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Deep learning dramatically changed what computers can do
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“Deep learning” roughly means:

Adjust weights of a deep neural network based on training data

Labelled training examples (x;, y;)

Loss function, e.g.
i [1yi — Swl(x))II?

Adjust weights

Neural network &




The performance of a machine learning system is influenced by

Expressiveness, Generalization, and Optimization

> X x V: setof all possible (input, label) pairs
» P: “ground truth” distribution on X x Y
(unknown)

Goal: Minimize the (expected) risk

R() := P(f0X) # V), =
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In this lecture, we only consider

the approximation error!




Book recommendations regarding the basics of machine learning
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1. The basics of neural networks



A neural network repeatedly applies affine-linear maps

and an activation function

Input Hidden Hidden Hidden Output
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A neural network repeatedly applies affine-linear maps

and an activation function

Input Hidden Hidden Hidden  Output
Layer Layer 1 Layer2  Layer3 Layer

» L: number of (hidden) layers,
» (No,...,Ni41): neurons per layer

> T, RNe — RN““,X — ApX + by:
connections between neurons
(weights),

» o: R — R: activation function.

1
—— ReLU(z) =,

Neural network: & = (To, ..., T;)

Network function (Realization):
R,(®) : RNo — RNu+1 given by

Re(®) =Tio(00Ti—1)o- -0 (00 To)
with o applied componentwise, i.e.,

g((X1, 500 ,XK)) = (Q(X1), 500 Q(XK)).




A neural network repeatedly applies affine-linear maps

and an activation function

1
—— ReLU(z) =,

L(®) =3
N(®) = 13 ’
L 1
W(®) = 2 i lAilleo =34
Input Hidden Hidden Hidden  Output i
Layer Layer 1 Layer2  Layer3  Layer

» L: number of (hidden) layers, Neural network: @ = (To, ..., T.)

Network function (Realization):

» (No,...,Ni41): neurons per layer | | .
Ro(®) : R — RVt given by

> T, RNe —)RN““,XHAzX-l—ng

connections between neurons Roy(®) =T o(0oTi1)o---0(00To)
(weights), with ¢ applied componentwise, i.e.,

» o:R — R: activation function. o((x, ..., x¢)) = (ox), - - -, 0(X))-




These NNs are called fully connected feed-forward NNs.

There are other important types of NNs, e.g. CNNs, RNNSs,
and Transformers.

Basics of NNs @



The universal approximation
theorem

2. The universal approximation theorem



The universal approximation theorem characterizes activation

functions for which the associated class of NNs is
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The universal approximation theorem characterizes activation

functions for which the associated class of NNs is

A function class F c {f: RY — R} is called universal if

VgeCRY), >0, KcRYcompact 3fe F: suplg(x)—f(X)| <e.
xeK

n €00000000



The universal approximation theorem characterizes activation

functions for which the associated class of NNs is

A function class F c {f: RY — R} is called universal if

VgeCRY), >0, KcRYcompact 3fe F: suplg(x)—f(X)| <e.
xeK

Question: For which activation functions g € C(R) is the set
N
J\[Ng = {X'—) ZC,’,Q(<W,’,X> -|—b,') : NeN,w; € Rd,bi,C,' € R}
i=1

of all shallow neural networks with activation function p universal?
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The universal approximation theorem characterizes activation

functions for which the associated class of NNs is

A function class F c {f: RY — R} is called universal if
VgeCRY), >0, KcRYcompact 3fe F: suplg(x)—f(X)| <e.

xeK

Question: For which activation functions g € C(R) is the set
N
NNZ = {X = ZC,’ Q(<W,’,X> + b,) : NeN,w; € Rd, bj,c; € R}
i=1
of all shallow neural networks with activation function p universal?

Quiz: For which activation functions does universality definitely fail?

Universal approximation theorem (Leshno, Lin, Pinkus, Schocken; 1993).
Let o: R — R be continuous. Then

N/\/g is universal — o is not a polynomial.

on ®00000000



Proof of the universal approximation theorem — Part 0

Stone-WeierstraB theorem. Let X be a compact Hausdorff space. If
A is a closed subalgebra of C(X,R) that separates points, then either
A=CX,R) or A= {f € C(X,R) : f(xo) = 0} for some X, € X.

n O®0000000



Proof of the universal approximation theorem — Part 0

Stone-WeierstraB theorem. Let X be a compact Hausdorff space. If
A is a closed subalgebra of C(X,R) that separates points, then either
A=CX,R) or A= {f € C(X,R) : f(xo) = 0} for some X, € X.

Remarks:

1. A being an algebra means it is a vector space and closed under
multiplication.

2. A separates the points if for all x,y € X with x # y there exists f € A
satisfying f(x) # f(y).

Proof.
See Theorem 4.45 in Folland’s "Real Analysis” book. O]
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Example applications:
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Proof of the universal approximation theorem — Part 0

Stone-WeierstraB theorem. Let X be a compact Hausdorff space. If
A is a closed subalgebra of C(X,R) that separates points, then either
A=CX,R) or A= {f € C(X,R) : f(xo) = 0} for some X, € X.

