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Where is Padova (Padua)?

https://www.google.de/maps
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General goal and outline of this presentation

Study of computational methods for harmonic analysis on graphs.

In the first part we will mainly treat uncertainty principles.

1 Introduction
▶ An introduction to graph signal processing (GSP)

▶ The graph Laplacian and the Graph Fourier Transform (GFT).

▶ Graph Convolution

2 Uncertainty principles on graphs
▶ Space and Frequency localization on graphs

▶ Some particular uncertainty principles on graphs

▶ How to calculate the shapes of uncertainty

▶ Some applications in space-frequency analysis of signals

Wolfgang Erb Uncertainty on Graphs 3 / 48



Why are graphs interesting?

Graphs offer the possibility to model complex irregular structures and
relations inside these structures.

Examples:

Social networks: nodes = persons, edges = relations

Transport networks: nodes = cities, edges = streets

Meshes: nodes = mesh nodes, edges = edges of triangulation
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Graphs
We consider simple and undirected graphs G given as a triplet

G = (V ,E ,A),

with vertices
V = {v1, . . . , vn}

undirected edges E ⊂ V × V and a symmetric adjacency matrix A ∈ Rn×n

with non-negative entries{
Ai ,j > 0 if (vi , vj) ∈ E ,

Ai ,j = 0 otherwise.

Standard A: only entries 1 (if there is an edge) and 0.
The degree matrix D ∈ Rn×n is the diagonal matrix with entries{

Di ,i =
∑n

j=1Ai ,j

Di ,j = 0 if i ̸= j .
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Labeled graph Degree matrix D

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2



Adjacency matrix A

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




2 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 1





0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


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Graph signals

Graph signals are mappings x : V → R (or x : V → C)
A signal x is defined on the vertices v ∈ V of the graph

We can represent x as a vector

x = (x(v1), . . . , x(vn))
∗ ∈ Rn (∈ Cn).

The linear space of all signals is denoted by L(G ).

Fig.: Illustration of a graph signal x .

Wolfgang Erb Uncertainty on Graphs 7 / 48



Graph signals

Example: brain connectivity networks:

vertices: neural elements of the brain

edges: pairwise relationships between elements

graph signal: brain functional activity on vertices

Fig.: Illustration of signals on a brain connectivity graph, Manjunatha et al. 2023
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Graph signal processing (GSP)
In applications, graphs and graph signals might by huge. Necessity of
efficient signal processing tools on graphs.

1

2

3

4

5

6

7

8

Interpolation

Sampling
1

2

3

4

5

6

7

8

Goal of GSP: study of graph signals and possible processing tools

Decomposition of signals (Fourier, wavelets, frames, etc.)

Denoising of signals (convolution filters)

Sampling and interpolation of signals

Uncertainty principles︸ ︷︷ ︸
Main focus of this talk
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Graph Laplacian

Main ingredient for GSP is the graph Laplacian.

The graph Laplacian L ∈ Rn×n is defined as the matrix

L = D− A, Li ,j :=

{
Di ,i if i = j

−Ai ,j if i ̸= j
.

The matrix L is symmetric and positive semi-definite.
dim(kerL) is the number of connected components of G .

The normalized graph Laplacian LN ∈ Rn×n is defined as

LN = D− 1
2LD− 1

2 = In −D− 1
2AD− 1

2 .

The normalization ensures that the spectrum of LN is in [0, 2].
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Labeled graph G
Graph Laplacian L

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2




2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 −1 0 −1 3 0
0 0 0 −1 0 1


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Interpretation of the graph Laplacian
The graph Laplacian operates on a signal x ∈ L(G ) as

Lx(vi ) =
∑

(vi ,vj )∈E

Ai ,j(x(vi )− x(vj))

In many cases, L is a discretization of a continuous Laplacian

Example 1: the path graph Pn

Path graph Pn with n nodes and weights Ai,j = h−1.

Laplacian for Pn (interior nodes)

Lx(vi ) =
2x(vi )− x(vi+1)− x(vi−1)

h

is a second order difference quotient that approximates −d2x
dt2

(t).
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Properties of the graph Laplacian

L is symmetric (on undirected graphs).

