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Overview

° Introduction
@ Candidate differential equations
@ Main approach
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Statement of two (innocent looking) problems

Optimization

Find the unconstrained minimum of a function 7(x) in R?
min m(x)
xERI

Sampling

Let x € X, where X C R and assume that we want to calculate an expectation with respect to
a probability distribution with smooth density 7(x)

(&) = Ex(g) = /X g(x)m(x)dx
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Numerous applications

RAARACANAY

(a) Uncertainty quantification
for classification methods

150 200 250

(b) Computational Imaging @
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Computational Imaging |

o We are interested in an unknown image x € R9.
@ We measure y, related to x by a statistical model p(y|x).

@ The recovery of x from y is ill-posed or ill-conditioned, resulting in
significant uncertainty about x.

@ For example, in many imaging problems
y =Ax+ w,

for some operator A that is rank-deficient, and additive noise w.
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Computational Imaging Il

@ We use priors to reduce uncertainty and deliver accurate results.

@ Given the prior pr(x), the posterior distribution of x given y

m(x) = p(x]y) = p(yx)pr(x)/pr(y)

models our knowledge about x after observing y.

@ Give a functional form to pr(x), we obtain

70) =ep{-0(}/2 2= [ ew{-olx)}dx

Two approaches

@ MAP estimation:

Suap = argmax p(x]y) = argmin 6(x)
x€ERY xER

@ MMSE estimation:

use = argmin [ [ = x| p(xly ) = B(xly) = Byt ()
x€R
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Gradient flow

Consider the differential equation:

% = —Vn(x).

This has the interesting property that

dm(x) 2
—— = —|[Va(x)]|” = lim x(t) = x*
2 = ORI = fim x(t) = %,
where x* is a (unique) minimizer. This makes the equation above central
(or at least the simplest choice) for optimization purposes.

3. THE UNIVERSITY
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Langevin dynamics

Consider the stochastic differential equation
dX; = Vlog 7(X¢)dt + V2dW,.

Under appropriate assumptions on V log 7(x) one can show that its dynamics are ergodic with
respect to m(x) : R — R i.e

-
Tli_)moo %/0 g(Xs)ds = Ex[g] := /Rd g(x)m(x)dx.

— invariant measure
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In an ideal world!!!

@ There is nothing to be done...
@ Discretize the candidate differential equations and go
» Optimization: Go to infinity as quickly as possible (in terms of function
evaluations).
» Sampling: Go to infinity as quickly as possible (in terms of function
evaluations). Once there produce samples that are i.i.d.
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In real life...

@ Starting from the differential equation and discretising might not be
enough in terms of mimicking the rate of convergence to equilibrium.

@ Going to infinity as quickly as possible implies that you can use
arbitrary large time-steps in your numerical discretization.

@ Reality unfortunately comes back to bite you, as time-steps
restrictions appear once you discretize your (stochastic) differential
equation.
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Overview

© Preliminaries
@ Ways of measure the convergence/error
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Optimization

If we assume that x, is the unique minimizer of 7(x) we want to
understand

e Continuous time: How fast does 7(x(t)) — m(x.) convergences to
zero (equivalently how fast does ||x(t) — x.|| convergences to zero)

@ Discrete time: How fast does m(xx) — 7(x«) convergences to zero
(equivalently how fast does ||xx — xx|| convergences to zero)

Thinking on space of probability measures

We can think that the solution of the gradient flow in terms of defining a
solution on the space of probability measures as the time t evolves. Of
course it is the trivial one since the probability measure induced is just

6X(f)
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Sampling

@ The solution of Langevin equation is now defining a (more
complicated) probability measure

@ Similar to optimization we want to understand how fast does the
corresponding probability measure induced convergences to the limit
measure T,

@ A lot of different ways of measuring the convergence, we will do this
using the Wasserstein distance
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Wasserstein distance

We define

1/2
Wetrs. ) = (inf, [ Ix=ylactnn)

RN

with P a positive definite matrix, and where Z is the set of all couplings
between 71 and 5.

e Continuous time: How fast does Wp(®:mp, 7*) converges to zero?