Remarks:

1. A being an algebra means it is a vector space and closed under
multiplication.

2. A separates the points if for all x,y € X with x # y there exists f € A
satisfying f(x) # f(y).

Proof.
See Theorem 4.45 in Folland’s "Real Analysis” book. O]

Example applications:
1. R[X] c C([a, b]) is dense for a < b (why?!).
2. span{ef®: a € R} c C(K) is dense for any compact set @ # K C RY.
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Excursion: isa

"measure-theoretic analogue” of the Stone-WeierstraB theorem
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Excursion: isa

"measure-theoretic analogue” of the Stone-WeierstraB theorem

Let X # @ beasetand £>°(X) = {f: X = R : fbounded}.
Dynkin’s multiplicative system theorem. Let F C ¢°°(X) be closed under
multiplication and suppose that A satisfies the following:
@ A is asubspace of £°(X);
©® Fc Aand 1y € 4;

© Ais closed under bounded pointwise convergence, i.e., whenever
(fa)nen C A satisfies f, — f pointwise and sup,,cx supyex |fn(X)| < oo,
then f e A.

Then {f € £>°(X) : fmeasurable with respectto o(7)} C A.
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Excursion: isa

"measure-theoretic analogue” of the Stone-WeierstraB theorem

Let X # @ beasetand £>°(X) = {f: X = R : fbounded}.
Dynkin’s multiplicative system theorem. Let F C ¢°°(X) be closed under
multiplication and suppose that A satisfies the following:
@ A is asubspace of £°(X);
©® Fc Aand 1y € 4;

© Ais closed under bounded pointwise convergence, i.e., whenever
(fa)nen C A satisfies f, — f pointwise and sup,,cx supyex |fn(X)| < oo,
then f e A.

Then {f € £>°(X) : fmeasurable with respectto o(7)} C A.

Example application: The set span{e=**: A > 0} C L?((0,0)) is dense.

Proof: Let F = {e=™: X\ > 0} C £°°((0,00)), let g € L2((0, )) be orthogonal
to F, and let A = {f € £>°((0,00)) : f measurable and (g-e™*,f) = 0}.
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Proof of Dynkin’s multiplicative system theorem

Let Ay be the minimal set satisfying properties @-@.

imation OOO®00000




Proof of Dynkin’s multiplicative system theorem

Let Ay be the minimal set satisfying properties @-@.

1. Itis enough to show 1y € Ay C A for each M € o(F).

Reason: Each o(F)-measurable f € ¢°°(X) can be approximated by simple
functions Y21, ¢; Ty, with M; € o(F) (with bounded p.w. convergence).
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complementation and countable disjoint unions).
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Proof of Dynkin’s multiplicative system theorem

Let Ay be the minimal set satisfying properties @-@.

1. Itis enough to show 1y € Ay C A for each M € o(F).
Reason: Each o(F)-measurable f € ¢°°(X) can be approximated by simple
functions Y21, ¢; Ty, with M; € o(F) (with bounded p.w. convergence).

2. let G :={M € o(F): 1y € Ao}. Then G is a A-system (closed under
complementation and countable disjoint unions).

3. Easy: Ajg is closed under multiplication, since F is.
= G is a m-system (closed under intersection).
— G is a g-algebra, by Dynkin's w-A-theorem.
Hence, it is enough to show that {f~'((a,b)): f€ F,a < b} C G.

n 00000000



Proof of Dynkin’s multiplicative system theorem

Let Ay be the minimal set satisfying properties @-@.

1.

It is enough to show 1y € Ao C A for each M € o(F).

Reason: Each o(F)-measurable f € ¢°°(X) can be approximated by simple
functions Y21, ¢; Ty, with M; € o(F) (with bounded p.w. convergence).

. LetG:={M e o(F): 1y € Ap}. Then G is a A-system (closed under

complementation and countable disjoint unions).

. Easy: Ay is closed under multiplication, since F is.

= G is a m-system (closed under intersection).

— G is a g-algebra, by Dynkin's w-A-theorem.

Hence, it is enough to show that {f~'((a,b)): f€ F,a < b} C G.

For each ¢ € C(R) and f € Ao, we have pof e A,.

Reason: For polynomials ¢ = p this is clear, since Ay is closed under
multiplication. Approximate ¢ uniformly on range(f) by polynomials pj.
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Proof of Dynkin’s multiplicative system theorem

Let Ay be the minimal set satisfying properties @-@.

1.

It is enough to show 1y € Ao C A for each M € o(F).

Reason: Each o(F)-measurable f € ¢°°(X) can be approximated by simple
functions Y21, ¢; Ty, with M; € o(F) (with bounded p.w. convergence).

. LetG:={M e o(F): 1y € Ap}. Then G is a A-system (closed under

complementation and countable disjoint unions).