L is diagonally dominant, i.e. Li ,i ≥
∑

j ̸=i |Li ,j | for all i .
We have

x∗Lx =
∑

(i ,j)∈E

Ai ,j (xi − xj)
2

and therefore x∗Lx ≥ 0 for all x . Thus, L is positive semi-definite.

When x ∈ Rn represents a graph signal, x∗Lx represents the energy of
a discrete derivative (defined by the edges of the graph) and measures
the smoothness of x .

As e∗Le = 0, the constant signals are maximally smooth.

Since Le = 0, the graph Laplacian has at least one zero eigenvalue. If
G is connected, L is of rank n − 1 (the kernel of L has dimension 1).
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The Laplacian and the Fourier transform on graphs

Graph Fourier transform

Idea: use the orthonormal eigenvectors

Luk = λkuk , k ∈ {1, . . . , n},

of the graph Laplacian L as Fourier basis and set

x̂k = ⟨x , uk⟩ =
n∑

i=1

x(vi )uk(vi ).

Note: L is symmetric, positive semi-definite. Thus, we can order the real
eigenvalues as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

The system {u1, u2, . . . , un} is an orthonormal basis of L(G ).
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Example 1: the path graph Pn

The eigenvalues and eigenfunctions can be written explicitly as

λk = 2− 2 cos
(
(k−1)π

n

)
and

u1 =
1√
n
, uk(vi ) =

√
2
n cos

(
(k−1)π(i−0.5)

n

)
, k ≥ 2.

The graph Fourier transform corresponds in this case to the Discrete
Cosine Transform (DCT II).
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Example 2: the bunny graph

The first 8 eigenfunctions of the graph Laplacian L on the bunny graph.
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Example 3: circle graphs
We consider the circle graph Cn = {1, . . . , n} with the set of edges given as

E = {(i , j) ∈ Cn × Cn : |i − j | = 1 mod n}.

In fact Cn can also be considered as a group (the cyclic group Z/nZ with
generating element 1. )
As adjacency matrix we have

Ai ,j =

{
1 if (i , j) ∈ E ,

0 otherwise.

Cyclic group C6

Graph Laplacian L of C6

2 −1 0 0 0 −1
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2


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Example 3: circle graphs

The graph Laplacian L of Cn is a circulant matrix and the normalized
characters

uk(i) =
1√
n
exp

(
ı2πik

n

)
, k ∈ {1, . . . , n},

form a complete orthonormal eigenbasis of L with respect to the
eigenvalues

λk = 2− 2 cos

(
2πk

n

)
.

The graph Fourier transform corresponds in this case to the discrete
Fourier transform. Note that

λk = λn−k ,

i.e., for cyclic groups the eigenspaces of L are degenerate. In particular,
also for general graphs G we can not expect to have unique basis elements
uk for the Fourier transform.
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Interpretation of the graph Fourier transform
The GFT can be interpreted similarly as a classical Fourier transform.

the eigenvalues of the Laplacians L, LN , can be interpreted as
frequencies, i.e., the larger the eigenvalue the higher the frequency of
the respective eigenvector.

The eigenvectors associated with large eigenvalues oscillate rapidly
while the eigenvectors associated with small eigenvalues vary slowly.

The eigenvector associated to the eigenvalue 0 is constant (for L).

The Fourier transform x̂ = (x̂1, . . . , x̂n)
∗ can be interpreted as the

decomposition of a graph signal x into its single frequency components

x(vi ) =
n∑

k=1

x̂kuk(vi ).

The lower frequencies compose smooth part of the signal.

The higher frequencies build the noisy part of the signal.
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Matrix formulation of the GFT

As the grah Laplacian L is symmetric and positive semi-definite, we can
write its eigendecomposition as

L = UMΛU
∗,

where MΛ = diag(λ1, . . . , λn) contains the eigenvalues of L (increasingly
ordered) and the unitary matrix U = (u1 u2 · · · un) the corresponding
eigenvectors.

Then, we can write the Graph Fourier transform of x as

x̂ = U∗x , with k-th. entry x̂k = u∗kx = ⟨x , uk⟩.

