## Approximation Properties of Neural Networks

Felix Voigtlaender http://voigtlaender.xyz



Workshop and Summer School on Applied Analysis 2023 Chemnitz, Germany, 18-22 September 2023

### Deep learning dramatically changed what computers can do

#### Image recognition



www.infoq.com/presentations/deepmind-q-network

#### Game intelligence



heise.d

#### Autonomous driving



www.lindsaysing.com/austin-tech-alliance/

#### Speech recognition



www.quantiphi.com/portfolio-posts/speech-recognition/

## "Deep learning" roughly means: Adjust weights of a deep neural network based on training data



## The performance of a machine learning system is influenced by Expressiveness, Generalization, and Optimization

- $ightharpoonup \mathcal{X} imes \mathcal{Y}$ : set of all possible (input, label) pairs
- $ightharpoonup \mathbb{P}$ : "ground truth" distribution on  $\mathcal{X} \times \mathcal{Y}$  (unknown)

Goal: Minimize the (expected) risk

$$R(f) := \mathbb{P}(f(X) \neq Y),$$

given only training sample

$$S = ((X_1, Y_1), ..., (X_N, Y_N)) \stackrel{\text{iid}}{\sim} \mathbb{P}.$$



www.infoq.com/presentations/deepmind-q-network

## The performance of a machine learning system is influenced by Expressiveness, Generalization, and Optimization

- $\triangleright$   $\mathcal{X} \times \mathcal{Y}$ : set of all possible (input, label) pairs
- $ightharpoonup \mathbb{P}$ : "ground truth" distribution on  $\mathcal{X} \times \mathcal{Y}$ (unknown)

Goal: Minimize the (expected) risk

$$R(f) := \mathbb{P}(f(X) \neq Y),$$

given only training sample

$$S = ((X_1, Y_1), ..., (X_N, Y_N)) \stackrel{\text{iid}}{\sim} \mathbb{P}.$$





www.infog.com/presentations/deepmind-g-network

$$\begin{aligned} \text{e.g.} \quad & h_S^* = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^N \mathbf{1}_{h(X_i) \neq Y_i} \\ \text{or} \quad & h_S^* = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^N \|h(X_i) - Y_i\|^2 \end{aligned}$$

or 
$$h_S^* = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^{\infty} \|h(X_i) - Y_i\|^2$$

## The performance of a machine learning system is influenced by Expressiveness, Generalization, and Optimization

- $ightharpoonup \mathcal{X} imes \mathcal{Y}$ : set of all possible (input, label) pairs
- $\begin{tabular}{l} \blacksquare \end{tabular} \begin{tabular}{l} \blacksquare \end{tabular} \begin{tabula$



In this lecture, we only consider the **approximation** error!



$$\text{e.g. } h_S^* = \operatorname*{argmin}_{h \in \mathcal{H}} \sum_{i=1}^N \mathbb{1}_{h(X_i) \neq Y_i}$$

$$\text{or} \quad \quad h_S^* = \mathop{\rm argmin}_{h \in \mathcal{H}} \sum_{i=1}^N \|h(X_i) - Y_i\|^2$$

## Book recommendations regarding the basics of machine learning

#### Practice:







### Basic principles and theory:







#### Table of contents

1. The basics of neural networks

2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions

4. Universal approximation for complex-valued neural networks

#### The basics of neural networks

1. The basics of neural networks

2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions

4. Universal approximation for complex-valued neural networks









- ► L: number of (hidden) layers,
- $(N_0, ..., N_{L+1})$ : neurons per layer
- T<sub>\ell</sub>:  $\mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell}x + b_{\ell}$ : connections between neurons (weights),
- $\varrho : \mathbb{R} \to \mathbb{R}$ : activation function.

Neural network:  $\Phi = (T_0, \ldots, T_L)$ 

Network function (Realization):

$$R_{\varrho}(\Phi): \mathbb{R}^{N_0} o \mathbb{R}^{N_{L+1}}$$
, given by

$$R_{\varrho}(\Phi) = T_{L} \circ (\varrho \circ T_{L-1}) \circ \cdots \circ (\varrho \circ T_{0})$$

with  $\varrho$  applied componentwise, i.e.,

$$\varrho((x_1,\ldots,x_K))=(\varrho(x_1),\ldots,\varrho(x_K)).$$



$$L(\Phi) = 3$$

$$N(\Phi) = 13$$

$$W(\Phi) = \sum_{i=0}^{L} \|A_i\|_{\ell^0} = 34$$



- ► L: number of (hidden) layers,
- $(N_0, ..., N_{L+1})$ : neurons per layer
- ►  $T_{\ell}: \mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell}x + b_{\ell}$ : connections between neurons (weights),
- $\varrho : \mathbb{R} \to \mathbb{R}$ : activation function.

Neural network:  $\Phi = (T_0, \dots, T_L)$ 

Network function (Realization):

 $R_{\varrho}(\Phi): \mathbb{R}^{N_0} o \mathbb{R}^{N_{L+1}}$ , given by

$$R_{\varrho}(\Phi) = T_{L} \circ (\varrho \circ T_{L-1}) \circ \cdots \circ (\varrho \circ T_{0})$$

with  $\varrho$  applied componentwise, i.e.,

$$\varrho((x_1,\ldots,x_K))=(\varrho(x_1),\ldots,\varrho(x_K)).$$



$$L(\Phi) = 3$$

$$N(\Phi) = 13$$

$$W(\Phi) = \sum_{i=0}^{L} ||A_i||_{\ell^0} = 34$$

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

These NNs are called **fully connected feed-forward NNs**.

- There are other important types of NNs, e.g. CNNs, RNNs, and Transformers.
- ►  $T_{\ell}: \mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell}x + b_{\ell}$ : connections between neurons (weights),
- $\varrho: \mathbb{R} \to \mathbb{R}$ : activation function.

$$R_{\varrho}(\Phi) = T_{L} \circ (\varrho \circ T_{L-1}) \circ \cdots \circ (\varrho \circ T_{0})$$
with  $\varrho$  applied componentwise, i.e.,

 $\varrho((x_1,\ldots,x_K))=(\varrho(x_1),\ldots,\varrho(x_K)).$ 

Basics of NNs • Universal approximation OOOOOOOO Approximation of Barron functions OOOO Universal approximation for CVNNs OOOOOOOO

# The universal approximation theorem

1. The basics of neural networks

2. The universal approximation theorem

3. Quantitative approximation rates for Barron functions

4. Universal approximation for complex-valued neural networks



A function class  $\mathcal{F} \subset \{f : \mathbb{R}^d \to \mathbb{R}\}$  is called universal if  $\forall g \in C(\mathbb{R}^d), \quad \varepsilon > 0, \quad K \subset \mathbb{R}^d \text{ compact} \quad \exists f \in \mathcal{F} : \quad \sup_{x \in K} |g(x) - f(x)| \le \varepsilon.$ 

A function class  $\mathcal{F} \subset \{f : \mathbb{R}^d \to \mathbb{R}\}$  is called universal if

$$\forall\,g\in C(\mathbb{R}^d),\quad \varepsilon>0,\quad K\subset\mathbb{R}^d\text{ compact}\quad \exists\,f\in\mathcal{F}:\quad \sup_{x\in K}|g(x)-f(x)|\leq\varepsilon.$$

**Question:** For which activation functions  $\varrho \in C(\mathbb{R})$  is the set

$$\mathcal{NN}_{\varrho}^{d} := \left\{ x \mapsto \sum_{i=1}^{N} c_{i} \, \varrho(\langle w_{i}, x \rangle + b_{i}) : N \in \mathbb{N}, w_{i} \in \mathbb{R}^{d}, b_{i}, c_{i} \in \mathbb{R} \right\}$$

of all shallow neural networks with activation function  $\varrho$  universal?

A function class  $\mathcal{F} \subset \{f : \mathbb{R}^d \to \mathbb{R}\}$  is called universal if

$$\forall\,g\in C(\mathbb{R}^d),\quad \varepsilon>0,\quad \mathit{K}\subset\mathbb{R}^d \text{ compact} \quad \exists f\in\mathcal{F}: \quad \sup_{x\in\mathit{K}}|g(x)-f(x)|\leq\varepsilon.$$

**Question:** For which activation functions  $\varrho \in C(\mathbb{R})$  is the set

$$\mathcal{NN}_{\varrho}^{d} := \left\{ x \mapsto \sum_{i=1}^{N} c_{i} \, \varrho(\langle w_{i}, x \rangle + b_{i}) : N \in \mathbb{N}, w_{i} \in \mathbb{R}^{d}, b_{i}, c_{i} \in \mathbb{R} \right\}$$

of all shallow neural networks with activation function  $\varrho$  universal?

Quiz: For which activation functions does universality definitely fail?

A function class  $\mathcal{F} \subset \{f : \mathbb{R}^d \to \mathbb{R}\}$  is called universal if

$$\forall g \in C(\mathbb{R}^d), \quad \varepsilon > 0, \quad K \subset \mathbb{R}^d \text{ compact } \exists f \in \mathcal{F}: \quad \sup_{x \in K} |g(x) - f(x)| \le \varepsilon.$$

**Question:** For which activation functions  $\varrho \in C(\mathbb{R})$  is the set

$$\mathcal{NN}_{\varrho}^{d} := \left\{ x \mapsto \sum_{i=1}^{N} c_{i} \, \varrho(\langle w_{i}, x \rangle + b_{i}) : N \in \mathbb{N}, w_{i} \in \mathbb{R}^{d}, b_{i}, c_{i} \in \mathbb{R} \right\}$$

of all shallow neural networks with activation function  $\varrho$  universal?

Quiz: For which activation functions does universality definitely fail?

Universal approximation theorem (Leshno, Lin, Pinkus, Schocken; 1993).

Let  $\varrho : \mathbb{R} \to \mathbb{R}$  be continuous. Then

 $\mathcal{NN}_{arrho}^d$  is universal  $\iff$  arrho is not a polynomial.

**Stone-Weierstraß theorem.** Let X be a compact Hausdorff space. If  $\mathcal{A}$  is a closed subalgebra of  $C(X,\mathbb{R})$  that separates points, then either  $\mathcal{A}=C(X,\mathbb{R})$  or  $\mathcal{A}=\{f\in C(X,\mathbb{R}):f(x_0)=0\}$  for some  $x_0\in X$ .

**Stone-Weierstraß theorem.** Let X be a compact Hausdorff space. If  $\mathcal{A}$  is a closed subalgebra of  $C(X,\mathbb{R})$  that separates points, then either  $\mathcal{A}=C(X,\mathbb{R})$  or  $\mathcal{A}=\{f\in C(X,\mathbb{R}):f(x_0)=0\}$  for some  $x_0\in X$ .

#### Remarks:

- 1.  $\mathcal{A}$  being an algebra means it is a vector space and closed under multiplication.
- 2. A separates the points if for all  $x, y \in X$  with  $x \neq y$  there exists  $f \in A$  satisfying  $f(x) \neq f(y)$ .

#### Proof.

See Theorem 4.45 in Folland's "Real Analysis" book.

**Stone-Weierstraß theorem.** Let X be a compact Hausdorff space. If  $\mathcal{A}$  is a closed subalgebra of  $C(X,\mathbb{R})$  that separates points, then either  $\mathcal{A} = C(X,\mathbb{R})$  or  $\mathcal{A} = \{f \in C(X,\mathbb{R}) : f(x_0) = 0\}$  for some  $x_0 \in X$ .

#### Remarks:

- 1.  $\mathcal{A}$  being an algebra means it is a vector space and closed under multiplication.
- 2.  $\mathcal{A}$  separates the points if for all  $x, y \in X$  with  $x \neq y$  there exists  $f \in \mathcal{A}$  satisfying  $f(x) \neq f(y)$ .

#### Proof.

See Theorem 4.45 in Folland's "Real Analysis" book.