. Easy: Ay is closed under multiplication, since F is.

= G is a m-system (closed under intersection).
— G is a g-algebra, by Dynkin's w-A-theorem.
Hence, it is enough to show that {f~'((a,b)): f€ F,a < b} C G.

. Foreach ¢ € C(R) and f € Ay, we have pof € Ay.

Reason: For polynomials ¢ = p this is clear, since Ay is closed under
multiplication. Approximate ¢ uniformly on range(f) by polynomials pj.

. Pick ¢y € C(R) with 0 < ¢ < 1and ¢n — Lgp) pOintwise.

Then @p of = L(qp) o f = L-1((a,b)) POINtwise boundedly. O

n 00000000



Proof of the universal approximation theorem — Part 1

For F C C(RY), we write

feF <= Ve>0, KCRIcompact 3fe F: supyy|fiX) — f(X)| <e.
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Proof of the universal approximation theorem — Part 1

For F C C(RY), we write

feF <= Ve>0, KCRIcompact 3fe F: supyy|fiX) — f(X)| <e.

Step 0 (Proving "="): If p is a polynomial of degree (at most) D, then

x = o({w,Xx) + b)
is a d-variate polynomial of degree at most D.
— If f € C(RY) is not a polynomial of degree at most D, it cannot be
approximated by elements ofJ\/Ng (why?1).
Step 1(Reduction to d = 1): Claim: If A}, is universal, then so is NNZ.
Substep @: Universality of NN, = exp € NN,
Substep @: This implies (how?!) that (x + (@) € NN for all a € RY.
Substep @: Universality of/\/’/\/g follows from the Stone-Weierstrals theorem.
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Interlude: Computing higher derivatives via divided differences

Letf: R — R and xo, ..., X, € R pairwise distinct. The divided differences of f

W.rt. Xo, . .., Xn are defined inductively as
flxi] = f(xi)
f[X,‘ . Xj+1] o ﬂxi+17 ce. 7X[+'\] _f[Xj, 200 ,X/‘] .

X1 — Xi
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Interlude: Computing higher derivatives via divided differences

Letf: R — R and xo, ..., X, € R pairwise distinct. The divided differences of f

W.rt. Xo, . .., X, are defined inductively as
fxil = f(xi)
f[X o X 1] = f[XI+’I’7X/+7] _f[XH,Xl].
B Xjit1 — Xi

Divided differences and interpolation polynomials. Let p be the unique
polynomial of degree at most n satisfying p(x;) = f(x;)- Then f[xo, - - ., Xn]
is the leading coefficient of p.

[e]o]e]e]e] lelele]




Interlude: Computing higher derivatives via divided differences

Letf: R — R and xo, ..., X, € R pairwise distinct. The divided differences of f

W.rt. Xo, . .., X, are defined inductively as
flxil := f(xi)
f[X o X 1] = f[X/+’I”X/+7]_f[X/77Xl].
// a Xjit1 — Xi

Divided differences and interpolation polynomials. Let p be the unique
polynomial of degree at most n satisfying p(x;) = f(x;)- Then f[xo, - - ., Xn]
is the leading coefficient of p.

Mean-value theorem for divided differences. Let f be n times differen-
tiable and xp < - -+ < Xp. Then there exists £ € [xo, Xp] such that

[ % AN ().

Reference: Ryaben’kii and Tsynkov: A theoretical introduction to numerical
analysis, Section 21.2.
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C*° not a polynomial.
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with

o®(6) # 0.
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with

o®(6) # 0.
Substep @: For w,x € R, let

fx(w) := o(wx + 6)
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with

o®(6) # 0.
Substep @: For w,x € R, let

fo(w) := o(wx +0) = fOw)=x"- o®(wx +6).
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with
o®(6) # 0.

Substep @: For w,x € R, let
fo(w) := o(wx +0) = fOw)=x"- o®(wx +6).

By the mean-value theorem for divided differences,

A0, 3, B =f&n)/R with  0< g <

S
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with
o®(6) # 0.

Substep @: For w,x € R, let
fo(w) := o(wx +0) = fOw)=x"- o®(wx +6).

By the mean-value theorem for divided differences,

A0, 3, B =f&n)/R with  0< g <

S

Substep @: For n € N, define

gn(x) = R1-£0, 1, ... £].
Directly from the definitions, we see g, € NN},
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with
o®(6) # 0.

Substep @: For w,x € R, let
fo(w) := o(wx +0) = fOw)=x"- o®(wx +6).

By the mean-value theorem for divided differences,

A0, 3, B =f&n)/R with  0< g <

S

Substep @: For n € N, define
gn(x) == kU-£[0, 1, ..., E].

