[z \mapsto(\operatorname{Re} z)^{m}\right] \in \overline{\mathcal{N} \mathcal{N}_{\sigma, L}^{1}} .
$$

This easily implies universality.

Thanks for your attention $)^{-}$

Questions, comments, counterexamples?