#### Example applications:

1.  $\mathbb{R}[X] \subset C([a,b])$  is dense for a < b (why?!).

**Stone-Weierstraß theorem.** Let *X* be a compact Hausdorff space. If

 ${\mathcal A}$  is a closed subalgebra of  ${\mathcal C}(X,{\mathbb R})$  that separates points, then either

 $\mathcal{A} = \mathcal{C}(X, \mathbb{R}) \text{ or } \mathcal{A} = \{ f \in \mathcal{C}(X, \mathbb{R}) : f(x_0) = 0 \} \text{ for some } x_0 \in X.$ 

#### Remarks:

- 1.  $\mathcal{A}$  being an algebra means it is a vector space and closed under multiplication.
- 2.  $\mathcal{A}$  separates the points if for all  $x, y \in X$  with  $x \neq y$  there exists  $f \in \mathcal{A}$  satisfying  $f(x) \neq f(y)$ .

#### Proof.

See Theorem 4.45 in Folland's "Real Analysis" book.

#### Example applications:

- 1.  $\mathbb{R}[X] \subset C([a,b])$  is dense for a < b (why?!).
- 2.  $\operatorname{span}\{e^{\langle a,x\rangle}\colon a\in\mathbb{R}^d\}\subset C(K)$  is dense for any compact set  $\varnothing\neq K\subset\mathbb{R}^d$ .

Excursion: Dynkin's multiplicative system theorem is a "measure-theoretic analogue" of the Stone-Weierstraß theorem

## Excursion: Dynkin's multiplicative system theorem is a "measure-theoretic analogue" of the Stone-Weierstraß theorem

Let  $X \neq \emptyset$  be a set and  $\ell^{\infty}(X) = \{f : X \to \mathbb{R} : f \text{ bounded}\}.$ 

**Dynkin's multiplicative system theorem.** Let  $\mathcal{F} \subset \ell^{\infty}(X)$  be closed under multiplication and suppose that  $\mathcal{A}$  satisfies the following:

- **1**  $\mathcal{A}$  is a subspace of  $\ell^{\infty}(X)$ ;
- **2**  $\mathcal{F} \subset \mathcal{A}$  and  $\mathbb{1}_X \in \mathcal{A}$ ;
- 3  $\mathcal{A}$  is closed under bounded pointwise convergence, i.e., whenever  $(f_n)_{n\in\mathbb{N}}\subset\mathcal{A}$  satisfies  $f_n\to f$  pointwise and  $\sup_{n\in\mathbb{N}}\sup_{x\in X}|f_n(x)|<\infty$ , then  $f\in\mathcal{A}$ .

Then  $\{f \in \ell^{\infty}(X) : f \text{ measurable with respect to } \sigma(\mathcal{F})\} \subset \mathcal{A}.$ 

## Excursion: Dynkin's multiplicative system theorem is a "measure-theoretic analogue" of the Stone-Weierstraß theorem

Let  $X \neq \emptyset$  be a set and  $\ell^{\infty}(X) = \{f : X \to \mathbb{R} : f \text{ bounded}\}.$ 

**Dynkin's multiplicative system theorem.** Let  $\mathcal{F} \subset \ell^{\infty}(X)$  be closed under multiplication and suppose that  $\mathcal{A}$  satisfies the following:

- **1**  $\mathcal{A}$  is a subspace of  $\ell^{\infty}(X)$ ;
- **2**  $\mathcal{F} \subset \mathcal{A}$  and  $\mathbb{1}_X \in \mathcal{A}$ ;
- 3  $\mathcal{A}$  is closed under bounded pointwise convergence, i.e., whenever  $(f_n)_{n\in\mathbb{N}}\subset\mathcal{A}$  satisfies  $f_n\to f$  pointwise and  $\sup_{n\in\mathbb{N}}\sup_{x\in X}|f_n(x)|<\infty$ , then  $f\in\mathcal{A}$ .

Then  $\{f \in \ell^{\infty}(X) : f \text{ measurable with respect to } \sigma(\mathcal{F})\} \subset \mathcal{A}.$ 

**Example application:** The set  $\operatorname{span}\{e^{-\lambda x} \colon \lambda > 0\} \subset L^2((0,\infty))$  is dense.

**Proof:** Let  $\mathcal{F} = \{e^{-\lambda x} : \lambda > 0\} \subset \ell^{\infty}((0,\infty))$ , let  $g \in L^2((0,\infty))$  be orthogonal to  $\mathcal{F}$ , and let  $\mathcal{A} = \{f \in \ell^{\infty}((0,\infty)) : f \text{ measurable and } \langle g \cdot e^{-x}, f \rangle = 0\}$ .



Let  $A_0$  be the minimal set satisfying properties 1-3.

1. It is enough to show  $\mathbb{1}_M \in \mathcal{A}_0 \subset \mathcal{A}$  for each  $M \in \sigma(\mathcal{F})$ .

Reason: Each  $\sigma(\mathcal{F})$ -measurable  $f \in \ell^{\infty}(X)$  can be approximated by simple functions  $\sum_{i=1}^{N} c_i \, \mathbb{1}_{M_i}$  with  $M_i \in \sigma(\mathcal{F})$  (with bounded p.w. convergence).

- 1. It is enough to show  $\mathbb{1}_M \in \mathcal{A}_0 \subset \mathcal{A}$  for each  $M \in \sigma(\mathcal{F})$ . Reason: Each  $\sigma(\mathcal{F})$ -measurable  $f \in \ell^{\infty}(X)$  can be approximated by simple functions  $\sum_{i=1}^N c_i \mathbb{1}_{M_i}$  with  $M_i \in \sigma(\mathcal{F})$  (with bounded p.w. convergence).
- 2. Let  $\mathcal{G} := \{ M \in \sigma(\mathcal{F}) : \mathbb{1}_M \in \mathcal{A}_0 \}$ . Then  $\mathcal{G}$  is a  $\lambda$ -system (closed under complementation and countable disjoint unions).

- 1. It is enough to show  $\mathbb{1}_M \in \mathcal{A}_0 \subset \mathcal{A}$  for each  $M \in \sigma(\mathcal{F})$ .
  - Reason: Each  $\sigma(\mathcal{F})$ -measurable  $f \in \ell^{\infty}(X)$  can be approximated by simple functions  $\sum_{i=1}^{N} c_i \mathbb{1}_{M_i}$  with  $M_i \in \sigma(\mathcal{F})$  (with bounded p.w. convergence).
- 2. Let  $\mathcal{G} := \{ M \in \sigma(\mathcal{F}) : \mathbb{1}_M \in \mathcal{A}_0 \}$ . Then  $\mathcal{G}$  is a  $\lambda$ -system (closed under complementation and countable disjoint unions).
- 3. Easy:  $A_0$  is closed under multiplication, since  $\mathcal F$  is.
  - $\Longrightarrow \mathcal{G}$  is a  $\pi$ -system (closed under intersection).
  - $\Longrightarrow \mathcal{G}$  is a  $\sigma$ -algebra, by Dynkin's  $\pi$ - $\lambda$ -theorem.
  - Hence, it is enough to show that  $\{f^{-1}((a,b)): f \in \mathcal{F}, a < b\} \subset \mathcal{G}$ .

- 1. It is enough to show  $\mathbb{1}_M \in \mathcal{A}_0 \subset \mathcal{A}$  for each  $M \in \sigma(\mathcal{F})$ .
  - Reason: Each  $\sigma(\mathcal{F})$ -measurable  $f \in \ell^{\infty}(X)$  can be approximated by simple functions  $\sum_{i=1}^{N} c_i \mathbb{1}_{M_i}$  with  $M_i \in \sigma(\mathcal{F})$  (with bounded p.w. convergence).
- 2. Let  $\mathcal{G} := \{ M \in \sigma(\mathcal{F}) \colon \mathbb{1}_M \in \mathcal{A}_0 \}$ . Then  $\mathcal{G}$  is a  $\lambda$ -system (closed under complementation and countable disjoint unions).
- 3. Easy:  $A_0$  is closed under multiplication, since  $\mathcal F$  is.
  - $\Longrightarrow \mathcal{G}$  is a  $\pi$ -system (closed under intersection).
  - $\Longrightarrow \mathcal{G}$  is a  $\sigma$ -algebra, by Dynkin's  $\pi$ - $\lambda$ -theorem.
  - Hence, it is enough to show that  $\{f^{-1}((a,b)): f \in \mathcal{F}, a < b\} \subset \mathcal{G}$ .
- 4. For each  $\varphi \in C(\mathbb{R})$  and  $f \in A_0$ , we have  $\varphi \circ f \in A_0$ .
  - Reason: For polynomials  $\varphi = p$  this is clear, since  $A_0$  is closed under multiplication. Approximate  $\varphi$  uniformly on range(f) by polynomials  $p_n$ .

- 1. It is enough to show  $\mathbb{1}_M \in \mathcal{A}_0 \subset \mathcal{A}$  for each  $M \in \sigma(\mathcal{F})$ .
  - Reason: Each  $\sigma(\mathcal{F})$ -measurable  $f \in \ell^{\infty}(X)$  can be approximated by simple functions  $\sum_{i=1}^{N} c_i \mathbb{1}_{M_i}$  with  $M_i \in \sigma(\mathcal{F})$  (with bounded p.w. convergence).
- 2. Let  $\mathcal{G} := \{ M \in \sigma(\mathcal{F}) \colon \mathbb{1}_M \in \mathcal{A}_0 \}$ . Then  $\mathcal{G}$  is a  $\lambda$ -system (closed under complementation and countable disjoint unions).
- 3. Easy:  $A_0$  is closed under multiplication, since  $\mathcal{F}$  is.
  - $\Longrightarrow \mathcal{G}$  is a  $\pi$ -system (closed under intersection).
  - $\Longrightarrow \mathcal{G}$  is a  $\sigma$ -algebra, by Dynkin's  $\pi$ - $\lambda$ -theorem.
  - Hence, it is enough to show that  $\{f^{-1}((a,b)): f \in \mathcal{F}, a < b\} \subset \mathcal{G}$ .
- 4. For each  $\varphi \in C(\mathbb{R})$  and  $f \in A_0$ , we have  $\varphi \circ f \in A_0$ .
  - Reason: For polynomials  $\varphi = p$  this is clear, since  $A_0$  is closed under multiplication. Approximate  $\varphi$  uniformly on range(f) by polynomials  $p_n$ .
- 5. Pick  $\varphi_n \in C(\mathbb{R})$  with  $0 \le \varphi_n \le 1$  and  $\varphi_n \to \mathbb{1}_{(a,b)}$  pointwise. Then  $\varphi_n \circ f \to \mathbb{1}_{(a,b)} \circ f = \mathbb{1}_{f^{-1}((a,b))}$  pointwise boundedly.

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, arepsilon > 0, \; K \subset \mathbb{R}^d \; ext{compact} \; \; \exists ilde{f} \in \mathcal{F}: \; \; ext{sup}_{x \in K} |f(x) - ilde{f}(x)| \leq arepsilon.$$

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \; K \subset \mathbb{R}^d \; \mathrm{compact} \; \; \exists \widetilde{f} \in \mathcal{F} : \; \sup_{x \in K} |f(x) - \widetilde{f}(x)| \leq \varepsilon.$$

Step 0 (Proving " $\Longrightarrow$ "):

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \, K \subset \mathbb{R}^d \text{ compact } \exists \tilde{f} \in \mathcal{F} : \sup_{x \in K} |f(x) - \tilde{f}(x)| \leq \varepsilon.$$

**Step 0 (Proving "\Longrightarrow")**: If  $\varrho$  is a polynomial of degree (at most) *D*, then

$$x \mapsto \varrho(\langle w, x \rangle + b)$$

is a *d*-variate polynomial of degree at most *D*.