Directly from the definitions, we see g, € N'A,. Finally,

9:(x) - 0"(0) - X'| =

$(6n) = £0(0)] = X" |0 €nx + 0) — 82(0)| ==,

with locally uniform convergence (w.rt. x).
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Proof of the universal approximation theorem — Part 2

Step 2 (Universality of N\, for o € C™):
Substep @: Let o € C* not a polynomial. Let k € N be fixed and 6 € R with
o®(0) #o0.
Substep @: For w,x € R, let
fo(w) := o(wx +0) = fOw)=x"- o®(wx +6).

By the mean-value theorem for divided differences,

A0, 3, B =f&n)/R with  0< g <

S

Substep @: For n € N, define
gn(x) = R1-£0, 1, ... £].
Directly from the definitions, we see g, € N'A,. Finally,

9:(x) - 0"(0) - X'| =

F (&) — K00 = X'+ [ (Enx +6) - 8V(0)) — 0,
with locally uniform convergence (w.rt. x).

Substep @: We have shown x* € NN}, for all k € N, and this also holds for k = 0
(why?!). Now, the claim follows from the (Stone)-WeierstraB theorem. O
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Proof of the universal approximation theorem — Part 3

Step 3 (Showing ¢ * o € NN, for p € C2(R)):
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Proof of the universal approximation theorem — Part 3

Step 3 (Showing ¢ * o € /\//\/1 for ¢ € C°(R)):
If o % 0 ¢ NN, then there exists K ¢ R compact such that ¢ % o ¢ /\f/\/1
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Proof of the universal approximation theorem — Part 3

Step 3 (Showing ¢ * o € /\//\/1 for ¢ € C°(R)):
If o % 0 ¢ NN, then there exists K ¢ R compact such that ¢ % o ¢ /\f/\/1

Thus, there exists a signed Borel measure u on K satisfying

/(99 x 0)(X)du(x) #0 and /g(ax+ b)du(x) =0 Va,beR.
K

K
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Proof of the universal approximation theorem — Part 3

Step 3 (Showing ¢ * o € /\//\/1 for ¢ € C°(R)):
If o % 0 ¢ NN, then there exists K ¢ R compact such that ¢ % o ¢ /\//\/1

Thus, there exists a signed Borel measure u on K satisfying
/(Lp x 0)(X)du(x) #0 and /g(ax+ b)du(x) =0 Va,beR.
K K

But then, Fubini’'s theorem shows

0#/@*9 ) dp(x) // y) dy du(x)
=/R<,o(y)/Kg(X—y) du(x) dy

:/Rgo(y)-Ody:o.

Contradiction.

ion O0O00000e0



Proof of the universal approximation theorem — Part 3

Step 3 (Showing ¢ * o € /\//\/1 for ¢ € C°(R)):
If o % 0 ¢ NN, then there exists K ¢ R compact such that ¢ % o ¢ /\//\/1

Thus, there exists a signed Borel measure u on K satisfying
/(Lp x 0)(X)du(x) #0 and /g(ax+ b)du(x) =0 Va,beR.
K K

But then, Fubini’'s theorem shows

0#/@*9 ) dp(x) // y) dy du(x)
=/R<,o(y)/Kg(X—y) du(x) dy

:/Rgo(y)-Ody:o.

Step 4: By the above, we are done if ¢ * g is not a polynomial for some
p € C°(R).

Contradiction.
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Proof of the universal approximation theorem — Part 4

Step 5 (Handling the case that ¢ * ¢ is a polynomial for all ¢ € C):
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Proof of the universal approximation theorem — Part 4
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Step 5 (Handling the case that ¢ * ¢ is a polynomial for all ¢ € C):

Substep @: C°[-1,1] := {p € C*(R) : suppy C [-1,1]} is a complete
metric space with metric

o0

d(e, ) ==Y 27" min{1, o — Pl }-

n=1

Substep @: By assumption,
Cl-1,1=JVmn for  Vmi={peCR®[-1,1]: deg(y*0) < m},
m=1

and each Vy, is a closed subspace.

Substep @: By Baire category, some V,, has non-empty interiors, which
implies Vy, = C°[-1,1].

Substep @: Choose ¢, € C°[—1,1] with ¢, — 8. Then ¢, * 0 — o, SO that o
is a polynomial (of degree at most m). Contradiction. O
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Quantitative approximation rates
for Barron functions

3. Quantitative approximation rates for Barron functions
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with [gq [€] - [F(€)]d€ < C.
Theorem (Barron; 1993).

Let ¢ be a sigmoidal activation function. Let u be a probability measure on
RY, let r > 0 and f € B4(C). For any N € N, one can achieve
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where &y is a shallow NN with N neurons and activation function .
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can be well approximated by NNs

f:R? — Ris called Barron-regular with constant C > 0 (written f € B4(C)), if
flx) = C+/ (%8 —1) . F€)de  VYxeRY,
Rd
with e [€] - [F(€)Id€ < C.

Theorem (Barron; 1993).