The inverse Fourier transform is correspondingly given as

x = Ux̂ .
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Convolution on graphs

Convolution in R

(x ∗ y)(s) =
∫
R
x(t)y(s − t)dt.

In the Fourier domain:

(̂x ∗ y)(ω) = x̂(ω)ŷ(ω)

Graph convolution

No translation available
Idea: define convolution
via graph Fourier transform

(̂x ∗ y)k = x̂k ŷk

We define the graph convolution as

y ∗ x := UMŷ x̂ = UMŷU
∗x , where Mŷ = diag(ŷ1, . . . ŷn).

Further, we define the convolution matrix Cx ∈ Rn×n as

Cy = UMŷU
∗.

Note: the graph convolution depends on the choice of the basis uk .
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Application: denoising of graph signals

Question: how can we remove the noisy part of a signal?

Figure 1: The original signal x and a noisy signal xnoise on the bunny graph.
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Application: denoising of graph signals

To identify the noisy part of the signal xnoise, let’s have a look at the
Graph Fourier transform of x and xnoise.

Figure 2: The size of the first 100 Fourier coefficients of the original signal x and
the noisy signal xnoise on the bunny graph. We see that starting from k ≈ 15, the
frequency components (x̂noise)k are much larger than for x̂k .
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Application: denoising of graph signals
Idea for the filter function y : generate y such that all frequencies (x̂noise)k ,
k ≥ 21, of xnoise are removed, i.e., calculate

xdenoised = y ∗ xnoise,

where y is a low-pass filter that cuts off all frequencies larger than k = 20.

Figure 3: The Fourier coefficients of the low-pass filter y .
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Application: denoising of graph signals

Result: denoised signal xdenoised calculated in terms of the Fourier
coefficients

(x̂denoised)k =

{
x̂k for k ≤ 20,
0 for k > 20.

Figure 4: The original signal x , the noisy signal xnoise and the denoised xdenoised.
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Uncertainty principles in harmonic analysis

Uncertainty principles describe the following phenomenon encountered in
different settings of harmonic analysis:

”A function and its Fourier transform can not both be well-localized”

One famous examples is Heisenberg’s uncertainty principle:

Theorem 1 (Heisenberg-Pauli-Weyl)

For any f ∈ L2(R) and any a, b ∈ R, we have∫
R
(t − a)2|f (t)|2dt

∫
R
(ω − b)2|f̂ (ω)|2dω ≥ ∥f ∥42

(4π)2

Equality holds if and only if f (x) = Ce2ıbte−γ(t−a)2 , with C ∈ C, γ > O.
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Normalizing f such that ∥f ∥2 = 1, we can visualize this uncertainty as:

y =

(∫
R
(ω − b)2|f̂ (ω)|2dω

)1/2

x =

(∫
R
(t − a)2|f (t)|2dt

)1/2

xy ≥ 1
4π

xy < 1
4π
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Landau-Pollak-Slepian uncertainty principle
Assume that ∥f ∥2 = 1 and that the time and frequency localization of f in
the intervals [−a, a] and [−b, b] is described through the values

α2 =

∫ a

−a
|f (t)|2dt, β2 =

∫ b

−b
|f̂ (ω)|2dω.

Then the pairs (α, β) can attain only the following values in [0, 1]2:

β

α
1

1 cos−1 α+ cos−1 β ≥ cos−1 √σ1

σ1: largest possible α for β = 1

σ1

σ1
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Vertex-frequency localization on graphs

For a vertex-frequency analysis of a signal x on G we use spatial and
spectral filter functions f , g ∈ Rn with the properties

0 ≤ f ≤ 1, 0 ≤ ĝ ≤ 1, and ∥f ∥∞ = ∥ĝ∥∞ = 1. (1)

Based on the filters f and g we introduce the localization operators

Mf x := f x (pointwise product),

Cgx := g ∗ x = UMĝU
∗x (graph convolution).

We call Mf with the filter f space localization operator;

We call Cg with the filter g frequency localization operator;

Mf and Cg are symmetric and positive semidefinite;

Mf and Cg have spectral norm equal to 1.
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Vertex-frequency localization on graphs

For Mf and Cg we define the expectation values

m̄f (x) :=
⟨Mf x , x⟩
∥x∥2

, c̄g (x) :=
⟨Cgx , x⟩
∥x∥2

.

x is called space-localized with respect to f if m̄f (x) is close to one.

x is called frequency-localized with respect to g if c̄g (x) approaches 1.

