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Outline

» (Elliptic) PDEs with many parameters and the connection to PDEs
with random coefficients

» An overview of methods applied to a simple model problem

» Notions of approximability: Kolmogorov widths and summability of
coefficients

» Series expansions of random fields as inputs

» Adaptive methods and the interactions with spatial discretization
refinements



Parameter-dependent PDEs: Find v = u(a) € V such that P(a;u) =0, a € A
Elliptic model problem: w € V = H§ (D), D C R?, such that

-V -(aVu)=finD, u=0ondD

» Model order reduction:

efficient approximation
of a — u(a)

» Uncertainty quantification:
probability measure on A modelling uncertainty in a,

extract information on distribution of u(a)




Coefficient parametrizations: for y € Y, find u(y) € V = Hj(D) such that

/ a(y)Vu(y) - Vodz = / fvde Yv eV
D D
> Piecewise constant model case: with partition {D;} of D, for y € Y = [-1,1]7,

P
a(y) =1 +02inDw 6 € (0,1)
i=1
> Affine parametrization with y € Y = [—1, 1]V,

aly) =a+y ¢, @ € L7(D)
j=1

such that (uniform ellipticity): 0 <r < a(y) < R<ooin D forally €Y.

» Lognormal coefficients: with Y = RY,

a(y) =exp(D_wiws)s v ~ N (0 1), v € (D)

JEN

Aim: efficient approximations of Y 3 4 u(y) € V = Hg(D) or y — Q(u(y))

A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Numerica, 2015.



An overview of methods

» Model reduction:
reduced bases (RB), proper orthogonal decomposition (POD), ...

v

Polynomial approximations:

stochastic Galerkin, stochastic collocation, discrete least squares, ...

v

Sparse grids based on piecewise polynomials

v

(Quasi-)Monte Carlo methods

v

Kernel-based methods

v

Low-rank tensor approximations

» Operator learning using neural networks

Suitability of methods can depend strongly on the type of PDE! For example, for transport
problems such as
b-Vu=f + inflow boundary conditions

with parameter-dependent transport direction b, many of the above methods may become
inefficient.




A simple example: one parameter
» w eV := Hy(D) with |[v|lv = ||Vv]|p2(p) such that

/aVu-Vvda::/fvdx YveV
D D

» Take A = {a(-,y) € L=(D): y € [-1,1]} where

a(-,y) =14 0yXp, with subdomain D1 C D, 0 € (0,1).

» To be solved:

B(u(-,y),v) +9yBl(u(-,y),U) = (f,v) YweV,ye[-1,1]

with B(w,v) :/ Vuw - Voudz, Bl(w,v) = Vw-Vudz, (f,v / fuda.
D Dy
» Uniform ellipticity: 0 < r < a(-,y) < R for all y € [-1,1] with r :=1 — 9,
R:=1+86

> How to efficiently approximate y — u(y) € V' 7
> Also: efficient evaluation of Q(u(y)) for some Q € V'




Grid-based approximation

For grid points —1 =yo <y1 < ... <yn =1,
» Compute u(y;), i =0,...,N,

» Approximations for y € [y;, yi+1]: with Q € V’,

Limitation: small error requires large N

Example: D = (0
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Derivatives
Observation: Ou(-,y) € V exists for all k € N, y € [—1, 1]

Computing derivatives:

> u(y) = u(-,y) solves
B(u(y),v) + 0yBi(u(y),v) = (f,v) YveYV,
that is:/DVu(y) Vv dx+0y/DxD1vu(y) Vvdx = /vada: Yo € Hy(D).
» Formal application of 9, (assuming differentiability) gives
B((?yu(y),v) + 0yB; (3yu(y),v) = —0B1(u(y),v) Yv eV
» Differentiating once more:

B(02u(y),v) + 0yB1(du(y),v) = —20B1(0yu(y),v) Yo eV

» By induction: for k € N,

B(azu(y),v) + 0yB, (Bfu(y),v) = —k0B (8571u(y),v) Vv eV



Taylor approximation
Note ||v||? = B(v,v). Thus

0Fu(0)||v = sup B(d%u(0),v) = sup kOB (95 'u(0),v)
Y Y Y

v|ly=1 lvllv=1

< KOV, w020 V0l L2y < KO0y u(0)lv
Applying this recursively and using the Lax-Milgram lemma,