Let ¢ be a sigmoidal activation function. Let u be a probability measure on
RY, let r > 0 and f € B4(C). For any N € N, one can achieve

/\fx) Pp(x \du (f/r%)’

where &y is a shallow NN with N neurons and activation function .

o

o0:R — Rissigmoidal if it | — do=eare
is bounded, measurable,

and if limy_, o(x) = 1and "

limy_ o0 0(X) = 0. 00

AN

1 2 0 2 1 Amrew Barron;
opc.mfo.de/detail?photo_i
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Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let # be a Hilbert space, G ¢ H and b > 0 with ||g|ls; < b for
allg € G. Letfy € convG and ¢ > b® — ||fol|%.
Then for any N € N there exist gi, ..., gy € G such that

N
1 . c
= N E gn satisfies ||fo — full% < N

n=1
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allg € G. Letfy € convG and ¢ > b® — ||fol|%.

Then for any N € N there exist gi, ..., gy € G such that
N
1 . C
fu=5 ;gn satisfies [|fo — full3 < N

Proof (Probabilistic method): @: Let 5 > 0 arbitrary and choose f* = Z,M:1 i h: with
hi € G, A >0,and >, \j = 1satisfying ||f — f*|ln < 6.

n of Barron functi




Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let # be a Hilbert space, G ¢ H and b > 0 with ||g|ls; < b for
allg € G. Letfy € convG and ¢ > b® — ||fol|%.

Then for any N € N there exist gi, ..., gy € G such that
N
1 . C
fu=5 ;gn satisfies [|fo — full3 < N

Proof (Probabilistic method): @: Let 5 > 0 arbitrary and choose f* = Z,M:1 i h: with
hi € G, A >0,and >, \j = 1satisfying ||f — f*|ln < 6.

@®: Let Z € G a random vector with P(Z = h;) = X for i € {1,...,N}, and note EZ = f*.

n of Barron functi




Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let # be a Hilbert space, G ¢ H and b > 0 with ||g|ls; < b for
allg € G. Letfy € convG and ¢ > b® — ||fol|%.
Then for any N € N there exist gi, ..., gy € G such that
N
1 . C
fu=% ;Qn satisfies [|fo — full3 < N
Proof (Probabilistic method): @: Let 5 > 0 arbitrary and choose f* = Z,M:1 i h: with

hi € G, A >0,and >, \j = 1satisfying ||f — f*|ln < 6.
A forie{1,...,N}, and note EZ = f*.

®: Let Z € G a random vector with P(Z=h)) =
O etz ..., Zy < 7 and note E(Z, — f*,Zy — f*) = 0 for n # m and
E||Zy — f* 3 = El|Zall3 — IF 5 < b> = |If*|5-

n of Barron functi




Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let # be a Hilbert space, G ¢ H and b > 0 with ||g|ls; < b for
allg € G. Letfy € convG and ¢ > b® — ||fol|%.
Then for any N € N there exist gi, ..., gy € G such that

N

1 . C
=% > gn satisfies |Ifo — fullz < N

n=1

Proof (Probabilistic method): @: Let 5 > 0 arbitrary and choose f* = Z,M:1 i h: with
hi € G, A >0,and >, \j = 1satisfying ||f — f*|ln < 6.

@: Let Z € G a random vector with P(Z = h;) = X for i € {1,...,N}, and note EZ = f*.

O etz ..., Zy < 7 and note E(Z, — f*,Zy — f*) = 0 for n # m and
EZn — 13 = EllZall3 — IF I3 < b = IF* |3

e -r

_ 1y b% — |If* 3
S g\z ~ 1B, 7N "

N 2
1
e -5z
n=1 H
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Main ingredient: Approximability of elements of convex hulls

Lemma (Maurey). Let # be a Hilbert space, G ¢ H and b > 0 with ||g|ls; < b for
allg € G. Letfy € convG and ¢ > b® — ||fol|%.
Then for any N € N there exist gi, ..., gy € G such that
N
1 . C
fu=% ;Qn satisfies [|fo — full3 < N
Proof (Probabilistic method): @: Let 5 > 0 arbitrary and choose f* = Z,M:1 i h: with

hi € G, A >0,and >, \j = 1satisfying ||f — f*|ln < 6.
A forie{1,...,N}, and note EZ = f*.

®: Let Z € G a random vector with P(Z=h)) =
O etz ..., Zy < 7 and note E(Z, — f*,Zy — f*) = 0 for n # m and
E||Zy — f* 3 = El|Zall3 — IF 5 < b> = |If*|5-
H n,

SE-F) =EY @ Zn—f)
2 I,
N

2
R b
= LEY Iz r I <
n=1

1
= E

2
H

N
1
0. EHJ‘* - n;zn

> s Zall3 < g since [lfo = fllw < 6. O

©: For 5 small enough, this implies E||fo —

Ap| n of Barron fun
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Integral formulas imply membership in the closed convex hull

Let (X, u) be a finite measure space and G C L%(u), and let (Q,v) be a
probability space. Let g : X x Q2 — R be measurable and such that

» g(,w)eGforallw e
» |g(x,w)| < Cforall (x,w) € X x Q2 and some C < o;
> f(x) = [, 9(x,w) dv(w) forall x € X.