@ Discrete time: How fast does Wp (W] mg, 7*) converges?

K. C. Zygalakis (University of Edinburgh)
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An example

© Consider the SDE dX = —yXdt + v2dW,
» 7.(x) is the density associated with A/(0,7~!)
@ We will solve this by x,11 = x, — Yhx, + V2hE,, where &, ~ N(0,1)

» Assume that xp is deterministic
» It is not difficult to show that in this case x, ~ N(m,, c2)) where

m, = (1—7h)"% —0
(1—~h)>" —1 2 »
— 2h
i {(1—%)2—1 2 —72h 77

© We hence see that Wp (W] mg, 7*) doesn’t convergence to zero. This
is genuinely true in the case of SDEs something to keep in mind for
later analysis.
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Overview

© Continuous time analysis
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Optimization
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Equations and functions assumptions

Gradient flow: Momentum equation:

x+Vf(x)=0 X 4+ by/mx + Vf(x) =0

Quadratic case: f(x) = 3x"Qx, o(Q) € [m, L]

Nonlinear case: f(x) € F(m,L)

[1] W. Su, S. Boyd, E. J. Candés NIPS 2014: 2510-2518, (2014).
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Continuous time formulation

£(t) = A¢(t) + Bu(t),
y(t) = C&(t),
u(t) = VF(y(t)).
where £(t) € R" is the state, y(t) € RY(d < n) the output, and

u(t) = V£ (y(t)) the continuous feedback input. Fixed points of the
system satisfy

0= A", y*=C¢, u =VFfQy*);

in our context u* =0 and y* = x*.

[2] M.Fazlyab, A. Ribeiro, M. Morari, V. M. Preciado, SIAM J. Optim., 28(3), 2654-2689, (2018).
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Examples

O Gradient flow: x = —Vf(x).

A=04xd, B=—lyxd, C=lgxa.

@ Momentum equation: X + by/mx + Vf(x) = 0.

SRS A R

04
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Quadratic case

@ The continuous time formulation now becomes
£(t) = (A+BQRO)K(t)
@ Solution is given by

£(t) = elA+BA0)¢ ()

@ To deduce a convergence rate to the minimizer we need to
understand the spectral properties of el

A+BQO)t
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Quadratic case: Gradient flow vs momentum equations

e Gradient flow: rate of convergence e~2™mt

@ Momentum equation: rate of convergence e—&(b)vmt

2

15

0.5

o Clearly using the first order dynamics is suboptimal in terms of
convergence

K. C. Zygalakis (University of Edinburgh) Sampling and Optimization Chemnitz, 09/2023
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(Continuous) Lyapunov functions

Consider

V(&(t), t) = a(t)(F(y(t)) — Fyx)) + (§() — &) P(£)(&(t) — &)

and assume that we can find «a(t), P(t) = 0 such that

V(£(t), t) < V(&(to), to)

then

0 < f(y(t)) — fyx) < V(£(to, t0))/a(t) = O(1/a(t))
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The class F(m, L)

@ (x—y,VI(x) = VF(y)) = m|x—y|*

@ [VF(x) - VA)I* < L2|x - y|*
Q 2 lx—yIP + Z IVF(x) = VAW)I? < (VF(x) = V() (x —y)
An equivalent way of expressing these equations are the following quadratic
constraints:

- T -
X—y -2y sy xX—y
O V) - Vi) | L %d] [w(x) —Vf(y)] 20
- - T -
X—y L%l; 04 X—y
O Vi) -vr)] |od —/d} [Vf(x) _ Vf(y)] 2 0.
r 1T r mL 1
X—y — g sy X—y
© lvr)-vr)| | T 21+le} {Vf(x) —Vf(y)} 20

K. C. Zygalakis (University of Edinburgh)
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(Continuous) Lyapunov functions