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \, K \subset \mathbb{R}^d \text{ compact } \exists \, \tilde{f} \in \mathcal{F} : \, \sup_{x \in K} |f(x) - \tilde{f}(x)| \leq \varepsilon.$$

**Step 0 (Proving "\Longrightarrow")**: If  $\varrho$  is a polynomial of degree (at most) *D*, then

$$X \mapsto \varrho(\langle W, X \rangle + b)$$

is a *d*-variate polynomial of degree at most *D*.

 $\Longrightarrow$  If  $f \in C(\mathbb{R}^d)$  is not a polynomial of degree at most D, it cannot be approximated by elements of  $\mathcal{NN}_{\rho}^d$  (why?!).

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \ K \subset \mathbb{R}^d \text{ compact } \exists \tilde{f} \in \mathcal{F} : \sup_{x \in K} |f(x) - \tilde{f}(x)| \leq \varepsilon.$$

**Step 0 (Proving "\Longrightarrow")**: If  $\varrho$  is a polynomial of degree (at most) *D*, then

$$X \mapsto \varrho(\langle W, X \rangle + b)$$

is a *d*-variate polynomial of degree at most *D*.

 $\Longrightarrow$  If  $f \in C(\mathbb{R}^d)$  is not a polynomial of degree at most D, it cannot be approximated by elements of  $\mathcal{NN}^d_{\rho}$  (why?!).

Step 1 (Reduction to d=1): Claim: If  $\mathcal{NN}_{\varrho}^{1}$  is universal, then so is  $\mathcal{NN}_{\varrho}^{d}$ .

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \, K \subset \mathbb{R}^d \text{ compact } \exists \tilde{f} \in \mathcal{F} : \sup_{x \in K} |f(x) - \tilde{f}(x)| \leq \varepsilon.$$

**Step 0 (Proving "\Longrightarrow")**: If  $\varrho$  is a polynomial of degree (at most) *D*, then

$$x \mapsto \varrho(\langle w, x \rangle + b)$$

is a *d*-variate polynomial of degree at most *D*.

 $\Longrightarrow$  If  $f \in C(\mathbb{R}^d)$  is not a polynomial of degree at most D, it cannot be approximated by elements of  $\mathcal{NN}_{\rho}^d$  (why?!).

Step 1 (Reduction to d=1): Claim: If  $\mathcal{NN}_{\varrho}^1$  is universal, then so is  $\mathcal{NN}_{\varrho}^d$ .

Substep 1: Universality of  $\mathcal{NN}_{\varrho}^{1} \implies \exp \in \overline{\mathcal{NN}_{\varrho}^{1}}$ .

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \ K \subset \mathbb{R}^d \text{ compact } \exists \, \tilde{f} \in \mathcal{F} : \sup_{x \in K} |f(x) - \tilde{f}(x)| \leq \varepsilon.$$

**Step 0 (Proving "\Longrightarrow")**: If  $\varrho$  is a polynomial of degree (at most) *D*, then

$$x \mapsto \varrho(\langle w, x \rangle + b)$$

is a *d*-variate polynomial of degree at most *D*.

 $\Longrightarrow$  If  $f \in C(\mathbb{R}^d)$  is not a polynomial of degree at most D, it cannot be approximated by elements of  $\mathcal{NN}_{\rho}^d$  (why?!).

Step 1 (Reduction to d=1): Claim: If  $\mathcal{NN}_{\varrho}^1$  is universal, then so is  $\mathcal{NN}_{\varrho}^d$ .

Substep 1: Universality of  $\mathcal{NN}_{\varrho}^{1} \implies \exp \in \overline{\mathcal{NN}_{\varrho}^{1}}$ .

**Substep 2:** This implies (how?!) that  $(x \mapsto e^{\langle a, x \rangle}) \in \overline{\mathcal{NN}_{\varrho}^d}$  for all  $a \in \mathbb{R}^d$ .

For  $\mathcal{F} \subset C(\mathbb{R}^d)$ , we write

$$f \in \overline{\mathcal{F}} \iff \forall \, \varepsilon > 0, \, \, K \subset \mathbb{R}^d \, \, \text{compact} \, \, \exists \, \tilde{f} \in \mathcal{F} : \, \, \sup_{x \in K} |f(x) - \tilde{f}(x)| \leq \varepsilon.$$

**Step 0 (Proving "\Longrightarrow")**: If  $\varrho$  is a polynomial of degree (at most) *D*, then

$$x \mapsto \varrho(\langle w, x \rangle + b)$$

is a *d*-variate polynomial of degree at most *D*.

 $\Longrightarrow$  If  $f \in C(\mathbb{R}^d)$  is not a polynomial of degree at most D, it cannot be approximated by elements of  $\mathcal{NN}_{\rho}^d$  (why?!).

Step 1 (Reduction to d=1): Claim: If  $\mathcal{NN}_{\varrho}^1$  is universal, then so is  $\mathcal{NN}_{\varrho}^d$ .

Substep 1: Universality of  $\mathcal{NN}_{\varrho}^{1} \implies \exp \in \overline{\mathcal{NN}_{\varrho}^{1}}$ .

**Substep 2:** This implies (how?!) that  $(x \mapsto e^{\langle a, x \rangle}) \in \overline{\mathcal{NN}_{\varrho}^d}$  for all  $a \in \mathbb{R}^d$ .

**Substep 3:** Universality of  $\mathcal{NN}_{\varrho}^d$  follows from the Stone-Weierstraß theorem.

# Interlude: Computing higher derivatives via divided differences

Let  $f: \mathbb{R} \to \mathbb{R}$  and  $x_0, \dots, x_n \in \mathbb{R}$  pairwise distinct. The divided differences of f w.r.t.  $x_0, \dots, x_n$  are defined inductively as

$$f[x_i] := f(x_i)$$
  
$$f[x_i, \dots, x_{j+1}] := \frac{f[x_{i+1}, \dots, x_{j+1}] - f[x_i, \dots, x_j]}{x_{j+1} - x_i}.$$

# Interlude: Computing higher derivatives via divided differences

Let  $f: \mathbb{R} \to \mathbb{R}$  and  $x_0, \dots, x_n \in \mathbb{R}$  pairwise distinct. The divided differences of f w.r.t.  $x_0, \dots, x_n$  are defined inductively as

$$f[x_i] := f(x_i)$$
  
$$f[x_i, \dots, x_{j+1}] := \frac{f[x_{i+1}, \dots, x_{j+1}] - f[x_i, \dots, x_j]}{x_{j+1} - x_i}.$$

**Divided differences and interpolation polynomials.** Let p be the unique polynomial of degree at most p satisfying  $p(x_i) = f(x_i)$ . Then  $f[x_0, \dots, x_n]$  is the leading coefficient of p.

# Interlude: Computing higher derivatives via divided differences

Let  $f: \mathbb{R} \to \mathbb{R}$  and  $x_0, \dots, x_n \in \mathbb{R}$  pairwise distinct. The divided differences of f w.r.t.  $x_0, \dots, x_n$  are defined inductively as

$$f[x_i] := f(x_i)$$
  
$$f[x_i, \dots, x_{j+1}] := \frac{f[x_{i+1}, \dots, x_{j+1}] - f[x_i, \dots, x_j]}{x_{j+1} - x_i}.$$

**Divided differences and interpolation polynomials.** Let p be the unique polynomial of degree at most p satisfying  $p(x_i) = f(x_i)$ . Then  $f[x_0, \dots, x_n]$  is the leading coefficient of p.

Mean-value theorem for divided differences. Let f be n times differentiable and  $x_0 < \cdots < x_n$ . Then there exists  $\xi \in [x_0, x_n]$  such that

$$f[x_0,\ldots,x_n]=\frac{1}{n!}\cdot f^{(n)}(\xi).$$

Reference: Ryaben'kii and Tsynkov: A theoretical introduction to numerical analysis, Section 2.1.2.

Step 2 (Universality of  $\mathcal{NN}_{\varrho}^1$  for  $\varrho \in C^{\infty}$ ): Substep 1: Let  $\varrho \in C^{\infty}$  not a polynomial.

Step 2 (Universality of  $\mathcal{NN}_{\varrho}^{1}$  for  $\varrho \in \mathcal{C}^{\infty}$ ):

Substep ①: Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

Step 2 (Universality of  $\mathcal{NN}_{\varrho}^{1}$  for  $\varrho \in \mathcal{C}^{\infty}$ ):

**Substep 1:** Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

**Substep 2:** For  $w, x \in \mathbb{R}$ , let

$$f_X(W) := \varrho(WX + \theta)$$

Step 2 (Universality of  $\mathcal{NN}_{\varrho}^{1}$  for  $\varrho \in \mathcal{C}^{\infty}$ ):

**Substep 1:** Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

**Substep 2:** For  $w, x \in \mathbb{R}$ , let

$$f_{x}(w) := \varrho(wx + \theta) \implies f_{x}^{(k)}(w) = x^{k} \cdot \varrho^{(k)}(wx + \theta).$$

Step 2 (Universality of  $\mathcal{NN}^1_{\rho}$  for  $\varrho \in C^{\infty}$ ):

**Substep 1:** Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

**Substep 2:** For  $w, x \in \mathbb{R}$ , let

$$f_{x}(w) := \varrho(wx + \theta) \implies f_{x}^{(k)}(w) = x^{k} \cdot \varrho^{(k)}(wx + \theta).$$

By the mean-value theorem for divided differences,

$$f_x[0, \frac{1}{n}, \dots, \frac{k}{n}] = f_x^{(k)}(\xi_{x,n})/k!$$
 with  $0 \le \xi_{x,n} \le \frac{k}{n}$ .

Step 2 (Universality of  $\mathcal{NN}^1_{\rho}$  for  $\varrho \in C^{\infty}$ ):

**Substep 1:** Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

**Substep 2:** For  $w, x \in \mathbb{R}$ , let

$$f_{x}(w) := \varrho(wx + \theta) \implies f_{x}^{(k)}(w) = x^{k} \cdot \varrho^{(k)}(wx + \theta).$$

By the mean-value theorem for divided differences,

$$f_x[0, \frac{1}{n}, \dots, \frac{k}{n}] = f_x^{(k)}(\xi_{x,n})/k!$$
 with  $0 \le \xi_{x,n} \le \frac{k}{n}$ .

**Substep 3:** For  $n \in \mathbb{N}$ , define

$$g_n(x) := k! \cdot f_x[0, \frac{1}{n}, \dots, \frac{k}{n}].$$

Directly from the definitions, we see  $g_n \in \mathcal{NN}^1_{\varrho}$ .

Step 2 (Universality of  $\mathcal{NN}_{\varrho}^{1}$  for  $\varrho \in \mathcal{C}^{\infty}$ ):

**Substep 1:** Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

Substep **2**: For  $w, x \in \mathbb{R}$ , let

$$f_x(w) := \varrho(wx + \theta) \implies f_x^{(k)}(w) = x^k \cdot \varrho^{(k)}(wx + \theta).$$

By the mean-value theorem for divided differences,

$$f_X[0, \frac{1}{n}, \dots, \frac{k}{n}] = f_X^{(k)}(\xi_{X,n})/k!$$
 with  $0 \le \xi_{X,n} \le \frac{k}{n}$ .

**Substep 3:** For  $n \in \mathbb{N}$ , define

$$g_n(x) := k! \cdot f_x[0, \frac{1}{n}, \dots, \frac{k}{n}].$$

Directly from the definitions, we see  $g_n \in \mathcal{NN}^1_{\varrho}$ . Finally,

$$\left|g_n(x)-\varrho^{(k)}(\theta)\cdot x^k\right|=\left|f_x^{(k)}(\xi_{x,n})-f_x^{(k)}(0)\right|=x^k\cdot\left|\varrho^{(k)}(\xi_{x,n}x+\theta)-\varrho^{(k)}(\theta)\right|\xrightarrow[n\to\infty]{}0,$$

with locally uniform convergence (w.r.t. x).