Then f € conv G, with the closure taken in L?(p).
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Let (X, u) be a finite measure space and G C L%(u), and let (Q,v) be a
probability space. Let g : X x Q2 — R be measurable and such that
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» |g(x,w)| < Cforall (x,w) € X x Q2 and some C < o;
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Integral formulas imply membership in the closed convex hull

Let (X, u) be a finite measure space and G C L%(u), and let (Q,v) be a
probability space. Let g : X x Q2 — R be measurable and such that

» g(,w)eGforallw e
» |g(x,w)| < Cforall (x,w) € X x Q2 and some C < o;
> f(x) = [, 9(x,w) dv(w) forall x € X.

Then f € conv G, with the closure taken in L?(p).

Proof: Let wy,wy, ... g . Then
1 N 2 1 N
EA(f(x)—N;g(x,wo) () = [var( ;gxw,)

1 f o
- /@V&f[w () < &

By Fatou’s lemma, this implies

1 N
’f_ N ;g(Vw/')

E{Iiminf
N— oo

N—oo

2
} — 0. U
L2(p)

of Barron functions OO®O Ur




Proof of Barron’s result

For f: RY — R, write f € B(C) if
fx) = / @@ _ 1) Fw)dw  ¥xeRY, (%)
Rd
for some Fwith Cr := [o4 |w| - |F(w)| dw < C. Thus, B4(C) = R + B3(C).
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) = / @5 Z1). Fw)dw  ¥xe R, (%)
Rd
for some Fwith Cr := [o4 |w| - |F(w)| dw < C. Thus, B4(C) = R + B3(C).

Lemma: Let ¢ € R be arbitrary, and let H(x) = T ) + ¢ 1. We have
B;(C) < conv Gy, where the closure is taken in L(By; i) for any finite measure u,
and where

Gy = {»y “H((w,®) +b) : |y| <2rC, we R’ be ]R}.
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Proof of Barron’s result

For f: RY — R, write f € B(C) if
) = / @5 Z1). Fw)dw  ¥xe R, (%)
Rd
for some Fwith Cr := [o4 |w| - |F(w)| dw < C. Thus, B4(C) = R + B3(C).

Lemma: Let ¢ € R be arbitrary, and let H(x) = T ) + ¢ 1. We have
B;(C) < conv Gy, where the closure is taken in L(By; i) for any finite measure u,
and where

Gy = {»y “H((w,®) +b) : |y|<2rC,weR? be ]R}.
Proof: @: A direct computation shows for ¢ > 0 and [t| < cthat

c . . c . .
et —1= i/ Tuct e’ —Luc - du= i/ H(t —u) " — H(-u—t) e " du.
0 0
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Proof of Barron’s result

For f: RY — R, write f € B(C) if
) = / @5 Z1). Fw)dw  ¥xe R, (%)
Rd
for some Fwith Cr := [o4 |w| - |F(w)| dw < C. Thus, B4(C) = R + B3(C).

Lemma: Let ¢ € R be arbitrary, and let H(x) = T ) + ¢ 1. We have
B;(C) < conv Gy, where the closure is taken in L(By; i) for any finite measure u,
and where

Gy = {»y.H((W,O)—I—b) © |yl < 2rC, w e RY, bG]R}.
Proof: @: A direct computation shows for ¢ > 0 and [t| < cthat
c . . c . .
et —1= i/ Tuct e’ —Luc - du= i/ H(t —u) " — H(-u—t) e " du.
0 0

o Using (x) and the formula from @ vith t = (w,x) and ¢ = r - |w|, and writing
F(w) = °“)|F(w)|, we finally see

f(x) = Ro<i/Rd '/OW‘ F(w) - (H((wrx) — u) € — H((~w,x) — u) =) du dw)

1 3
_ Z/R /01 %CFF(“)' () 2rCr - sin(8(w) + (~1Prlwlt) - H({(= 1Y, ) — rle]t) dtdeo.0]
j=0 /&
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Universal approximation for
complex-valued neural networks

4. Universal approximation for complex-valued neural networks



The definition of complex-valued neural networks (CVNNs)

Input Hidden Hidden Hidden Output
Layer Layer 1 Layer 2 Layer 3 Layer

> L number of (hidden) layers, o: R — R: activation function

. i . RN N
> N, number of neurons in layer ¢, | Networkfunction @ : R — R¥+
given by

> T, RNVe — RNewt x s Ay x + by
connections between neurons
(weights). with o applied componentwise.

®=T o(poT,_1)o---0(poTp)
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The definition of complex-valued neural networks (CVNNs)

» [ number of (hidden) layers, o : C — C: activation function

> Ng: number of neurons in layer ¢, | Network function @ : C% — '

given by

> T, CcNe - (CN”W,X — A¢ X + by
connections between neurons
(weights). with o applied componentwise.