Consider

V(&(t), t) = a(t)(F(y(t)) — Fyx)) + (§() — &) P(£)(&(t) — &)

and assume that we can find «a(t), P(t) = 0 such that

V(£(t), t) < V(&(to), to)

then

0 < f(y(t)) — fyx) < V(£(to, t0))/a(t) = O(1/a(t))
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A small calculation

By differentiating the Lyapunov function we have

V = a(e)(f(y(1) — F(y))
A )(VF(y (1)) = V(1)) y(2)
+2(£(1) — &) T P(£)E(t)
+ (&) = &) TP(e)(E() — &)

Setting e(t) = [(£(t) — &) T (u(t) — ux)T] and using the strong convexity
properties of f (f € F, ) we can obtain

V(t) < e (£)(--)e(t)

and if the matrix inside the parenthesis is negative definite then we are
done.
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A theorem for the (continuous) Lyapunov function

(Continuous) convergence to the minimizer

Suppose that there exist A > 0, P >= 0, and o > 0 that satisfy

7=+ u® 4 Am® +om® <o

where
70 _ PA+ATP+ NP PB
- BT P 0]’
o Llo a7’
mO =2 A
2 |E CB+BTCT |~
7@ cT o] [-%2. Iw][C o
Ia) | 31y 0| [0 l4]’
M(3)7[CT 0] — g gid, [C 0]
Iy 1y, —Log| o i

Then the following inequality holds for f € Fp, 1, t > 0,

F(0) — Fr*) < e (F0) — Fr™) + (60) — €9 P(E(0) — €9)) -

Sampling and Optimization Chemnitz, 09/2023
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Nonlinear case: Gradient flow vs momentum equations

o Gradient flow: Again we have that A =2m.
e Momentum equations: We have that A = g(b)y/m

2

15

0.5

@ You lose some of the rate you can prove between the linear and the
nonlinear case

@ Still the momentum dynamics accelerate the convergence to equilibrium
(vm > m when m < 1.)

© One should discretise the momentum dynamics.
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Sampling
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Continuous time formulation

dé(t) = AL(t)dt + Bu(t)dt + odW(t),
x(t) = C(v),
u(t) = VF(x(t)).

Here ¢ € RN is the state, u € R? is the input, x € R? is the output that is
mapped to u by the nonlinear map Vf and W represents the standard
M-dimensional Brownian motion. The real matrices barA, B, C and o are
constant, with sizes N x N, N x d, d x N and N x M respectively. We

define
D= (1/2)o0".
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Two examples

© The overdamped Langevin equation
dx = —cVf(x)dt + vV2cdW(t),
for which we have N=d, M =d, £ = x, and

A=0d BZ—CId 6:/d g = \/2CId.

@ The underdamped Langevin equation

dv = —yvdt— cVF(x)dt+ /2ycdW(t),
dx = vdt.

for which we have N =2d, M =d, ¢ = [v7,x"]" and

A:|:—Z!/d 8]7 B:|:—Cld:|, =10 1], 02[@&!}

0
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Equilibrium behaviour

Necessary conditions

Assume that S is an N x N positive semidefinite symmetric matrix.
@ The relations

Tr(A+ DS) =

CB+CDCT =

CA+PB'S+2CDS =

SA+ATS +25DS =

bl

bl

bl

o O O O

bl

imply that the SDE has invariant probability distribution 7* with
density

x exp (— F(CE) — (1/2)¢7S¢).

o If SCT =0, then the marginal of oc exp ( — f(C&) — (1/2)£7S¢) on

x = C¢ is the target oc exp(—f(x)).

v

K. C. Zygalakis (University of Edinburgh) Sampling and Optimization Chemnitz, 09/2023
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Examples revisited

@ Overdamped Langevin: Taking S = 0 we have that
m(x) oc exp (—f(x))
@ Underdamped Langevin: Taking

1[Iy 0
5_2[0 o]

we have that

o) o exp (=100 + 5 W1
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Convergence to the invariant distribution |

In order to estimate the quantity of interest, we consider

deW(t) = AcM(t)dt + BVF(CEM(t))dt + odW (1),
de@(t) = AcD(t)dt + BVF(CEP(t))dt + adW(t),

Contractivity implies convergence
Assume that P > 0 and A > 0 exist such almost surely,
1€P (1) = (D)7 < e MR (0) - D), >0
Then, for arbitrary distributions, 71 and 73,
Wp(®emry, ®ema) < e M2 Wp(my, 7o), t>0,
and, in particular, for arbitrary m,

We(®.m, %) < e M2 Wp(r, 7)), t > 0.