10y u(O)llv < k16" [[u(0)lv < K16 £]lv-

Taylor expansion:

Z%@u

k=0
where
) -3 Lotuo) < et Tl e
uly) — Tl > >
P kY v (K +1)!
and consequently
K Kk
sup [lu(y) — Z %8511(0) ot
y€e[—1,1] k=0 1%




Interpolation
Again: N + 1 distinct yo,...,y~n € [-1,1],
» Compute u(y;), i =0,..., N,
» Interpolate by polynomial of degree N:

N
U UN, UN = Z( y_iy]>u(yz)

im0 Nji ST Y
(also known as stochastic collocation)

Lebesgue's lemma:

N
sup uly) —un(@llv < (14 AxGosoopw) | min - sup [lu()=3 e
i=0

ve[-1.1] 0N EV yel[-1,1 v
with Lebesgue constant An(yo,...,yn) = sup Y=Y
vel-1.1) 550 Yi — Y
Equidistant points An =~ 2N
GauB points Ay =~ VN

Chebyshev, Clenshaw-Curtis points  Ax ~ log(N + 1)

|. Babugka, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential

equations with random input data, SIAM Rev, 2010.




Reduced basis method

Offline phase: choose y1,...,yn € [—1,1], set
Vy =span{u(y;):i=1,...,N}

Online phase: for each given vy, find un(y) € Vn by solving

B(un(y),v~n) +0yBi(un(y),vn) = (f,on) VYon € VN

Precompute N x N-matrices and N-vectors, then solve (dense) N x N system for
each given y.

» Greedy basis refinement strategy:

yn+1 = argmax [|(f,-) = Blun(y),) — OyBi(un(y), )|,

y€[—1,1]

(Difficulty: maximization over higher-dimensional parameter domains!)

» Quasi-optimality for each y, by Ced's lemma: for all y € [—1,1],

lun () —u(@)llv <4/ %tz min{||wx — u(y)|lv: wy € Va}.



Random coefficients

Probability measure 1 on [—1,1] (e.g. uniform measure du = 3dy)

Expectations:
Bu= [ ww)du).  EQ) = [ Qutw) duto)

Monte Carlo Approximation: with y1,...,yn ~ p i.id.,

1< - 1 &
UN = N ;u(?ﬁ): Qn = N ;Q(u(yz))

Standard convergence bound:

_ Eullu— Eull},

E @y — Bull} = ~

®§V:1u|

» Improved complexity by Multilevel MC and/or QMC methods
> Approximations of u in V = L*([~1,1],V;u)? Given ¢ > 0, find @ such that

|m—mv=</]mw—mwmdmeNSa




Orthonormal polynomials

Py = {p polynomial: degp < N}

» Sequence of orthonormal polynomials for pu: Po =1 and for n € N,
P, € P, such that ||Pn||L2([—1,1];;L) =1, P, 1LP,_1

» For uniform measure with du =
three-term recurrence: Lo =1,

VBr1Lrsa1(y) = yLi(y

Rodrigues formula:

2
L_

L dy, orthonormal Legendre polynomials given by
1 =0,

—VBrLi-1(y), Br:=@—-k>)""

V2k + 1 W - 1)k>

Li(y) = 85( Ll 2k

» For any u € L*([-1,1],V;p),

=> urLi(y)
k=0



Discrete least squares

>

| g

>

>

Polynomial approximations from V @ Py ?

One option: variational construction from samples
Take y1,...,Yym ~ p ii.d. with sampling measure p,
1 m
_ . 2
@ =argmin — » w(y:)|lu(y:) —v(y:)lv
vePy T ;
Wlthqu:,c oUrLy and @1 = N
1 m
Z w(yi) L (yi) Le(yi) , €= ™ ZW (yi)u(yi) L (i)
i=1 i=1 k=0

solve Gl = ¢ in VVH!