=T o(coT,_1)o---0(c0oTp)
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CVNNs have advantages for tasks with naturally C-valued inputs

Virtue, Yu, Lustig: Better than real: Complex-valued Neural Nets for MRI
fingerprinting, ICIP, 2017:

Goal: From C-valued MRI measurements, determine if tissue is benign or
malignant.

i CVNNs outperform 2-channel Cardioid (magnitude)
real-valued networks for al- 15
most all of our experiments, 10 /
and this advantage cannot be :
explained away by the twice YN T

Imag. -10 -10 Real

large model capacity. ¥4

0O@00000000




Differentiability is always understood
In the sense of real variables

[unless mentioned otherwise]



The universal approximation theorem for CVNNs

Let o : C — C be continuous.

Theorem (shallow case; FV; 2020)

The set NAY of shallow CVNNs is universal if and only if o is not 222,
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The universal approximation theorem for CVNNs

Let o : C — C be continuous.

Theorem (shallow case; FV; 2020)
The set N9 of shallow CVNNs is universal if and only if o is not polyharmonic.

Here, g : C — Cis polyharmonicifg € C* and A™g =0, where A = 30722 + g—;

denotes the Laplace operator on C = R?.
Remark: g polyharm. <= Reg and Im g of the form Re( Y1, 2 - fu(2)) with all fi
entire.
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The universal approximation theorem for CVNNs

Let o : C — C be continuous.

Theorem (shallow case; FV; 2020)
The set N9 of shallow CVNNs is universal if and only if o is not polyharmonic.

e 5

Here, g : C — Cis polyharmonic if g € C** and |A"g =0, where A = 25 + o7
denotes the Laplace operator on C = R?.
Remark: g polyharm. <= Re g and Im g of the form Re(>_,., 7 - fe(2)) with all fi
entire.
Theorem (deep case; FV; 2020)
Let L € N>,. The set NN‘;L of deep CVNNs with L hidden layers is universal if and
only if none(!) of the following hold:
» o is holomorphic or @ is holomorphic,
» o(z) = p(z,2) with a polynomial p.
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The universal approximation theorem for CVNNs

Let o : C — C be continuous.

Theorem (shallow case; FV; 2020)
The set N9 of shallow CVNNs is universal if and only if o is not polyharmonic.

e 5

Here, g : C — Cis polyharmonic if g € C** and |A"g =0, where A = 25 + o7
denotes the Laplace operator on C = R?.
Remark: g polyharm. <= Re g and Im g of the form Re(>_,., 7 - fe(2)) with all fi
entire.
Theorem (deep case; FV; 2020)
Let L € N>,. The set NN‘;L of deep CVNNs with L hidden layers is universal if and
only if none(!) of the following hold:
» o is holomorphic or @ is holomorphic,
» o(z) = p(z,2) with a polynomial p.

Example: (2) =z - € is polyharmonic, but NAY | is universal if L > 2.

Remark: Some (very) partial results were already known [Arena, Fortuna, Re, Xibilia;
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Proof ingredients




Ingredient 1:

Identifying f: U C C — C with (x,y) — f(x +iy), define

af:%((‘%f—lazf) and gf:%(aqf—‘rlazf)
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Ingredient 1:

Identifying f: U C C — C with (x,y) — f(x +iy), define
af:%((‘%f—lazf) and gf:%(awf—‘rlazf)
Properties:

» fe C'(U;C) is holomorphic <= df = 0.

In this case, df is the usual complex derivative of f.

>  Af=4-90f forfe C*(U;QC).
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Ingredient 1:

Identifying f: U C C — C with (x,y) — f(x +iy), define

af:%((‘%f—lazf) and gf:%(aqf—‘rlazf)

Properties:
» fe C'(U;C) is holomorphic <= df = 0.

In this case, df is the usual complex derivative of f.
>  Af=4-90f forfe C*(U;QC).
> Product rule: B B B
~ 0f-9)=(N)-g+f-09 and O(f-g)=(0f)-g+f-(99).
> Chain rule d(fog)=[(@f o] 99 +[(3N o g] - Tg
and 9(fog)=[(9f)cg]-9g +[(df) o g]-a7.
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Ingredient 2:

Weyl's lemma

Let U c RY be open and suppose that v € D’(U) [i.e, v is a distribution]
satisfies| Ay =g for some g € C>°(U). Then v € C>=(U).
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Ingredient 2:

Weyl's lemma

Let U c RY be open and suppose that v € D’(U) [i.e, v is a distribution]
satisfies| Ay =g for some g € C>°(U). Then v € C>=(U).

Corollary

Suppose that f € L], (U) satisfies | [, f- AM8dx=0 forall § € C°(V).

loc

Then fe C>*(U) and A"f = 0.
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Ingredient 2:

Weyl's lemma

Let U c RY be open and suppose that v € D’(U) [i.e, v is a distribution]
satisfies| Ay =g for some g € C>°(U). Then v € C>=(U).

Corollary

Suppose that f € L], (U) satisfies | [, f- AM8dx=0 forall § € C°(V).

loc

Then fe C>*(U) and A"f = 0.