K. C. Zygalakis (University of Edinburgh) Sampling and Optimization Chemnitz, 09/2023
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Why contractivity implies convergence?

From the definition of the Wasserstein distance we have

E|l€®)(t) — ¢M(t)]|3  using contractivity
e ME|£2(0) - ¢M(0)]13
e_’\tW,§(7r1,7r2)

W;%(q)tﬂla ¢t772)

ININ TN
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Quadratic Lyapunov function

@ We have an extended system of equations

deM(t) = AO(t)dt + BVF(CEM(t))dt + odW(t),
de@(t) = AP(t)dt + BVF(CEP(t))dt + odW(t),

@ We are looking for a quadratic Lyapunov function

V(1) = (&a(t) — &(1) T P(&(t) — &(1))
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Quadratic case

o In the quadratic case f(x) = 3x” Qx we consider Z = &(t) — &(t)
then
Q Z(t)=(A+BQC) Z(t)
@ So everything is back to optimization teritory
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Non-linear case

@ On top of assuming that f € F(m, L) we will assume that it is twice

differentiable. This implies that the eigenvalues of VVf are bounded
between m and L

Another matrix formulation

Let P > 0 be an N x N symmetric matrix and A > 0. Assume that, for
each y1, yo € RY, the matrix

T\ P,y1,y2) = AP+ P(A+ BH(y1,y2)C) + (A+ B’l-_t(yl,yz)C)TP

is 2 0. Then the contractivity estimates hold. Here

_ 1
H(y2,01) = /0 H(y1 + zly2 — y1]) dz
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Dimension reduction

@ The previous proposition is difficult to use in practice.

@ The following structure though is typical in applications

A=A®l;, B=B®l, C=C®ly,

Continuous generalized eigenvalue problem

Given the symmetric, positive definite P, and 2(H) given by
Z(H) — —P(A+ HBE) — (A + HBE)TP.

Assume that, as H varies in [m, L], the eigenvalues A of the generalized
eigenvalue problem Z(H)x = APx are positive and bounded away from
zero and let A > 0 be the infimum of those eigenvalues. Then the
contractivity bound with P = P ® Iy holds almost surely.
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Two examples

O CUEHIEIEEIEIETED: We have that P =1, and that A = 2cm.
Q CIITEEIEIETIETEED: For ¢ = 1/L we have A = 1/k and

5 (11 T 10
o2 o1
> It is possible to show that the best possible rate corresponds to the

choice of ¢ = 4/(L + m) yeilding A = 4/(k + 1)

? THE UNIVERSITY
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Overview

o Discrete time

C. Zygalakis (University of Edinburgh)
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Discrete time

Ek+1 = A&k + Buy,
uk = V£ (yk),
Yk = C&,

Xk = E&.

THE UNIVERSITY
of EDINBURGH

o < = = z 9ac
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A family of algorithms

Xp+1 = Xk + B(xk — xk—1) — aVF(yk),
Yie = Xk + 7(Xk — Xk—1),

@ For 3 = = 0 we recover the gradient descent
Xk+1 = Xk — C(Vf(Xk).
@ For v = 8 we recover the Nesterov method.

© For v =0, B # 0 we recover the heavy ball method.