With the right choice® of p and w, we need m > Nlog N (can be further
improved, e.g. Nagel, Schafer, Ullrich '20; Dolbeault, Cohen '22, ...) for
quasi-optimal convergence in V in expectation

Also need a spatial discretization: finite-dimensional subspace V C V

Side note: closely related to “operator learning”

1A. Cohen and G. Migliorati, Optimal weighted least-squares methods, SMAI-JCM, 2017.
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Stochastic Galerkin methods

>

Define, for all v,w €V,
1 1

Blow) = [ Buly) o) + 0551 (o) w)) dulw). (F.o) = [ (o) duty)
—1 -1

Then B is bounded and elliptic on V, here:

B(v,v) > (1 =0)|vll},  1Blo,w)l < 1 +0)ollvllwly  Yo,weV

By Lax-Milgram: B(u,v) = (F,v) for all v € V has unique solution u € V, agrees
with y — u(y) for p-almost all y
Let Vy =V @ Py, thatis, Vny C V = L*([~1,1],V; ) with

VN:{ivkLk:weV, i:O,...,N}

k=0

Stochastic Galerkin approximation @ € Vy defined by

B(4,8) = (F,5) Yo €V J




Stochastic Galerkin methods

Insert expansion @ = Z/sz:o u¢Ly, test with vL; forv eV, k=0,...,N:

3 B ' Le¢Lyd 0B 1 L¢Lyd 1 Ly d
;{ (uz,v)/ﬁ1 eLi dp + 1(uz,v)[1y eLi M}—(f,v>11 kdu
Using
yLi(y) = /Brr1Les1(y) + VBrLi-1(y), Bu=(4—-k2)"
results in

B(ug,v) + 931(\/,3k+1uk+1 + v/ Bk ukfl,v) = (f,v)00,k, Y EV, k=0,...,N,

with discretizations A, A; for B, Bi:

A 9\/@A1 uo f
0\/[371A1 A 9\//372A1 u; 0
0/Bz A1 A uz | _ |0

. 0 T)’f{A1 : 0

0\/ﬁKA1 A ux



Multi-parametric case

General affine parameter-dependence: Z = {1,..., P} or Z =N,

aly) =a+ Y _yit, yeY=[-1,1]"
JET

with uniform ellipticity: 0 < r < a(y) < R<ooin D forally €Y.

» Many sample-based methods (MC, RB, ...) keep their basic form, but
selecting/drawing samples generally more difficult

» Methods based on polynomial approximations (stochastic collocation,
stochastic Galerkin, ...) need to avoid the curse of (parametric) dimension

~» sparse selection of polynomial degrees



Separation of variables

Rank-n expansions of parameter-dependent solution u,

uy) mun(y) =D vidi(y), v €V, ¢ Y R
j=1

> Reduced basis methods: solution snapshots v; := u(y?), with ¢;(y) determined
implicitly by Galerkin projection

» Approximation in L= (Y, V): Kolmogorov n-widths of u(Y) C V,

dn(u(Y)),, = Jnf - sup min|lu(y) - vflv
dim (Vi) =n

» Controlling errors in L*°(Y, V') problematic for high-dimensional Y’



» Approximation in L2(Y,V; i), it probability measure: Hilbert-Schmidt
decomposition / SVD,

u= Zaj 0; @ ¢,  {0;}, {d;} orthonormal,
j=1

best approximation by truncation, where

/Za; < dp(u(Y))y.

» Upper bounds for o; by prescribing (Z;]', e.g. product orthonormal polynomial
expansions in L?(Y,V;pu): with Z={1,...,P} or T =N,

wz,y)~ Y w (@ Lo(y),  Lu(y) =[] Lv, @),

veACNE i€eZ

then o; < Hu,,;; v with decreasing rearrangement ||u,,; v



Piecewise constant a on partition {D;}, with @ := 1:

P
a(y):1+zyi¢i» Vi :=0Xp,, 0<1.
=1

Ds¢

Dy

1000 2000 3000 4000

red: ordered norms ||u,||v of Legendre coefficients in u(y) = ZuVLV(y),

blue: singular values o; in SVD u(y) = Zaﬂ}j bi(y)
J



Upper bounds for Kolmogorov widths (B., Cohen '17):

recombining linearly dependent terms in Taylor polynomial expansions in y

> Trivial: dn(u(Y)) < exp(—[In@n=1/F)

» For piecewise constant parameters: when Zle ¥; = 0a,

dn(u(Y)) S eXp(—|1n9|n_1/(P_1))

» Using further spatial symmetries:

D3

Dy

Dy

D

» Related: higher-order low-rank tensor approximations

P = 4 with regular 2 x 2 checkerboard. Then for any

fev,

dn (u(Y))V < Cexp (—

|h;0|n).