Step 2 (Universality of  $\mathcal{NN}_{\rho}^{1}$  for  $\varrho \in C^{\infty}$ ):

**Substep 1:** Let  $\varrho \in C^{\infty}$  not a polynomial. Let  $k \in \mathbb{N}$  be fixed and  $\theta \in \mathbb{R}$  with  $\varrho^{(k)}(\theta) \neq 0$ .

Substep **2**: For  $w, x \in \mathbb{R}$ , let

$$f_{x}(w) := \varrho(wx + \theta) \implies f_{x}^{(k)}(w) = x^{k} \cdot \varrho^{(k)}(wx + \theta).$$

By the mean-value theorem for divided differences,

$$f_X[0, \frac{1}{n}, \dots, \frac{k}{n}] = f_X^{(k)}(\xi_{X,n})/k!$$
 with  $0 \le \xi_{X,n} \le \frac{k}{n}$ .

**Substep 3:** For  $n \in \mathbb{N}$ , define

$$g_n(x) := k! \cdot f_x[0, \frac{1}{n}, \dots, \frac{k}{n}].$$

Directly from the definitions, we see  $g_n \in \mathcal{NN}_{\varrho}^1$ . Finally,

$$\left|g_n(x)-\varrho^{(k)}(\theta)\cdot x^k\right|=\left|f_x^{(k)}(\xi_{x,n})-f_x^{(k)}(0)\right|=x^k\cdot\left|\varrho^{(k)}(\xi_{x,n}x+\theta)-\varrho^{(k)}(\theta)\right|\xrightarrow[n\to\infty]{}0,$$

with locally uniform convergence (w.r.t. x).

**Substep 4:** We have shown  $x^k \in \overline{\mathcal{NN}_{\varrho}^1}$  for all  $k \in \mathbb{N}$ , and this also holds for k = 0 (why?!). Now, the claim follows from the (Stone)-Weierstraß theorem.

Step 3 (Showing  $\varphi * \varrho \in \overline{\mathcal{NN}_{\varrho}^{1}}$  for  $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ ):

Step 3 (Showing  $\varphi * \varrho \in \overline{\mathcal{NN}_{\varrho}^{1}}$  for  $\varphi \in C_{c}^{\infty}(\mathbb{R})$ ):

If  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^{1}}$ , then there exists  $K \subset \mathbb{R}$  compact such that  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^{1}}^{C(K)}$ .

Step 3 (Showing  $\varphi * \varrho \in \overline{\mathcal{NN}_{\varrho}^{1}}$  for  $\varphi \in C_{c}^{\infty}(\mathbb{R})$ ):

If  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^{1}}$ , then there exists  $K \subset \mathbb{R}$  compact such that  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^{1}}^{C(K)}$ .

Thus, there exists a signed Borel measure  $\mu$  on K satisfying

$$\int_{K} (\varphi * \varrho)(x) \, d\mu(x) \neq 0 \qquad \text{and} \qquad \int_{K} \varrho(ax+b) \, d\mu(x) = 0 \quad \forall \, a,b \in \mathbb{R}.$$

Step 3 (Showing  $\varphi * \varrho \in \mathcal{NN}^1_{\varrho}$  for  $\varphi \in C_c^{\infty}(\mathbb{R})$ ):

If  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^{1}}$ , then there exists  $K \subset \mathbb{R}$  compact such that  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^{1}}^{C(K)}$ .

Thus, there exists a signed Borel measure  $\mu$  on K satisfying

$$\int_{\mathbb{K}} (\varphi * \varrho)(x) \, d\mu(x) \neq 0 \qquad \text{and} \qquad \int_{\mathbb{K}} \varrho(ax+b) \, d\mu(x) = 0 \quad \forall \, a,b \in \mathbb{R}.$$

But then, Fubini's theorem shows

$$0 \neq \int_{K} (\varphi * \varrho)(x) \, d\mu(x) = \int_{K} \int_{\mathbb{R}} \varphi(y) \varrho(x - y) \, dy \, d\mu(x)$$
$$= \int_{\mathbb{R}} \varphi(y) \int_{K} \varrho(x - y) \, d\mu(x) \, dy$$
$$= \int_{\mathbb{R}} \varphi(y) \cdot 0 \, dy = 0.$$

Contradiction.

Step 3 (Showing  $\varphi * \varrho \in \mathcal{NN}^1_{\varrho}$  for  $\varphi \in C_c^{\infty}(\mathbb{R})$ ):

If  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^1}$ , then there exists  $K \subset \mathbb{R}$  compact such that  $\varphi * \varrho \notin \overline{\mathcal{NN}_{\varrho}^1}^{\mathsf{c}(K)}$ .

Thus, there exists a signed Borel measure  $\mu$  on  $\mathit{K}$  satisfying

$$\int_{K} (\varphi * \varrho)(x) \, d\mu(x) \neq 0 \qquad \text{and} \qquad \int_{K} \varrho(ax+b) \, d\mu(x) = 0 \quad \forall \, a,b \in \mathbb{R}.$$

But then, Fubini's theorem shows

$$0 \neq \int_{K} (\varphi * \varrho)(x) \, d\mu(x) = \int_{K} \int_{\mathbb{R}} \varphi(y) \varrho(x - y) \, dy \, d\mu(x)$$
$$= \int_{\mathbb{R}} \varphi(y) \int_{K} \varrho(x - y) \, d\mu(x) \, dy$$
$$= \int_{\mathbb{R}} \varphi(y) \cdot 0 \, dy = 0.$$

Contradiction.

**Step 4**: By the above, we are done if  $\varphi * \varrho$  is not a polynomial for some  $\varphi \in C_c^{\infty}(\mathbb{R})$ .

Step 5 (Handling the case that  $\varphi * \varrho$  is a polynomial for all  $\varphi \in C_c^{\infty}$ ):

Step 5 (Handling the case that  $\varphi * \varrho$  is a polynomial for all  $\varphi \in C_c^{\infty}$ ):

Substep ①:  $C_c^{\infty}[-1,1]:=\{\varphi\in C_c^{\infty}(\mathbb{R}): \operatorname{supp}\varphi\subset [-1,1]\}$  is a complete metric space with metric

$$d(\varphi, \psi) := \sum_{n=1}^{\infty} 2^{-n} \min\{1, \|\varphi - \psi\|_{C^n}\}.$$

Step 5 (Handling the case that  $\varphi * \varrho$  is a polynomial for all  $\varphi \in C_c^{\infty}$ ):

Substep 1:  $C_c^{\infty}[-1,1]:=\{\varphi\in C_c^{\infty}(\mathbb{R}): \text{ supp }\varphi\subset [-1,1]\}$  is a complete metric space with metric

$$d(\varphi,\psi):=\sum_{n=1}^{\infty}2^{-n}\min\{1,\|\varphi-\psi\|_{\mathcal{C}^n}\}.$$

Substep 2: By assumption,

$$C_c^{\infty}[-1,1] = \bigcup_{m=1}^{\infty} V_m$$
 for  $V_m := \{ \varphi \in C_c^{\infty}[-1,1] : \deg(\varphi * \varrho) \le m \},$ 

and each  $V_m$  is a closed subspace.

Step 5 (Handling the case that  $\varphi * \varrho$  is a polynomial for all  $\varphi \in C_c^{\infty}$ ):

Substep 1:  $C_c^{\infty}[-1,1]:=\{\varphi\in C_c^{\infty}(\mathbb{R}): \text{ supp }\varphi\subset [-1,1]\}$  is a complete metric space with metric

$$d(\varphi, \psi) := \sum_{n=1}^{\infty} 2^{-n} \min\{1, \|\varphi - \psi\|_{C^n}\}.$$

Substep 2: By assumption,

$$C_c^{\infty}[-1,1] = \bigcup_{m=1}^{\infty} V_m$$
 for  $V_m := \{ \varphi \in C_c^{\infty}[-1,1] : \deg(\varphi * \varrho) \le m \},$ 

and each  $V_m$  is a closed subspace.

**Substep 3:** By Baire category, some  $V_m$  has non-empty interiors, which implies  $V_m = C_c^{\infty}[-1, 1]$ .

Step 5 (Handling the case that  $\varphi * \varrho$  is a polynomial for all  $\varphi \in C_c^{\infty}$ ):

Substep ①:  $C_c^{\infty}[-1,1]:=\{\varphi\in C_c^{\infty}(\mathbb{R}): \operatorname{supp}\varphi\subset [-1,1]\}$  is a complete metric space with metric

$$d(\varphi,\psi):=\sum_{n=1}^{\infty}2^{-n}\min\{1,\|\varphi-\psi\|_{\mathcal{C}^n}\}.$$

Substep 2: By assumption,

$$C_c^{\infty}[-1,1] = \bigcup_{m=1}^{\infty} V_m$$
 for  $V_m := \{ \varphi \in C_c^{\infty}[-1,1] : \deg(\varphi * \varrho) \le m \},$ 

and each  $V_m$  is a closed subspace.

**Substep 3:** By Baire category, some  $V_m$  has non-empty interiors, which implies  $V_m = C_c^{\infty}[-1, 1]$ .

**Substep 4:** Choose  $\varphi_n \in C_c^{\infty}[-1,1]$  with  $\varphi_m \to \delta_0$ . Then  $\varphi_m * \varrho \to \varrho$ , so that  $\varrho$  is a polynomial (of degree at most m). Contradiction.

# Quantitative approximation rates for Barron functions

- 1. The basics of neural networks
- 2. The universal approximation theorem
- 3. Quantitative approximation rates for Barron functions
- 4. Universal approximation for complex-valued neural networks

# Barron-regular functions can be well approximated by NNs

 $f: \mathbb{R}^d \to \mathbb{R}$  is called Barron-regular with constant C > 0 (written  $f \in B_d(C)$ ), if

$$f(x) = c + \int_{\mathbb{R}^d} (e^{i\langle x, \xi \rangle} - 1) \cdot F(\xi) d\xi \qquad \forall x \in \mathbb{R}^d,$$

with  $\int_{\mathbb{R}^d} |\xi| \cdot |F(\xi)| d\xi \leq C$ .



opc.mfo.de/detail?photo\_id=14885

# Barron-regular functions can be well approximated by NNs

 $f: \mathbb{R}^d \to \mathbb{R}$  is called Barron-regular with constant C > 0 (written  $f \in B_d(C)$ ), if

$$f(x) = c + \int_{\mathbb{R}^d} (e^{i\langle x, \xi \rangle} - 1) \cdot F(\xi) d\xi \qquad \forall x \in \mathbb{R}^d,$$

with  $\int_{\mathbb{R}^d} |\xi| \cdot |F(\xi)| d\xi \leq C$ .

#### Theorem (Barron; 1993).

Let  $\varrho$  be a sigmoidal activation function. Let  $\mu$  be a probability measure on  $\mathbb{R}^d$ , let r > 0 and  $f \in B_d(C)$ . For any  $N \in \mathbb{N}$ , one can achieve

$$\int_{B_r} |f(x) - \Phi_N(x)|^2 d\mu(x) \le \left(\frac{2rC}{\sqrt{N}}\right)^2,$$

where  $\Phi_N$  is a shallow NN with N neurons and activation function  $\varrho$ .



# Barron-regular functions can be well approximated by NNs

 $f: \mathbb{R}^d \to \mathbb{R}$  is called Barron-regular with constant C > 0 (written  $f \in B_d(C)$ ), if

$$f(x) = c + \int_{\mathbb{R}^d} (e^{i\langle x, \xi \rangle} - 1) \cdot F(\xi) d\xi \qquad \forall x \in \mathbb{R}^d,$$

with  $\int_{\mathbb{R}^d} |\xi| \cdot |F(\xi)| d\xi \leq C$ .