3. THE UNIVERSITY
A&y of EDINBURGH
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Quadratic case

@ The continuous time formulation now becomes
k1 = (A4 BQC)Ek
@ Solution is given by
& = (A+ BQC)*¢(0)

@ To deduce a convergence rate to the minimizer we need to
understand the spectral properties of (A + BQC)

4 THE UNIVERSITY
L&) o EDINBURGH
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Quadratic case: Convergence rates

&k — €711 < p** 160 —

* (12
&
© Gradient descent: a = m+L' and p = H—jr}
@ Nesterov method: o = 3L+m’ 8= \/7%2114_-5 and p=1-— 3H+
2
. _ 4 _ (k-1 _ E—-1
e Heavy ball = m, ,8 = (m) and p = \/E-‘rl

K. C. Zygalakis (University of Edinburgh)
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(Discrete) Lyapunov functions

Consider
Vi(€) = p72 (ao(F () = F(x")) + (& =€) P(&k =€),
and assume that we can find ag > 0, P > 0 such that
Vier1 (k1) < V(&)

we can then conclude

f(xk) — F(x*) < kaM.
ao

If p < 1, we have found a convergence rate for f(xx) towards the optimal
value f(x*).

&9\ THE UNIVERSITY
&) o EDINBURGH
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A theorem for the (discrete) Lyapunov function

(Discrete) convergence to miminizer

Suppose that there exist ag > 0, P = 0, £ > 0, and p € [0, 1) such that

T = MO 4 5002MD + 291 — p?)M® +em®) <o,

where
T 2 T
() _ |A"PA—p°P A’PB 1) _ @ (2) (2 _ @ (3) (3) — y@®
M _{ e Tpgl: M7 =NUENT, MT =N LN, M= N
with
N _ [E -C EB] v é"’ Ly [EA -C EB]
0 g 3 ld 0 0 Iy |’
N@ _[C—E 0o]T [-%l Fl|[c-E o
=1 o Iy Ly 0 0 la]’
N® _ [¢T 0] =%l 3la|[C O
0 gl | iy o [0 4]’
T — oL 2l c o
N® — € 0 m+L'd 2id
o | i —Lllo Al
d 2ld mrL'd d

(f(xo)—f(x*))Jr(ﬁo—5*)7—P(£o—§*)p2k
ag N

Then, for f € Fp, 1, the sequence {x} satisfies f(x;) — f(x*) < 2
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Nesterov method

We introduce § = v/ma and d = %(xk — Xk—1), SO We can re-write our
algorithm as:

«
diy1 = Bdx — gi(}/k),
X1 = Xk + 0fdke — aVF(yk),
Yk = Xk + 03dk.

Setting & = [d,;r, ka]T € R29 we can express the algorithm in the discrete
form with

A:[fﬂl;’d 0}, B:[_(a/d)ld], C=1[08ls 1], E=1[0 I4.

—a/d

la

&9\ THE UNIVERSITY
&) o EDINBURGH
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Dimension reduction

@ The matrix A is a a Kronecker product of a 2 x 2 matrix and /g,

_|B 0 :
A—|:55 1]®/d,

@ The matrices B, C and E have a similar Kronecker product structure.

@ It is then natural to consider symmetric matrices P of the form

p:ﬁ®,d ﬁ:[Pn P12]
’ p12 p22|’

o T will also have a Kronecker product structure

N N tin ti2 13
T=T® /d, T = |tia tao tr3
ti13 toz t33

&9\ THE UNIVERSITY
&) o EDINBURGH
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Structure of T

We have

tiy = B°p11 + 268%p12 + 0°B%p22 — pPp11 — 6°8°m/2,
tio = Bp12 + 0Bp22 — p°p12 — 68m/2 + p*58m/2,

ti3 = —0 tafpi — 2a8p12 — dafpxn + 55/2,

thy = pa2 — p°p22 — m/2+ p>m/2,

try = —0 tapio — apn +1/2 — p?/2,

t33 = 5_20421311 + 25‘1a2p12 + Oz2p22 + azL/2 — .

Our task is to find p € [0,1), p11, p12, and py that lead to T <0 and
P = 0 (which imply T <0and P> 0).