We define the set of admissible values related to Mf and Cg as

W(Mf ,Cg ) :=
{
(m̄f (x), c̄g (x)) : ∥x∥ = 1

}
⊂ [0, 1]2. (2)

We call W(Mf ,Cg ) the numerical range of the pair (Mf ,Cg ). All studied
uncertainty principles are linked to the boundaries of W(Mf ,Cg ).
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Space-frequency operators

To investigate the joint localization with respect to both filters f and g
and to describe the set W(Mf ,Cg ), we consider the two operators

R
(θ)
f ,g := cos(θ)Mf + sin(θ)Cg and Sf ,g := C

1/2
g MfC

1/2
g ,

where C
1/2
g denotes the square root of the positive semidefinite Cg .

R
(θ)
f ,g as combination of Mf and Cg is symmetric for any 0 ≤ θ < 2π.

Sf ,g ∈ Rn×n is a positive semi-definite with norm bounded by 1.
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Space-frequency operators

Related to the operators R
(θ)
f ,g , Sf ,g , we consider the expectation values:

r̄
(θ)
f ,g (x) :=

⟨R(θ)
f ,gx , x⟩
∥x∥2

= cos(θ)m̄f (x) + sin(θ)c̄g (x),

s̄f ,g (x) :=
⟨Sf ,gx , x⟩

∥x∥2
.

To formulate uncertainty principles, the largest eigenvalues ρ
(θ)
1 and σ1

and eigenvectors ϕ
(θ)
1 and ψ1 are of major importance.

For σ1, we have

σ1 = ∥Sf ,g∥ = ∥M1/2
f C

1/2
g ∥2 = ∥C1/2

g M
1/2
f ∥2 = ∥M1/2

f CgM
1/2
f ∥.
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Example 1, projection-projection filters
Let χA denote the indicator function of a set A, i.e.

χA(v) :=

{
1 if v ∈ A,
0 if v /∈ A.

For a subset A of the node set V and a subset B of the frequencies, we
define the filter functions f and g as

f = χA ĝ = χB. (3)

Mf and Cg are in this case orthogonal projectors satisfying

M2
f = Mf and C2

g = Cg .

Sf ,g is in this case equivalently given as Sf ,g = CgMfCg .

References:

Studied by Landau, Pollak and Slepian in the 60’s for signals on R.
General theory for projection operators in Hilbert spaces (Havin & Jöricke).

Studied for graphs by Tsitsivero, Barbarossa, Di Lorenzo.
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Example 2, distance-projection filters
Consider the geodesic distance d(v,w) on the graph. We set

dw(v) := d(v,w), d∞w := max
v∈V

d(v,w).

Then, as spatial filter f and frequency filter g , we define

f (v) = 1− dw(v)

d∞w
, and ĝ = χB, (4)

i.e., the spatial filter f incorporates the distance dw to a reference node w .
For this distance filter f we have

Mf x = x − 1
d∞w

Mdwx , m̄f (x) = 1− x∗Mdwx
d∞w ∥x∥2 .

References:

Similar distance-projection filters have been used also in a continuous setting
on the real line and on the sphere (Erb, Mathias).
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Example 3, Distance-Laplace filter

Another spectral filter ĝ = (ĝ1 · · · ĝn) on Ĝ can be defined as

ĝj = 1− λj/2, (5)

where λj denotes the j-th. smallest eigenvalue of the graph Laplacian L.
In this case, we get

Cgx = U(In − 1
2Mλ)U

∗x = (In − 1
2L)x .

Using a (modified) distance filter as a spatial filter, we get

m̄f (x) = 1−
x∗M

d2w
x

(d∞w )2∥x∥2 , c̄g (x) = 1− x∗Lx
2∥x∥2 .

References:

Agaskar, Lu used such filters to obtain uncertainties on graphs based on
spatial and spectral spreads.