#### Theorem (Barron; 1993).

Let  $\varrho$  be a sigmoidal activation function. Let  $\mu$  be a probability measure on  $\mathbb{R}^d$ , let r > 0 and  $f \in B_d(C)$ . For any  $N \in \mathbb{N}$ , one can achieve

$$\int_{B_r} |f(x) - \Phi_N(x)|^2 d\mu(x) \le \left(\frac{2rC}{\sqrt{N}}\right)^2,$$

where  $\Phi_N$  is a shallow NN with N neurons and activation function  $\varrho$ .

 $\varrho: \mathbb{R} \to \mathbb{R}$  is sigmoidal if it is bounded, measurable, and if  $\lim_{x \to \infty} \varrho(x) = 1$  and  $\lim_{x \to -\infty} \varrho(x) = 0$ .





Andrew Barron; opc.mfo.de/detail?photo\_id=14885

**Lemma (Maurey).** Let  $\mathcal{H}$  be a Hilbert space,  $G \subset \mathcal{H}$  and b > 0 with  $\|g\|_{\mathcal{H}} \leq b$  for all  $g \in G$ . Let  $f_0 \in \overline{\operatorname{conv} G}$  and  $c > b^2 - \|f_0\|_{\mathcal{H}}^2$ . Then for any  $N \in \mathbb{N}$  there exist  $g_1, \ldots, g_N \in G$  such that

$$f_N = \frac{1}{N} \sum_{n=1}^N g_n$$
 satisfies  $||f_0 - f_N||_{\mathcal{H}}^2 \le \frac{c}{N}$ .

**Lemma (Maurey).** Let  $\mathcal{H}$  be a Hilbert space,  $G \subset \mathcal{H}$  and b > 0 with  $\|g\|_{\mathcal{H}} \leq b$  for all  $g \in G$ . Let  $f_0 \in \overline{\text{conv } G}$  and  $c > b^2 - \|f_0\|_{\mathcal{H}}^2$ .

Then for any  $N \in \mathbb{N}$  there exist  $g_1, \ldots, g_N \in G$  such that

$$f_N = \frac{1}{N} \sum_{n=1}^N g_n$$
 satisfies  $||f_0 - f_N||_{\mathcal{H}}^2 \le \frac{c}{N}$ .

**Proof (Probabilistic method):** ①: Let  $\delta > 0$  arbitrary and choose  $f^* = \sum_{i=1}^M \lambda_i h_i$  with  $h_i \in G$ ,  $\lambda_i \geq 0$ , and  $\sum_i \lambda_i = 1$  satisfying  $\|f - f^*\|_{\mathcal{H}} \leq \delta$ .

**Lemma (Maurey).** Let  $\mathcal{H}$  be a Hilbert space,  $G \subset \mathcal{H}$  and b > 0 with  $\|g\|_{\mathcal{H}} \leq b$  for all  $g \in G$ . Let  $f_0 \in \overline{\operatorname{conv} G}$  and  $c > b^2 - \|f_0\|_{\mathcal{H}}^2$ . Then for any  $N \in \mathbb{N}$  there exist  $g_1, \ldots, g_N \in G$  such that

$$f_N = \frac{1}{N} \sum_{n=1}^N g_n$$
 satisfies  $||f_0 - f_N||^2_{\mathcal{H}} \le \frac{c}{N}$ .

**Proof (Probabilistic method):** ①: Let  $\delta > 0$  arbitrary and choose  $f^* = \sum_{i=1}^{M} \lambda_i h_i$  with  $h_i \in G$ ,  $\lambda_i \geq 0$ , and  $\sum_i \lambda_i = 1$  satisfying  $||f - f^*||_{\mathcal{H}} \leq \delta$ .

**2**: Let  $Z \in G$  a random vector with  $\mathbb{P}(Z = h_i) = \lambda_i$  for  $i \in \{1, ..., N\}$ , and note  $\mathbb{E}Z = f^*$ .

**Lemma (Maurey).** Let  $\mathcal{H}$  be a Hilbert space,  $G \subset \mathcal{H}$  and b > 0 with  $\|g\|_{\mathcal{H}} \leq b$  for all  $g \in G$ . Let  $f_0 \in \overline{\text{conv } G}$  and  $c > b^2 - \|f_0\|_{\mathcal{H}}^2$ .

Then for any  $N \in \mathbb{N}$  there exist  $g_1, \ldots, g_N \in G$  such that

$$f_N = \frac{1}{N} \sum_{n=1}^N g_n$$
 satisfies  $||f_0 - f_N||_{\mathcal{H}}^2 \le \frac{c}{N}$ .

**Proof (Probabilistic method):** ①: Let  $\delta > 0$  arbitrary and choose  $f^* = \sum_{i=1}^M \lambda_i h_i$  with  $h_i \in G$ ,  $\lambda_i \geq 0$ , and  $\sum_i \lambda_i = 1$  satisfying  $||f - f^*||_{\mathcal{H}} \leq \delta$ .

- ②: Let  $Z \in G$  a random vector with  $\mathbb{P}(Z = h_i) = \lambda_i$  for  $i \in \{1, ..., N\}$ , and note  $\mathbb{E}Z = f^*$ .
- 3: Let  $Z_1, \ldots, Z_N \stackrel{iid}{\sim} Z$  and note  $\mathbb{E}\langle Z_n f^*, Z_m f^* \rangle = 0$  for  $n \neq m$  and  $\mathbb{E}\|Z_n f^*\|_{\mathcal{H}}^2 = \mathbb{E}\|Z_n\|_{\mathcal{H}}^2 \|f^*\|_{\mathcal{H}}^2 \leq b^2 \|f^*\|_{\mathcal{H}}^2$ .

**Lemma (Maurey).** Let  $\mathcal{H}$  be a Hilbert space,  $G \subset \mathcal{H}$  and b > 0 with  $\|g\|_{\mathcal{H}} \leq b$  for all  $g \in G$ . Let  $f_0 \in \overline{\text{conv } G}$  and  $c > b^2 - \|f_0\|_{\mathcal{H}}^2$ .

Then for any  $N \in \mathbb{N}$  there exist  $g_1, \ldots, g_N \in G$  such that

$$f_N = \frac{1}{N} \sum_{n=1}^N g_n$$
 satisfies  $||f_0 - f_N||^2_{\mathcal{H}} \le \frac{c}{N}$ .

**Proof (Probabilistic method):** ①: Let  $\delta > 0$  arbitrary and choose  $f^* = \sum_{i=1}^M \lambda_i h_i$  with  $h_i \in G$ ,  $\lambda_i \geq 0$ , and  $\sum_i \lambda_i = 1$  satisfying  $||f - f^*||_{\mathcal{H}} \leq \delta$ .

- **2**: Let  $Z \in G$  a random vector with  $\mathbb{P}(Z = h_i) = \lambda_i$  for  $i \in \{1, ..., N\}$ , and note  $\mathbb{E}Z = f^*$ .
- 3: Let  $Z_1, ..., Z_N \stackrel{iid}{\sim} Z$  and note  $\mathbb{E}\langle Z_n f^*, Z_m f^* \rangle = 0$  for  $n \neq m$  and  $\mathbb{E}\|Z_n f^*\|_{2^2}^2 = \mathbb{E}\|Z_n\|_{2^2}^2 \|f^*\|_{2^2}^2 < b^2 \|f^*\|_{2^2}^2$ .

$$\mathbb{E} \left\| f^* - \frac{1}{N} \sum_{n=1}^{N} Z_n \right\|_{\mathcal{H}}^2 = \frac{1}{N^2} \mathbb{E} \left\| \sum_{n=1}^{N} (Z_i - f^*) \right\|_{\mathcal{H}}^2 = \frac{1}{N^2} \mathbb{E} \sum_{n,m=1}^{N} \langle Z_n - f^*, Z_m - f^* \rangle \\
= \frac{1}{N^2} \mathbb{E} \sum_{n=1}^{N} \| Z_n - f^* \|_{\mathcal{H}}^2 \le \frac{b^2 - \| f^* \|_{\mathcal{H}}^2}{N}.$$

**Lemma (Maurey).** Let  $\mathcal{H}$  be a Hilbert space,  $G \subset \mathcal{H}$  and b > 0 with  $\|g\|_{\mathcal{H}} \leq b$  for all  $g \in G$ . Let  $f_0 \in \overline{\operatorname{conv} G}$  and  $c > b^2 - \|f_0\|_{\mathcal{H}}^2$ .

Then for any  $N \in \mathbb{N}$  there exist  $g_1, \ldots, g_N \in G$  such that

$$f_N = \frac{1}{N} \sum_{n=1}^N g_n$$
 satisfies  $||f_0 - f_N||_{\mathcal{H}}^2 \le \frac{c}{N}$ .

**Proof (Probabilistic method):** ①: Let  $\delta > 0$  arbitrary and choose  $f^* = \sum_{i=1}^{M} \lambda_i h_i$  with  $h_i \in G$ ,  $\lambda_i \geq 0$ , and  $\sum_i \lambda_i = 1$  satisfying  $||f - f^*||_{\mathcal{H}} \leq \delta$ .

- **2**: Let  $Z \in G$  a random vector with  $\mathbb{P}(Z = h_i) = \lambda_i$  for  $i \in \{1, ..., N\}$ , and note  $\mathbb{E}Z = f^*$ .
- $\mathfrak{J}$ : Let  $Z_1,\ldots,Z_N \stackrel{iid}{\sim} Z$  and note  $\mathbb{E}\langle Z_n-f^*,Z_m-f^*\rangle=0$  for  $n\neq m$  and

$$\mathbb{E}||Z_n - f^*||_{\mathcal{H}}^2 = \mathbb{E}||Z_n||_{\mathcal{H}}^2 - ||f^*||_{\mathcal{H}}^2 \le b^2 - ||f^*||_{\mathcal{H}}^2.$$

$$\begin{array}{ll}
\mathbf{\Phi}: & \mathbb{E} \left\| f^* - \frac{1}{N} \sum_{n=1}^{N} Z_n \right\|_{\mathcal{H}}^2 = \frac{1}{N^2} \mathbb{E} \left\| \sum_{n=1}^{N} (Z_i - f^*) \right\|_{\mathcal{H}}^2 = \frac{1}{N^2} \mathbb{E} \sum_{n,m=1}^{N} \langle Z_n - f^*, Z_m - f^* \rangle \\
&= \frac{1}{N^2} \mathbb{E} \sum_{n=1}^{N} \|Z_n - f^*\|_{\mathcal{H}}^2 \le \frac{b^2 - \|f^*\|_{\mathcal{H}}^2}{N}.
\end{array}$$

**5**: For  $\delta$  small enough, this implies  $\mathbb{E}\|f_0 - \frac{1}{N}\sum_{n=1}^N Z_n\|_{\mathcal{H}}^2 \leq \frac{c}{N}$ , since  $\|f_0 - f^*\|_{\mathcal{H}} \leq \delta$ .  $\square$ 

# Integral formulas imply membership in the closed convex hull

Let  $(X, \mu)$  be a finite measure space and  $G \subset L^2(\mu)$ , and let  $(\Omega, \nu)$  be a probability space. Let  $g: X \times \Omega \to \mathbb{R}$  be measurable and such that

- ▶  $g(\cdot,\omega) \in G$  for all  $\omega \in \Omega$ ;
- ▶  $|g(x,\omega)| \le C$  for all  $(x,\omega) \in X \times \Omega$  and some  $C < \infty$ ;
- ►  $f(x) = \int_{\Omega} g(x, \omega) d\nu(\omega)$  for all  $x \in X$ .

Then  $f \in \overline{\text{conv } G}$ , with the closure taken in  $L^2(\mu)$ .

## Integral formulas imply membership in the closed convex hull

Let  $(X, \mu)$  be a finite measure space and  $G \subset L^2(\mu)$ , and let  $(\Omega, \nu)$  be a probability space. Let  $g: X \times \Omega \to \mathbb{R}$  be measurable and such that

- ▶  $g(\cdot,\omega) \in G$  for all  $\omega \in \Omega$ ;
- ▶  $|g(x,\omega)| \le C$  for all  $(x,\omega) \in X \times \Omega$  and some  $C < \infty$ ;
- ►  $f(x) = \int_{\Omega} g(x, \omega) d\nu(\omega)$  for all  $x \in X$ .