&9\ THE UNIVERSITY
&) o EDINBURGH
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Solution
The algebra becomes simpler if we represent 3 and p? as:
B=1—bs, p>=1-—rf.

Note that we are interested in r € (0,1/4] so as to get p? € [0,1). Going through
the algebra we find

S P11 P12 m (1 — r5)2 r(l — r5) 1
P = . < = <1
[Pm PzJ 2 [r(l —ré) r? esp e
as well as = = 0 where

= Z5(r,b) = (r +0)(1 = 6%)b> = 2(1 + r*)(1 — 6°)b + (r* — 3r6 + 3r — §).

@ Since § = v/ma and a < L™, this implies that

hence the Nesterov algorithm maintains the acceleration of the original
differential equation.
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Convergence of the algorithm

Theorem

With the choices of parameters as in the previous slide the matrix T is
negative semi-definite. As a result, for any x_1, xg, the sequence

o2 () = F(x) + 100 <] = xT1 Pl <] = xTT7)
decreases monotonically, which, in particular, implies
f(xk) — f(x) < Cp*
with

mHl—r(5 2

C=f(x)— f(x*) + 5 T(XO —x_1) + r(xo — x¥)
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Discrete time formulation

We will focus on algorithms with one function evalution

§n+1 = Ahgn + Bhun + UEQna
Yn = Cpén+ U%Qn;
up, = VF£(yn).

@ Similarly to the continuous case we want to study the convergence to
equilibrium

@ Note that in general the numerical equilibrium will be different than
the invariant measure of the continuous time SDE
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Convergence to (discrete) equilibrium

In order to estimate the quantity of interest we will consider

eD) = Al + BVA(CeM + oY) + o5,
@ = A + BaVF(Chel) + o) + o5,
and denote by Wy, ,7 the probability distribution for £, of the numerical

solution when 7 is the distribution of &

Contractivity implies convergence
Assume that P, > 0 and pj, € (0, 1) exist such that almost surely,

1
162, — D112, < pall

2 1
e —eME, n=o0,1,...
Then, for arbitrary distributions, 71 and 7,

Wp(kllh,,,m,\lfh,,,wz) S pz/2Wp(7T1,7T2), n:O,l,...
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Checking discrete contractivity

@ In a similar way as in the continuous case one can reduce the high
dimensional matrix inequality to a low dimensional generalized
eigenvalue problem

Discrete generalized eigenvalue problem

Given the symmetric, positive definite ﬁh, set

~

Zh(H) = (,Z\\h + Héha,)Tﬁh(/z\\h + Héhf,,).

Assume that, as H varies in [m, L], the supremum pj, of the eigenvalues R
of the generalized eigenvalue problems Z(H)x = RPx is < 1. Then the
contractivity bound with P, = P, ® Iy holds almost surely.
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A general error decomposition

@ We are interested in characterising the following error
Wp,(Vh,np1m, 7")

@ There are two different ways to decompose it
Q W, (Vhpi1m, m) < Wp, (W(Wh p7), Wpre™) + Wp, (W™, @47)

numerical contraction local error

Q Wp, (Whpi1m, m) < Wp, (@4(Wh o), ™) + Wp, (Wh(Wh o 7r), (W, o))
SDE contraction local error

@ We will follow the first decomposition, the first term is controlled by
the numerical contractivity of the numerical scheme, while the second
term relates to the local strong order of convergence of the numerical
scheme.

@ There is potentially a third way of obtaining an error decomposition,
by characterising directly the difference between the true and the
numerical invariant measure

[4] A. Durmus, S. Majewski, B. Miasojedow, J. Mach. Learn. Res., 20, 1-46. (2019)
[5] A. Durmus, A. Eberle, arXiv:2108.00682 , (2021)
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Strong local error expansion

Assumption

There is a decomposition

¢h(é;h tn) - ¢h(gna tn) = ah(gm tn) + /Bh(gna tn)a

and positive constants p, hg, Co, Ci, G such that for n > 0 and h < hg:

‘<¢h(gn7 tn) - ",bh(fna tl‘l)7 O‘h(gnv tn)>L2 Ph‘ < Goh ||2n - §n||L2,P,, ||Ol/-,(§n, tn)||L27Ph

and

lan(&ns ta)lliz.p, < CLAPYY2. ||Bh(Ens to)lli2.p, < CohPHL.
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Bringing everything together

A general theorem

Assume that there are constants hg > 0, r > 0 such that for h < hg the
contractivity estimate holds with py < (1 — rh)?. Then, for any initial
distribution 7, stepsize h < hg, and n=0,1, ...,

Wh, (1%, W) < (1 — hRy)"Wp, (%, ) + (‘/\/_ﬁl + gi) hP

with

Ry = %(1— V(= rh)2 4 Gol?) =r+o(1), as hi0,
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Non-asymptotic estimates

The theorem allows us to study arbitrary one step integrators in terms of
their non-asymptotic properties, namely how many steps n one should
make in order to ensure that Wp, (Vp, 7, ) < €

[6] A. S. Dalalyan, COLT2017

[7] A. S. Dalalyan and A. Karagulyan, Stoch. Proc. Appl, 129(12):5278-5311, (2019).
[8] A. Durmus and E. Moulines, Ann. Appl. Probab.27(3):1551-1587, (2017)
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Exponential Euler

Vari =  E(h)vy — F(h)cVi(xn) +v/27¢ /tn+1 E(tnp1 — s)dW(s),
xot1 = o+ F(h)Wa — G(h)CVF(x) + v/27C / " Ftre — )dW(s).
where
E(t) = exp(—t), / £(s) ds = eXp( )
and

o(t) = /Ot}'(s) gs = Yt expv(z—'yt) - 1.

@ Analysing this integrator using the tools developed the number of steps needed to
achieve the desired accuracy scales as

(m1/2e)_1n3/2d1/2.

@ This is an improvement of the previous available estimate O(e~*x2d*/?)

[9] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, COLT 2018.
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UBU algorithm

Vor1 = E(h)vy — hE(h/2)cVF(yn) + \/27¢ /t " E(tns1 — s)dW(s),

tht1
Xnt1 = Xn+ F(h)va — hF(h/2)cVf(ya) + \/27¢ F(tpe1 — s)dW(s),

tn

thi1/2
5o+ F(h/2)vs + \/27¢ / Fltnsa) — s)dW(s).
tn

Yn

@ This is a second order strong integrator

@ Under further smoothness assumptions on the third derivative, the number
of steps n to achieve the desired accuracy scales as

1/2 \—1/2,5/4 —3/2) \1/2 41/4
(m72e) ™R (1 + L7572 L)/ 2d ™2,

[10] A. Alamo and J. M. Sanz-Serna, SIAM J. Numer. Anal., 54(6):3239-3257, (2016)
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Overview

e Revisiting connection between ODEs and optimization
@ Structural conditions and additive Runge-Kutta methods
@ Alternative Lyapunov functions and improved convergence rates
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Connection with the ODE

Convergence between discrete and continuous Lyapunov function

Fix the parameter b > 0 and the initial conditions x(0), x(0) for the
momentum equations. For small h > 0, consider the Nesterov method

with parameters o = h? and 8 = f, = 1 — by/mh + o(h). Assume that
the initial points x_1, xo are such that, as h ] 0, xp — x(0) and
(1/h)(xo — x=1) = x(0). Then, in the limit kh — t,
Q xx — x(t) and (1/h)(xkr1 — xx) — x(2).
@ The discrete Lyapunov function converges to the continuous
Lyapunov function

&9\ THE UNIVERSITY
@) of EDINBURGH
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Optimization algorithms as integrators

Sz = gl e+ = [Py

Nesterov method can be expressed as

k1 = Zk,

Zky = zk+ hg[”(Zk,l),

Zis = zk+hg™(Zq) + hgP(Zk ),

Zia = zk+hg™(Ze 1) + hgB®(Zi o) + hgt?(Zk 3),
21 = zc+ hgM(Ziy) + hgP(Zis) + bl (Zia).