Wolfgang Erb Uncertainty on Graphs 35 / 48



Examples of spatial filters

From left to right the following spatial filters:

f1(v) = χA(v) (Example 1), f2(v) = 1− dw(v)

d∞w
(Example 2),

f3(v) = 1−
(
dw(v)

d∞w

) 1
2

, f4(v) = 1−
(
dw(v)

d∞w

)2

(Example 3).
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Uncertainty principle related to the operator Sf ,g

Theorem 2

The range W(Mf ,Cg ) is contained in the domain W(f ,g)
γ given by

W(f ,g)
γ =

(t, s)∈ [0, 1]2

∣∣∣∣∣∣∣∣∣
s ≤ γf ,g (t) if ts ≥ σ

(f ,g)
1 ,

1− s ≤ γf ,g∗(t) if t(1− s) ≥ σ
(f ,g∗)
1 ,

s ≤ γf ∗,g (1− t) if (1− t)s ≥ σ
(f ∗,g)
1 ,

1− s ≤ γf ∗,g∗(1− t) if (1− t)(1− s) ≥ σ
(f ∗,g∗)
1


where σ

(f ,g)
1 is the largest eigenvalue of Sf ,g ,

γf ,g : [σ
(f ,g)
1 , 1] → R : γf ,g (t) :=

(
(t σ

(f ,g)
1 )

1
2 + ((1− t)(1− σ

(f ,g)
1 ))

1
2
)2
.

and f ∗ = 1− f , g∗ = 1− g.
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Uncertainty principle related to the operator Sf ,g

Graphical version of Theorem 2.

c̄g (x)

m̄f (x)
1

1

W(Mf ,Cg )

W(f ,g)
γ

σ
(f ,g)
1

1− σ
(f ∗,g∗)
1

1− σ
(f ∗,g∗)
1

σ
(f ∗,g)
1

σ
(f ,g∗)
1

1− σ
(f ∗,g)
1

σ
(f ,g)
1

1− σ
(f ,g∗)
1

Note: If Mf and Cg are projectors, we have W(Mf ,Cg ) = W(f ,g)
γ .
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Uncertainty principle related to the operator R
(θ)
f ,g

Theorem 3

For every 0 ≤ θ < 2π, we have the inclusion

W(Mf ,Cg ) ⊆ [0, 1]2 ∩H(θ),

with the half-plane

H(θ) := {(t, s) | cos(θ) t + sin(θ) s ≤ ρ
(θ)
1 }

having a supporting line L(θ) that intersects the boundary of W(Mf ,Cg ).
On the other hand, for every point p on the boundary of W(Mf ,Cg ) we
have an angle 0 ≤ θ < 2π such that p ∈ L(θ). For this angle, we get an

eigenvector ϕ
(θ)
1 (not necessarily unique) corresponding to the largest

eigenvalue ρ
(θ)
1 of R

(θ)
f ,g such that

p = (ϕ
(θ)∗
1 Mf ϕ

(θ)
1 , ϕ

(θ)∗
1 Cgϕ

(θ)
1 ).
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Uncertainty principle related to the operator R
(θ)
f ,g

Graphical version of Theorem 3.

c̄g (x)

m̄f (x)
1

1 (
m̄f (ϕ

(θ)
1 ), c̄g (ϕ

(θ)
1 )

)

W(Mf ,Cg )

H(θ)∩[0,1]2

L(θ)

Note: for n ≥ 3, the numerical range W(Mf ,Cg ) is convex.
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Numerical calculation of W(Mf ,Cg)

Using a set Θ = {θ1, . . . θK} ⊂ [0, 2π) of K ≥ 3 different angles, we
approximate the numerical range W(Mf ,Cg ) with the two K -gons

P(Θ)
out (Mf ,Cg ) :=

K⋂
k=1

H(θ) =
K⋂

k=1

{
(t, s) | cos(θk) t + sin(θk) s ≤ ρ

(θk )
1

}
,

P(Θ)
in (Mf ,Cg ) := conv{p(θ1), p(θ2), . . . p(θK )}.

The convexity of the numerical range W(Mf ,Cg ) (for n ≥ 3) combined
with the statements of Theorem 3 imply the following result.