Then  $f \in \overline{\text{conv } G}$ , with the closure taken in  $L^2(\mu)$ .

**Proof:** Let  $\omega_1, \omega_2, \dots \stackrel{iid}{\sim} \mu$ . Then  $\mathbb{E} \int_X \left( f(x) - \frac{1}{N} \sum_{i=1}^N g(x, \omega_i) \right)^2 d\mu(x) = \int_X \text{var} \left( \frac{1}{N} \sum_{i=1}^N g(x, \omega_i) \right) d\mu(x) \\ = \frac{1}{N^2} \int_X \sum_{i=1}^N \text{var}[g(x, \omega_i)] d\mu(x) \le \frac{C^2}{N}.$ 

## Integral formulas imply membership in the closed convex hull

Let  $(X, \mu)$  be a finite measure space and  $G \subset L^2(\mu)$ , and let  $(\Omega, \nu)$  be a probability space. Let  $g: X \times \Omega \to \mathbb{R}$  be measurable and such that

- ▶  $g(\cdot,\omega) \in G$  for all  $\omega \in \Omega$ ;
- ▶  $|g(x,\omega)| \le C$  for all  $(x,\omega) \in X \times \Omega$  and some  $C < \infty$ ;
- ►  $f(x) = \int_{\Omega} g(x, \omega) d\nu(\omega)$  for all  $x \in X$ .

Then  $f \in \overline{\operatorname{conv} G}$ , with the closure taken in  $L^2(\mu)$ .

**Proof:** Let  $\omega_1, \omega_2, \ldots \stackrel{iid}{\sim} \mu$ . Then

$$\mathbb{E} \int_{X} \left( f(x) - \frac{1}{N} \sum_{i=1}^{N} g(x, \omega_{i}) \right)^{2} d\mu(x) = \int_{X} \operatorname{var} \left( \frac{1}{N} \sum_{i=1}^{N} g(x, \omega_{i}) \right) d\mu(x)$$
$$= \frac{1}{N^{2}} \int_{X} \sum_{i=1}^{N} \operatorname{var} [g(x, \omega_{i})] d\mu(x) \leq \frac{C^{2}}{N}.$$

By Fatou's lemma, this implies

$$\mathbb{E}\left[\liminf_{N\to\infty}\left\|f-\frac{1}{N}\sum_{i=1}^Ng(\cdot,\omega_i)\right\|_{L^2(u)}^2\right]\xrightarrow[N\to\infty]{}0.$$

For 
$$f: \mathbb{R}^d \to \mathbb{R}$$
, write  $f \in B_d^*(C)$  if

$$f(x) = \int_{\mathbb{R}^d} (e^{i\langle x, \omega \rangle} - 1) \cdot F(\omega) \, d\omega \qquad \forall x \in \mathbb{R}^d, \tag{*}$$

for some F with  $C_F := \int_{\mathbb{R}^d} |\omega| \cdot |F(\omega)| d\omega \le C$ . Thus,  $B_d(C) = \mathbb{R} + B_d^*(C)$ .

For  $f: \mathbb{R}^d \to \mathbb{R}$ , write  $f \in B_d^*(C)$  if  $f(x) = \int_{\mathbb{R}^d} (e^{i\langle x, \omega \rangle} - 1) \cdot F(\omega) \, d\omega \qquad \forall x \in \mathbb{R}^d, \tag{*}$ 

for some F with  $C_F := \int_{\mathbb{R}^d} |\omega| \cdot |F(\omega)| d\omega \le C$ . Thus,  $B_d(C) = \mathbb{R} + B_d^*(C)$ .

**Lemma:** Let  $c \in \mathbb{R}$  be arbitrary, and let  $H(x) := \mathbb{1}_{(0,\infty)} + c \cdot \mathbb{1}_{\{0\}}$ . We have  $B_d^*(C) \subset \overline{\operatorname{conv} G_H}$ , where the closure is taken in  $L^2(B_r; \mu)$  for any finite measure  $\mu$ , and where  $G_H := \left\{ \gamma \cdot H(\langle w, \bullet \rangle + b) : |\gamma| \le 2rC, w \in \mathbb{R}^d, b \in \mathbb{R} \right\}$ .

For  $f: \mathbb{R}^d \to \mathbb{R}$ , write  $f \in B_d^*(C)$  if

$$f(x) = \int_{\mathbb{R}^d} (e^{i\langle x, \omega \rangle} - 1) \cdot F(\omega) \, d\omega \qquad \forall \, x \in \mathbb{R}^d, \tag{*}$$

for some F with  $C_F := \int_{\mathbb{R}^d} |\omega| \cdot |F(\omega)| d\omega \le C$ . Thus,  $B_d(C) = \mathbb{R} + B_d^*(C)$ .

**Lemma:** Let  $c \in \mathbb{R}$  be arbitrary, and let  $H(x) := \mathbb{1}_{(0,\infty)} + c \cdot \mathbb{1}_{\{0\}}$ . We have  $\mathcal{B}_d^*(C) \subset \overline{\operatorname{conv} G_H}$ , where the closure is taken in  $L^2(B_r; \mu)$  for any finite measure  $\mu$ , and where  $G_H := \left\{ \gamma \cdot H(\langle w, \bullet \rangle + b) : |\gamma| \le 2rC, w \in \mathbb{R}^d, b \in \mathbb{R} \right\}$ .

**Proof:** ①: A direct computation shows for c > 0 and  $|t| \le c$  that

$$e^{it} - 1 = i \int_0^c \mathbb{1}_{u < t} \cdot e^{iu} - \mathbb{1}_{u < -t} \cdot e^{-iu} du = i \int_0^c H(t - u) e^{iu} - H(-u - t) e^{-iu} du.$$

For  $f: \mathbb{R}^d \to \mathbb{R}$ , write  $f \in B_d^*(C)$  if

$$f(x) = \int_{\mathbb{R}^d} (e^{i\langle x, \omega \rangle} - 1) \cdot F(\omega) \, d\omega \qquad \forall \, x \in \mathbb{R}^d, \tag{*}$$

for some F with  $C_F := \int_{\mathbb{R}^d} |\omega| \cdot |F(\omega)| d\omega \le C$ . Thus,  $B_d(C) = \mathbb{R} + B_d^*(C)$ .

**Lemma:** Let  $c \in \mathbb{R}$  be arbitrary, and let  $H(x) := \mathbb{1}_{(0,\infty)} + c \cdot \mathbb{1}_{\{0\}}$ . We have  $\mathcal{B}_d^*(C) \subset \overline{\operatorname{conv} G_H}$ , where the closure is taken in  $L^2(B_r; \mu)$  for any finite measure  $\mu$ , and where  $G_H := \left\{ \gamma \cdot H(\langle w, \bullet \rangle + b) : |\gamma| \le 2rC, w \in \mathbb{R}^d, b \in \mathbb{R} \right\}$ .

**Proof:** 1: A direct computation shows for c > 0 and  $|t| \le c$  that

$$e^{it} - 1 = i \int_0^c \mathbb{1}_{u < t} \cdot e^{iu} - \mathbb{1}_{u < -t} \cdot e^{-iu} du = i \int_0^c H(t - u) e^{iu} - H(-u - t) e^{-iu} du.$$

②: Using (\*) and the formula from ① with  $t=\langle \omega,x\rangle$  and  $c=r\cdot |\omega|$ , and writing  $F(\omega)=e^{i\theta(\omega)}|F(\omega)|$ , we finally see

$$f(x) = \operatorname{Re}\left(i \int_{\mathbb{R}^d} \int_0^{r \cdot |\omega|} F(\omega) \cdot \left(H(\langle \omega, x \rangle - u) e^{iu} - H(\langle -\omega, x \rangle - u) e^{-iu}\right) du d\omega\right)$$

$$= \sum_{i=0}^1 \int_{\mathbb{R}^d} \int_0^1 \frac{|\omega| \cdot |F(\omega)|}{2C_F} \cdot \left(-1\right)^{j+1} 2r C_F \cdot \sin\left(\theta(\omega) + (-1)^j r |\omega| t\right) \cdot H\left(\langle (-1)^j \omega, x \rangle - r |\omega| t\right) dt d\omega. \square$$

# Universal approximation for complex-valued neural networks

- 1. The basics of neural networks
- 2. The universal approximation theorem
- 3. Quantitative approximation rates for Barron functions
- 4. Universal approximation for complex-valued neural networks

### The definition of complex-valued neural networks (CVNNs)





- ► L: number of (hidden) layers,
- ►  $N_\ell$ : number of neurons in layer  $\ell$ ,
- ►  $T_{\ell}: \mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell+1}}, x \mapsto A_{\ell}x + b_{\ell}$ : connections between neurons (weights).

 $\varrho: \mathbb{R} \to \mathbb{R}$ : activation function

Network function  $\Phi: \mathbb{R}^{N_0} \to \mathbb{R}^{N_{L+1}}$  given by

$$\Phi = T_{L} \circ (\varrho \circ T_{L-1}) \circ \cdots \circ (\varrho \circ T_{0})$$

with  $\varrho$  applied componentwise.

### The definition of complex-valued neural networks (CVNNs)





- ► L: number of (hidden) layers,
- ►  $N_\ell$ : number of neurons in layer  $\ell$ ,
- ►  $T_{\ell}: \mathbb{C}^{N_{\ell}} \to \mathbb{C}^{N_{\ell+1}}, x \mapsto A_{\ell}x + b_{\ell}$ : connections between neurons (weights).

 $\sigma:\mathbb{C}\to\mathbb{C}$ : activation function

Network function  $\Phi:\mathbb{C}^{N_0}\to\mathbb{C}^{N_{L+1}}$  given by

$$\Phi = \mathsf{T}_\mathsf{L} \circ (\sigma \circ \mathsf{T}_\mathsf{L-1}) \circ \cdots \circ (\sigma \circ \mathsf{T}_\mathsf{0})$$

with  $\sigma$  applied componentwise.

## CVNNs have advantages for tasks with naturally $\mathbb{C}$ -valued inputs

Virtue, Yu, Lustig: Better than real: Complex-valued Neural Nets for MRI fingerprinting, ICIP, 2017:

**Goal:** From C-valued MRI measurements, determine if tissue is benign or malignant.

CVNNs outperform 2-channel real-valued networks for almost all of our experiments, and this advantage cannot be explained away by the twice large model capacity.



# Differentiability is always understood

in the sense of real variables

[unless mentioned otherwise]

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^{d}$  of shallow CVNNs is universal if and only if  $\sigma$  is not ???.

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^{d}$  of shallow CVNNs is universal if and only if  $\sigma$  is not polyharmonic.

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^{d}$  of shallow CVNNs is universal if and only if  $\sigma$  is not polyharmonic.

Here,  $g: \mathbb{C} \to \mathbb{C}$  is polyharmonic if  $g \in C^{\infty}$  and  $\Delta^m g \equiv 0$ , where  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  denotes the Laplace operator on  $\mathbb{C} \cong \mathbb{R}^2$ .

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^{d}$  of shallow CVNNs is universal if and only if  $\sigma$  is not polyharmonic.

Here,  $g: \mathbb{C} \to \mathbb{C}$  is polyharmonic if  $g \in C^{\infty}$  and  $\Delta^m g \equiv 0$ , where  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  denotes the Laplace operator on  $\mathbb{C} \cong \mathbb{R}^2$ .

**Remark:** g polyharm.  $\iff$  Re g and Im g of the form Re $\left(\sum_{k=0}^{m} \overline{z}^k \cdot f_k(z)\right)$  with all  $f_k$  entire.