Corollary

If (fa)nen C C°(C; C) with A™f, = 0 for all n € N and f, — f with locally
uniform convergence, then f € C>°(C; C) and A™f = 0.
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Necessity

(Universality = o is not polyharmonic / ...)



Necessity for shallow networks

Suppose that Ao = 0 for some m € N.

To prove: Universality fails.
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Necessity for networks
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Necessity for networks

Case @: o holomorphic.
Then W is holomorphic forany ¥ € NN, .
~~ Locally uniform limits also holomorphic

~~ Universality fails!
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Case @: o holomorphic.
Then W is holomorphic for any W € N/\/Z,)L.
~~ Locally uniform limits also holomorphic
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Necessity for networks

Case @: o holomorphic.
Then W is holomorphic for any W € N, |
~~ Locally uniform limits also holomorphic

~~ Universality fails!

Case @: o is anti-holomorphic (i.e,, 7 is holomorphic).
Then W is holomorphic or anti-holomorphic for any \UGJ\/NL,L

~ As above: Universality fails!

Case ©@: o p(z,2) for a polynomial p.
Then V is a polynom|al of degree N = N(L, p) for any \UENJ\/(,L.

~+ Universality fails!
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Sufficiency



Sufficiency: It is enough to consider networks with 1D input

Lemma
If NN is universal, then so is NNL foranyd e N.
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Sufficiency: It is enough to consider networks with 1D input

Lemma
If NN | is universal, then so is NN® | for any d € N,

Proof.
Step @: Assumption ensures:

(z—eR?) e NN,
Step @: This implies
(2 eR@) e NNV, VaecC

Step @: By Stone-Weierstral: The functions from Step @ span a dense
subspace of C(K) for K ¢ C? compact. O
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Proof of for complex-valued networks
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Proof of for complex-valued networks

For simplicity: Assume o € C* is smooth

NNs OO0O00000@0



Proof of for complex-valued networks

Proposition. If m, £ € Ny such that omd'e 20, then (z+— z"Z%) € NN
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Proposition. If m, £ € Ny such that omd'e 20, then (z+— z"Z%) € NN

Proof sketch: @: Wirtinger calculus shows
ol dy[o(wz+60)] =277 - (9D o)(Wz + 6)
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Proof of for complex-valued networks

Proposition. If m, £ € Ny such that omd'e 20, then (z+— z"Z%) € NN
Proof sketch: @: Wirtinger calculus shows
ol dy[o(wz+60)] =277 - (9D o)(Wz + 6)

and hence
8By, [o(wz + )] =272 - (9m0'5)(6).

@®: e have [z — B;V”Efv\W:o o(wz+0)] e NN ] ..
Proof idea: approximate derivative via difference quotient:
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. ) ENN] | as afunction of z
with locally uniform convergence. |
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Corollary. If o is not polyharmonic, then /\/’/\f(;1 = ((C;C).
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Proof of for complex-valued networks

Proposition. If m, £ € Ny such that omd'e 20, then (z+— z"Z%) € NN,
Proof sketch: @: Wirtinger calculus shows
ol dy[o(wz+60)] =277 - (9D o)(Wz + 6)

and hence
8By, [o(wz + )] =272 - (9m0'5)(6).

@®: we have [z — 80,|,_, o(wz+0)] € NN]
Proof idea: approximate derivative via difference quotient:

%J((O +ib)z+6) = lim % [o((a+h+ib)z+6) - o((a+ib)z+6)],

ENN] | as afunction of z
with locally uniform convergence. |

Corollary. If o is not polyharmonic, then /\/’/\f(;1 = ((C;C).

Proof: @: We have 0 # Afo = 4. 978" forall k € N.
@®: By the proposition, (z—2MZ ) € NN , forall m, £ O
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Sufficiency for networks

Let 0:C — C be smooth, but not holomorphic, anti-holomorphic, or a
polynomial.
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Sufficiency for networks

Let 0:C — C be smooth, but not holomorphic, anti-holomorphic, or a
polynomial.
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o not holom. = 00 #£ 0 == (2 2) e NN},
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o not anti-holom. = 9o # 0 222 [(z 45 2) € NN,
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Sufficiency for networks

Let 0:C — C be smooth, but not holomorphic, anti-holomorphic, or a
polynomial.

as before

o not holom. = 0o 20 =—= (2 2) e NN,

= |(z+ Rez) e NN,

o not anti-holom. = 9o # 0 222 [(z 45 2) € NN,

@ Since o is not a polynomial, we have
VmeNy: 9"o#0 or 9 o £0

as before

VmeNy: (z—2") e NN, ,[J6F0 (2~ Z") € NN

© since we consider deep networks (L > 2), @ and @ imply
VmeNy: [z (Re2)"] € /\/'/\/'U’L

This easily implies universality. O
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Thanks for your attention ®

Questions, comments,
counterexamples?
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