Theorem 4

Let Θ = {θ1, . . . θK} ⊂ [0, 2π) be a set of K ≥ 3 different angles and
n ≥ 3. Then,

P(Θ)
in (Mf ,Cg ) ⊆ W(Mf ,Cg ) ⊆ P(Θ)

out (Mf ,Cg ).
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Algorithm 1: Calculation of polygonal approximation to W(Mf ,Cg )

Input: Mf , Cg , angles
0 ≤θ1<θ2< · · ·<θK < 2π,
with K ≥ 3. Set θ0 = θK .

for k ∈ {1, 2, . . . ,K} do
Create
R
(θk )
f ,g = cos(θk)Mf +sin(θk)Cg ;

Calculate norm. eigenvector

ϕ
(θk )
1 for max. eigenvalue ρ

(θk )
1 ;

Create boundary point p(θk ) =(
ϕ
(θk )∗
1 Mf ϕ

(θk )
1 , ϕ

(θk )∗
1 Cgϕ

(θk )
1

)
.

Generate interior polygon

P(Θ)
in (Mf,Cg) =

conv{p(θ1),. . . ,p(θK )} to
approximate W(Mf ,Cg ).

for k ∈ {1, 2, . . . ,K} do
Create the outer vertex q(θk ).

Generate P(Θ)
out (Mf ,Cg ) =

conv{q(θ1), . . . q(θK )} as a polygon
exterior to W(Mf ,Cg ).

Fig.: Interior and exterior
approximation of the numerical
range W(Mf ,Cg ) based on
Algorithm 1 with K = 7 vertices.
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Shapes of uncertainty - illustrations

The numerical range W(Mf ,Cg ) for four filter pairs on the sensor
network. The first, second and fourth plot correspond to the filters
described in Example 1, 2 and 3.

The dots represent the position (m̄f (ψk), c̄g (ψk)) of the eigenvectors of
the operator Sf ,g . The color (from black to white) of the dots indicates
the corresponding eigenvalue σk (in the range from 1 to 0).
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Shapes of uncertainty - illustrations

The numerical range W(Mf ,Cg ) for four filter pairs on the bunny
network. The first, second and fourth plot correspond to the filters
described in Example 1, 2 and 3.

The dots represent the position (m̄f (ψk), c̄g (ψk)) of the eigenvectors of

the operator R
(θ)
f ,g with θ = 9π/20. The color (from black to white) of the

dots indicates the corresponding eigenvalue ρ
(θ)
k (in the range from 1 to 0).
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Space-frequency localization of eigenvectors of Sf ,g , R
(θ)
f ,g .

Top row: the eigenvector ψ1 of the operator Sf ,g for the sensor graph and
four different filter pairs.

Bottom row: the eigenvector ϕ
(θ)
1 of the operator R

(θ)
f ,g with θ = 9

20π for
the bunny graph and four filter pairs.
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Space-frequency localization of eigenvectors of Sf ,g .

The eigenvectors ψ1 ψ10, ψ50 and ψ200 of Sf ,g on the bunny graph for the
distance-projection filter (Example 2).
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Conclusion

Uncertainty relations are useful tool for the development of basis
systems/dictionaries on graphs with prescribed space-frequency properties.

Sf ,g and R
(θ)
f ,g provide explicit uncertainty principles for graphs;

The operator R
(θ)
f ,g can be used to calculate the shapes of the

uncertainties (aka the numerical range W(Mf ,Cg ));

The eigendecompositions of the operators Sf ,g and R
(θ)
f ,g help to

construct orthogonal basis systems with a space-frequency behavior
determined by the operators Mf and Cg ;

The shapes of the uncertainties provide useful information on the
joint range of the localization operators Mf and Cg and on how
complementary the two filters f and g are.

Wolfgang Erb Uncertainty on Graphs 47 / 48



Thanks a lot for your attention!

General introduction to Graph Signal Processing:

[1] Ortega, A. Introduction to Graph Signal Processing, Cambridge University Press (2022)

Article related to this talk:

[2] Erb, W. Shapes of Uncertainty in Spectral Graph Theory, IEEE Trans. Inform. Theory
67:2 (2021), 1291-1307

Software to create the uncertainty shapes

https://github.com/WolfgangErb/GUPPY
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