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^d$  of shallow CVNNs is universal if and only if  $\sigma$  is not polyharmonic.

Here,  $g: \mathbb{C} \to \mathbb{C}$  is polyharmonic if  $g \in C^{\infty}$  and  $\Delta^m g \equiv 0$ , where  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  denotes the Laplace operator on  $\mathbb{C} \cong \mathbb{R}^2$ .

**Remark:** g polyharm.  $\iff$  Re g and Im g of the form Re $\left(\sum_{k=0}^{m} \overline{z}^k \cdot f_k(z)\right)$  with all  $f_k$  entire.

#### Theorem (deep case; FV; 2020)

Let  $L \in \mathbb{N}_{\geq 2}$ . The set  $\mathcal{NN}_{\sigma,L}^d$  of deep CVNNs with L hidden layers is universal if and only if none(!) of the following hold:

- ightharpoonup or  $\sigma$  is holomorphic,
- $ightharpoonup \sigma(z) = p(z, \overline{z})$  with a polynomial p.

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^{d}$  of shallow CVNNs is universal if and only if  $\sigma$  is not polyharmonic.

Here,  $g: \mathbb{C} \to \mathbb{C}$  is polyharmonic if  $g \in C^{\infty}$  and  $\Delta^m g \equiv 0$ , where  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  denotes the Laplace operator on  $\mathbb{C} \cong \mathbb{R}^2$ .

**Remark:** g polyharm.  $\iff$  Re g and Im g of the form Re $\left(\sum_{k=0}^{m} \overline{z}^k \cdot f_k(z)\right)$  with all  $f_k$  entire.

#### Theorem (deep case; FV; 2020)

Let  $L \in \mathbb{N}_{\geq 2}$ . The set  $\mathcal{NN}_{\sigma,L}^d$  of deep CVNNs with L hidden layers is universal if and only if none(!) of the following hold:

- ightharpoonup or  $\overline{\sigma}$  is holomorphic,
- $ightharpoonup \sigma(z) = p(z, \overline{z})$  with a polynomial p.

**Example:**  $\sigma(z) = \bar{z} \cdot e^z$  is polyharmonic, but  $\mathcal{NN}_{\sigma,L}^d$  is universal if  $L \ge 2$ .

Let  $\sigma: \mathbb{C} \to \mathbb{C}$  be continuous.

#### Theorem (shallow case; FV; 2020)

The set  $\mathcal{NN}_{\sigma}^{d}$  of shallow CVNNs is universal if and only if  $\sigma$  is not polyharmonic.

Here,  $g: \mathbb{C} \to \mathbb{C}$  is polyharmonic if  $g \in C^{\infty}$  and  $\Delta^m g \equiv 0$ , where  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$  denotes the Laplace operator on  $\mathbb{C} \cong \mathbb{R}^2$ .

**Remark:** g polyharm.  $\iff$  Re g and Im g of the form Re $\left(\sum_{k=0}^{m} \overline{z}^k \cdot f_k(z)\right)$  with all  $f_k$  entire.

#### Theorem (deep case; FV; 2020)

Let  $L \in \mathbb{N}_{\geq 2}$ . The set  $\mathcal{NN}_{\sigma,L}^d$  of deep CVNNs with L hidden layers is universal if and only if none(!) of the following hold:

- ightharpoonup or  $\overline{\sigma}$  is holomorphic,
- $ightharpoonup \sigma(z) = p(z, \overline{z})$  with a polynomial p.

**Example:**  $\sigma(z) = \bar{z} \cdot e^z$  is polyharmonic, but  $\mathcal{NN}_{\sigma,L}^d$  is universal if  $L \geq 2$ .

**Remark:** Some (very) partial results were already known [Arena, Fortuna, Re, Xibilia; 1995].

## Proof ingredients



### Ingredient 1: Wirtinger calculus

Identifying  $f: U \subset \mathbb{C} \to \mathbb{C}$  with  $(x,y) \mapsto f(x+iy)$ , define

$$\partial f := \frac{1}{2} (\partial_1 f - i \partial_2 f)$$
 and  $\overline{\partial} f := \frac{1}{2} (\partial_1 f + i \partial_2 f)$ .

## Ingredient 1: Wirtinger calculus

Identifying  $f: U \subset \mathbb{C} \to \mathbb{C}$  with  $(x,y) \mapsto f(x+iy)$ , define

$$\partial f := \frac{1}{2} (\partial_1 f - i \partial_2 f)$$
 and  $\overline{\partial} f := \frac{1}{2} (\partial_1 f + i \partial_2 f)$ .

#### **Properties:**

- ►  $f \in C^1(U; \mathbb{C})$  is holomorphic  $\iff \overline{\partial} f \equiv 0$ . In this case,  $\partial f$  is the usual complex derivative of f.

## Ingredient 1: Wirtinger calculus

Identifying  $f: U \subset \mathbb{C} \to \mathbb{C}$  with  $(x,y) \mapsto f(x+iy)$ , define

$$\partial f := \frac{1}{2} (\partial_1 f - i \partial_2 f)$$
 and  $\overline{\partial} f := \frac{1}{2} (\partial_1 f + i \partial_2 f)$ .

#### **Properties:**

- ►  $f \in C^1(U; \mathbb{C})$  is holomorphic  $\iff \overline{\partial} f \equiv 0$ . In this case,  $\partial f$  is the usual complex derivative of f.
- ► Product rule:

$$\partial(f \cdot g) = (\partial f) \cdot g + f \cdot \partial g$$
 and  $\overline{\partial}(f \cdot g) = (\overline{\partial}f) \cdot g + f \cdot (\overline{\partial}g)$ .

Chain rule:  $\partial (f \circ g) = [(\partial f) \circ g] \cdot \partial g + [(\overline{\partial} f) \circ g] \cdot \overline{\partial} g$  and  $\overline{\partial} (f \circ g) = [(\partial f) \circ g] \cdot \overline{\partial} g + [(\overline{\partial} f) \circ g] \cdot \overline{\partial} \overline{g}.$ 

### Ingredient 2: Weyl's lemma

#### Weyl's lemma

Let  $U \subset \mathbb{R}^d$  be open and suppose that  $\gamma \in \mathcal{D}'(U)$  [i.e.,  $\gamma$  is a distribution] satisfies  $\Delta \gamma = g$  for some  $g \in C^{\infty}(U)$ . Then  $\gamma \in C^{\infty}(U)$ .

### Ingredient 2: Weyl's lemma

#### Weyl's lemma

Let  $U \subset \mathbb{R}^d$  be open and suppose that  $\gamma \in \mathcal{D}'(U)$  [i.e.,  $\gamma$  is a distribution] satisfies  $\Delta \gamma = g$  for some  $g \in C^{\infty}(U)$ . Then  $\gamma \in C^{\infty}(U)$ .

#### Corollary

Suppose that  $f \in L^1_{loc}(U)$  satisfies  $\int_U f \cdot \Delta^m \theta \, dx = 0$  for all  $\theta \in C^\infty_c(U)$ . Then  $f \in C^\infty(U)$  and  $\Delta^m f \equiv 0$ .

## Ingredient 2: Weyl's lemma

#### Weyl's lemma

Let  $U \subset \mathbb{R}^d$  be open and suppose that  $\gamma \in \mathcal{D}'(U)$  [i.e.,  $\gamma$  is a distribution] satisfies  $\Delta \gamma = g$  for some  $g \in C^{\infty}(U)$ . Then  $\gamma \in C^{\infty}(U)$ .

#### Corollary

Suppose that  $f \in L^1_{loc}(U)$  satisfies  $\int_U f \cdot \Delta^m \theta \, dx = 0$  for all  $\theta \in C^\infty_c(U)$ . Then  $f \in C^\infty(U)$  and  $\Delta^m f \equiv 0$ .

#### Corollary

If  $(f_n)_{n\in\mathbb{N}}\subset C^\infty(\mathbb{C};\mathbb{C})$  with  $\Delta^m f_n\equiv 0$  for all  $n\in\mathbb{N}$  and  $f_n\to f$  with locally uniform convergence, then  $f\in C^\infty(\mathbb{C};\mathbb{C})$  and  $\Delta^m f\equiv 0$ .

## Necessity

(Universality  $\Longrightarrow \sigma$  is not polyharmonic / ...)

Suppose that  $\Delta^m \sigma \equiv 0$  for some  $m \in \mathbb{N}$ .

To prove: Universality fails.

Suppose that  $\Delta^m \sigma \equiv 0$  for some  $m \in \mathbb{N}$ .

To prove: Universality fails.

**Recall:** Each shallow network  $\Psi \in \mathcal{NN}_{\sigma}^{1}$  is of the form

$$\Psi(z) = c + \sum_{j} c_j \, \sigma(a_j z + b_j).$$

Suppose that  $\Delta^m \sigma \equiv 0$  for some  $m \in \mathbb{N}$ .

To prove: Universality fails.

**Recall:** Each shallow network  $\Psi \in \mathcal{NN}_{\sigma}^{1}$  is of the form

$$\Psi(z) = c + \sum c_j \, \sigma(a_j z + b_j).$$

Step 1: Using  $\Delta = 4 \partial \overline{\partial}$  and Wirtinger calculus shows  $\Delta^m \Psi \equiv 0$  for  $\Psi \in \mathcal{NN}_{\sigma}^1$ .

Suppose that  $\Delta^m \sigma \equiv 0$  for some  $m \in \mathbb{N}$ .

To prove: Universality fails.

**Recall:** Each shallow network  $\Psi \in \mathcal{NN}_{\sigma}^{1}$  is of the form

$$\Psi(z) = c + \sum c_j \, \sigma(a_j z + b_j).$$

Step ①: Using  $\Delta = 4 \partial \overline{\partial}$  and Wirtinger calculus shows  $\Delta^m \Psi \equiv 0$  for  $\Psi \in \mathcal{NN}_{\sigma}^1$ .

**Step 2:** By Weyl's lemma: If  $(\Psi_n)_{n\in\mathbb{N}}\subset \mathcal{NN}_{\sigma}^1$  satisfies  $\Psi_n\to F$  locally uniformly, then  $F\in C^{\infty}$ .

Suppose that  $\Delta^m \sigma \equiv 0$  for some  $m \in \mathbb{N}$ .

To prove: Universality fails.

**Recall:** Each shallow network  $\Psi \in \mathcal{NN}_{\sigma}^{1}$  is of the form

$$\Psi(z) = c + \sum c_j \, \sigma(a_j z + b_j).$$

**Step 1:** Using  $\Delta = 4 \partial \overline{\partial}$  and Wirtinger calculus shows  $\Delta^m \Psi \equiv 0$  for  $\Psi \in \mathcal{NN}^1_{\sigma}$ .

**Step 2:** By Weyl's lemma: If  $(\Psi_n)_{n\in\mathbb{N}}\subset \mathcal{NN}^1_\sigma$  satisfies  $\Psi_n\to F$  locally uniformly, then  $F\in C^\infty$ .

 $\implies$  Universality fails if  $\Delta^m \sigma \equiv 0$ .

Suppose that  $\Delta^m \sigma \equiv 0$  for some  $m \in \mathbb{N}$ .

To prove: Universality fails.

**Recall:** Each shallow network  $\Psi \in \mathcal{NN}_{\sigma}^{\bullet}$  is of the form

$$\Psi(z) = c + \sum c_j \, \sigma(a_j z + b_j).$$

Step 1: Using  $\Delta = 4 \partial \overline{\partial}$  and Wirtinger calculus shows  $\Delta^m \Psi \equiv 0$  for  $\Psi \in \mathcal{NN}_{\sigma}^1$ .

**Step 2:** By Weyl's lemma: If  $(\Psi_n)_{n\in\mathbb{N}}\subset \mathcal{NN}_{\sigma}^{\bullet}$  satisfies  $\Psi_n\to F$  locally uniformly, then  $F\in C^{\infty}$ .