&9\ THE UNIVERSITY
&) o EDINBURGH
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Is consistency enough?

@ From an intuitive point of view the previous theorem is obvious, i.e
you start with and ODE you discretise it and the numerical algorithm
inherits its properties for some finite h

@ The key however is how large this h can be, while maintaining the
negative definiteness of the matrix T.

© From consistency in order to achieve acceleration one needs to be able
to preserve the negative definiteness of T for time steps h < cL~1/2

© What is special about Nesterov?

&9\ THE UNIVERSITY
@) of EDINBURGH
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Structural conditions of integrators

X1 = Xk + B(xk — xk—1) — aVf(yk),
Vi = Xk + y(Xkx — Xk—1),

e Key quantity ¢ := t11/(md), when vy =0, c = --- + §(k — 1)3?/2.
e For acceleration, ¢ has to be O(1/1/k) which makes it impossible for
c to be <0.

@ Presence of k in t1; relates to the appearance of L in the matrix N
@ This can be indeed eliminated if EA— C =0
@ In words: the point y, = C&, where the gradient is evaluated has to

coincide with the point xx11 = EA&, that the algorithm would yield if
ux = V£ (yk) happened to vanish

[3] L. Lessard, B. Recht, A. Packard, SIAM J. Optim., 26(1), 57-95. (2016)
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Revisiting the Lyapunov function

V(E t) = eM (F(y() — Fy*) + (&(t) — €)T P(&(t) — &)

@ We can try to relax the condition P > 0

@ Through strong convexity we know that
* m * (12
Fy(8) = ") = Sy () = y*II%
@ Hence

Vig.t) = & [(€(t) =€) (FCTC+P) ((t) )]

o If we can still establish that V/(&, t) is non-increasing we are good as
long CTC+P >0

&9\ THE UNIVERSITY
&) o EDINBURGH
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Continuous case revisited

Improved (continuous) convergence to minimizer
Siuppo§e that there exist A > 0, o > 0 and a symmetric matrix P with
P:= P+ (m/2)C7 C = 0, that satisfy

T=mMO + MO L AM® oM <0

Then the following inequality holds for f € F, 1, t >0

maxa(CT C)

—2eMV(£(0),0).
min o(P) (6(0),0)

ly () = yul® < maxo(CTC) |I&(2) — €1l <

v

&9\ THE UNIVERSITY
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Discrete case revisited

Improved (discrete) convergence to minimizer
Suppose that there exist ag > 0, p € (0,1), £> 0, and a symmetric matrix
P, with P := P 4 (agm/2)ET E ~ 0, such that

T = MO 4 a,p?M® + a9(1 — pP)M®P 4 eMB) < 0,

Then, for f € Fp, 1, the sequence {x} satisfies

maxc(ETE)

Ixic = x.* < maxo(ETE) €k — €¥llp < — =
min o(P)

V(§05 0):02k'

&9\ THE UNIVERSITY
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What do we gain?

—— quadratic
— This analysis|
15 1.5 —FPr0
= 1 lj'. = 1
0.5 0.5
0 0
0 1 3 4 0 1 2 3 4

<N
<

@ We can show that in continuous time for b = 31/2/2 we can improve the
convergence rate to A = v/2/m

@ In the discrete setting for appropriate choice of the coefficients we can prove a
convergence rate p? =1 — % +0(k™), Kk — oco.

@ The convergence rate of Nesterov with the standard parameter choices
a=1L"1 8= (Vk—-1)/(vVk+ 1) is better that what previously proven.
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Overview

@ Conclusions
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Conclusions

@ (Stochastic) differential equations are excellent starting point in terms
of designing (sampling) optimization algorithms.

@ However for optimization algorithms stability is crucial in terms of
being able to utilize the favourable convergence rates of the
continuous system.

@ In terms of designing sampling methods one needs to be paying
attention to

@ the contractivity properties of the numerical scheme.
@ the strong order of convergence of the numerical scheme.
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