 $\implies$  Universality fails if  $\Delta^m \sigma \equiv 0$ .



## Necessity for deep networks

Case  $\mathbf{0}$ :  $\sigma$  holomorphic.

Then  $\Psi$  is holomorphic for any  $\Psi \in \mathcal{NN}_{\sigma,L}$ .

→ Universality fails!

## Necessity for deep networks

Case  $\mathbf{0}$ :  $\sigma$  holomorphic.

Then  $\Psi$  is holomorphic for any  $\Psi \in \mathcal{NN}^1_{\sigma,L}$ .

→ Universality fails!

**Case 2:**  $\sigma$  is anti-holomorphic (i.e.,  $\overline{\sigma}$  is holomorphic).

Then  $\Psi$  is holomorphic or anti-holomorphic for any  $\Psi \in \mathcal{NN}_{\sigma,l}^1$ .

→ As above: Universality fails!

## Necessity for deep networks

Case  $\mathbf{0}$ :  $\sigma$  holomorphic.

Then  $\Psi$  is holomorphic for any  $\Psi \in \mathcal{NN}^1_{\sigma, L}$ .

→ Universality fails!

**Case 2:**  $\sigma$  is anti-holomorphic (i.e.,  $\overline{\sigma}$  is holomorphic).

Then  $\Psi$  is holomorphic or anti-holomorphic for any  $\Psi \in \mathcal{NN}_{\sigma,l}^1$ .

→ As above: Universality fails!

Case 3:  $\sigma(z) = p(z, \overline{z})$  for a polynomial p.

Then  $\Psi$  is a polynomial of degree N = N(L, p) for any  $\Psi \in \mathcal{NN}_{\sigma, L}^{1}$ .

→ Universality fails!

# Sufficiency

# Sufficiency: It is enough to consider networks with 1D input

#### Lemma

If  $\mathcal{NN}_{\sigma,L}^{\mathbf{d}}$  is universal, then so is  $\mathcal{NN}_{\sigma,L}^{\mathbf{d}}$  for any  $d \in \mathbb{N}$ .

## Sufficiency: It is enough to consider networks with 1D input

#### Lemma

If  $\mathcal{NN}_{\sigma,L}^{\mathbf{1}}$  is universal, then so is  $\mathcal{NN}_{\sigma,L}^{\mathbf{d}}$  for any  $d \in \mathbb{N}$ .

#### Proof.

**Step 1:** Assumption ensures:

$$\left(z\mapsto e^{\operatorname{Re}z}\right)\in\overline{\mathcal{NN}_{\sigma,L}^{1}}.$$

Step 2: This implies

$$(\mathbf{z} \mapsto e^{\operatorname{Re}\langle a, \mathbf{z} \rangle}) \in \overline{\mathcal{NN}_{\sigma, L}^d} \qquad \forall \, a \in \mathbb{C}^d.$$

**Step 3:** By Stone-Weierstraß: The functions from Step 2 span a dense subspace of C(K) for  $K \subset \mathbb{C}^d$  compact.



For simplicity: Assume  $\sigma \in C^{\infty}$  is smooth

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^{\ell} \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^{\ell}) \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^\ell \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^\ell) \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

**Proof sketch:** 1: Wirtinger calculus shows

$$\partial_w^m \overline{\partial}_w^\ell \big[ \sigma(wz + \theta) \big] = z^m \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(wz + \theta)$$

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^\ell \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^\ell) \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

**Proof sketch: 1**: Wirtinger calculus shows

$$\partial_w^m \overline{\partial}_w^\ell \big[ \sigma(wz + \theta) \big] = z^m \, \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(wz + \theta)$$

and hence

$$\left(\partial_w^m \overline{\partial}_w^\ell \big|_{w=0} \left[\sigma(wz+\theta)\right] = z^m \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(\theta).\right)$$

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^\ell \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^\ell) \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

**Proof sketch: 1**: Wirtinger calculus shows

$$\partial_w^m \overline{\partial}_w^\ell \big[ \sigma(wz + \theta) \big] = z^m \, \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(wz + \theta)$$

and hence

$$\left|\partial_w^m \overline{\partial}_w^\ell\right|_{w=0} \left[\sigma(wz+\theta)\right] = z^m \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(\theta).$$

 $\textbf{2} \text{: We have } \left[ z \ \mapsto \ \partial_w^m \overline{\partial}_w^\ell \big|_{w=0} \ \sigma(wz+\theta) \right] \in \overline{\mathcal{NN}_{\sigma,1}^1}.$ 

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^\ell \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^\ell) \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

**Proof sketch: 1**: Wirtinger calculus shows

$$\partial_w^m \overline{\partial}_w^\ell \big[ \sigma(wz + \theta) \big] = z^m \, \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(wz + \theta)$$

and hence

$$\left. \partial_w^m \overline{\partial}_w^\ell \right|_{w=0} \left[ \sigma(wz + \theta) \right] = z^m \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(\theta).$$

**2**: We have  $[z \mapsto \partial_w^m \overline{\partial}_w^\ell]_{w=0} \sigma(wz+\theta)] \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

Proof idea: approximate derivative via difference quotient:

$$\frac{\partial}{\partial a}\sigma((a+ib)z+\theta) = \lim_{h\to 0} \frac{1}{h} \Big[ \underbrace{\sigma((a+h+ib)z+\theta) - \sigma((a+ib)z+\theta)}_{\in \mathcal{NN}_{\sigma,1} \text{ as a function of } z} \Big],$$

with locally uniform convergence.

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^\ell \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^\ell) \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

**Proof sketch:** 1: Wirtinger calculus shows

$$\partial_w^m \overline{\partial}_w^\ell \big[ \sigma(wz + \theta) \big] = z^m \, \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(wz + \theta)$$

and hence

$$\left.\partial_w^m \overline{\partial}_w^\ell\right|_{w=0} \left[\sigma(wz+\theta)\right] = z^m \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(\theta).$$

**2**: We have  $[z \mapsto \partial_w^m \overline{\partial}_w^\ell]_{w=0} \sigma(wz+\theta)] \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

Proof idea: approximate derivative via difference quotient:

$$\frac{\partial}{\partial a}\sigma((a+ib)z+\theta) = \lim_{h\to 0} \frac{1}{h} \Big[ \underbrace{\sigma((a+h+ib)z+\theta) - \sigma((a+ib)z+\theta)}_{\in \mathcal{NN}_{\sigma,1} \text{ as a function of } z} \Big],$$

with locally uniform convergence.

Corollary. If  $\sigma$  is not polyharmonic, then  $\overline{\mathcal{NN}_{\sigma,1}^1} = \mathcal{C}(\mathbb{C};\mathbb{C})$ .

**Proposition.** If  $m, \ell \in \mathbb{N}_0$  such that  $\partial^m \overline{\partial}^\ell \sigma \not\equiv 0$ , then  $(z \mapsto z^m \overline{z}^\ell) \in \overline{\mathcal{NN}^1_{\sigma,1}}$ .

**Proof sketch:** 1: Wirtinger calculus shows

$$\partial_w^m \overline{\partial}_w^\ell \big[ \sigma(wz + \theta) \big] = z^m \, \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(wz + \theta)$$

and hence

$$\left.\partial_w^m \overline{\partial}_w^\ell\right|_{w=0} \left[\sigma(wz+\theta)\right] = z^m \overline{z}^\ell \cdot (\partial^m \overline{\partial}^\ell \sigma)(\theta).$$

**2**: We have  $[z \mapsto \partial_w^m \overline{\partial}_w^\ell]_{w=0} \sigma(wz+\theta)] \in \overline{\mathcal{NN}_{\sigma,1}^1}$ .

Proof idea: approximate derivative via difference quotient:

$$\frac{\partial}{\partial a}\sigma\big((a+ib)\,z+\theta\big) = \lim_{h\to 0} \frac{1}{h} \Big[\underbrace{\sigma\big((a+h+ib)\,z+\theta\big) - \sigma\big((a+ib)\,z+\theta\big)}_{\in \mathcal{NN}_{\sigma,1}^{-1} \text{ as a function of } z}\Big],$$

with locally uniform convergence.

**Corollary.** If  $\sigma$  is not polyharmonic, then  $\overline{\mathcal{NN}_{\sigma,1}^1} = \mathcal{C}(\mathbb{C};\mathbb{C})$ .

**Proof:** ①: We have  $0 \not\equiv \Delta^k \sigma = 4^k \cdot \partial^k \overline{\partial}^k \sigma$  for all  $k \in \mathbb{N}$ .

**2**: By the proposition,  $(z \mapsto z^m \overline{z}^{\ell}) \in \overline{\mathcal{NN}_{\sigma,1}^1}$  for all  $m, \ell$ .

Let  $\sigma:\mathbb{C}\to\mathbb{C}$  be smooth, but not holomorphic, anti-holomorphic, or a polynomial.

Let  $\sigma:\mathbb{C}\to\mathbb{C}$  be smooth, but not holomorphic, anti-holomorphic, or a polynomial.



Let  $\sigma:\mathbb{C}\to\mathbb{C}$  be smooth, but not holomorphic, anti-holomorphic, or a polynomial.

- $\sigma \text{ not holom.} \implies \overline{\partial} \sigma \not\equiv 0 \xrightarrow{\text{as before}} (z \mapsto \overline{z}) \in \overline{\mathcal{N}} \mathcal{N}_{\sigma,1}^{1}$   $\sigma \text{ not anti-holom.} \implies \partial \sigma \not\equiv 0 \xrightarrow{\text{as before}} (z \mapsto z) \in \overline{\mathcal{N}} \mathcal{N}_{\sigma,1}^{1}$
- **2** Since  $\sigma$  is not a polynomial, we have

$$\begin{array}{ccc} \forall \, m \in \mathbb{N}_0: & \partial^m \sigma \not\equiv 0 & \text{or } \overline{\partial}^m \sigma \not\equiv 0 \\ & \xrightarrow{\text{as before}} & \forall \, m \in \mathbb{N}_0: & (z \mapsto z^m) \in \overline{\mathcal{NN}_{\sigma,1}^1} & \text{or } (z \mapsto \overline{z}^m) \in \overline{\mathcal{NN}_{\sigma,1}^1} \end{array}$$

Let  $\sigma:\mathbb{C}\to\mathbb{C}$  be smooth, but not holomorphic, anti-holomorphic, or a polynomial.

- $\sigma \text{ not holom.} \implies \overline{\partial} \sigma \not\equiv 0 \xrightarrow{\text{as before}} (z \mapsto \overline{z}) \in \overline{\mathcal{N}} \mathcal{N}_{\sigma,1}^{1}$   $\sigma \text{ not anti-holom.} \implies \partial \sigma \not\equiv 0 \xrightarrow{\text{as before}} (z \mapsto z) \in \overline{\mathcal{N}} \mathcal{N}_{\sigma,1}^{1}$ 
  - **2** Since  $\sigma$  is not a polynomial, we have

$$\forall \, m \in \mathbb{N}_0: \quad \partial^m \sigma \not\equiv 0 \qquad \qquad \text{or} \quad \overline{\partial}^m \sigma \not\equiv 0$$

$$\xrightarrow{\text{as before}} \quad \forall \, m \in \mathbb{N}_0: \quad (z \mapsto z^m) \in \overline{\mathcal{NN}_{\sigma,1}^1} \quad \text{or} \quad (z \mapsto \overline{z}^m) \in \overline{\mathcal{NN}_{\sigma,1}^1}$$

3 Since we consider deep networks ( $L \ge 2$ ), 1 and 2 imply

$$\forall m \in \mathbb{N}_0 : \left[ z \mapsto (\operatorname{Re} z)^m \right] \in \overline{\mathcal{N} \mathcal{N}_{\sigma, l}^1}.$$

This easily implies universality.

# Thanks for your attention ©

Questions, comments, counterexamples?