(~ Autio, Hannukainen '25)

M. Bachmayr and A. Cohen, Kolmogorov widths and low-rank approximations of parametric elliptic

PDEs, Math Comp, 2017



Affinely parametrized linear elliptic PDEs

Parametric diffusion problem: for y € Y = [~1,1]", find u(y) € V = Hg (D) such that

/ a(y)Vu(y) - Vodz = (f,v), Yv e,

where a(y) =a+ Yy, a; € L7(D)

j=1

Uniform ellipticity assumption:
0<r<alyy<R<oo, inD,forallyeY.
Here: for an r > 0,

D bl <a—r (UEA)

jz1

Objective: Approximate u in L°°(Y, V) or L*(Y, V; ), with p prob. measure on Y. J

20



Product polynomial expansions

We set
F={ve Ny : #suppr < oo},

multi-index notation:

lv| = ZV]-, vli= HVj!a y = Hy;j :

jz1 jz1 j=>1
Taylor expansion: U = t,y” witht, = l@”u 0)eV
cF vt

Recursion for Taylor coefficients:

/EVt,,-Vvdac:— Z /ijt,,_ej»Vde YveV
D D

JjEsupp v

21



Product orthonormal polynomial expansions

» In what follows: p uniform measure on Y

» Univariate Legendre polynomials { Ly }xen,, orthonormal in L2([—1,1]; )

(analogously: general beta distributions and Jacobi polynomials)

» For v € F, define product polynomials

) :HLVj(yj)7 yEY:[—l,l]N7

then {L,},c7 is orthonormal basis of L*(Y; 1)

» Legendre expansion (for p uniform measure):

=S w L), = [ u) L) duty)

veEF

» By orthonormality, for any v € V = L2(Y, V; u),

[0l = [ IR duty \/uy au(y)

2

veF v



Summability (norm-based)

“Stechkin's lemma:" 0 < p < ¢ < 00, (cv)ver € £P(F) a sequence of positive
numbers, A,, C F a set of indices with n largest ¢,. Then

q 1/q s
(> )" <ctm+), Ci=leerller, 5=
vEAy

SRR
SH

Theorem (Cohen, DeVore, Schwab '11).
Assume that (UEA) holds and (||);||ze);>1 € ¢P(N) for a p € (0,1), then
(It llv)ver and (|luv[lv)ver belong to £7(F).

Proof based on holomorphic extension in the parameter domain.

Best n-term approximation: Take At ,, AL, C F corresponding to n largest
coefficients,

sup HU(y) - >ty

yey

1
VSCn_P'H, Huf Z uy Ly

vEAT VEAL p

A. Cohen, R. DeVore, and Ch. Schwab, Analytic regularity and polynomial approximation of parametric
and stochastic elliptic PDE’s, Analysis and Applications, 2011.



Summability (using weights)

Basic idea: improved results for 1; with spatial localization, still with basic assumption

Syl <a—r. (UEA)

jz1

Theorem (B., Cohen, Migliorati '17).

Let (UEA) hold and with p; > 1, j € N, let
ij|¢j| <a—s forsomes>0. (UEA¥*)
i>1
Then .
Sl <oo SO (TTCw+1) ol
vEF veF j>1 )

M. Bachmayr, A. Cohen, and G. Migliorati, Sparse polynomial approximation of parametric elliptic
PDEs. Part I: affine coefficients, ESAIM M2AN, 2017
24



Wavelet-type parametrization

y = (Ye,m)e,m With yem ~U(—=1,1) i.id., and a
with affine parameterization,

a(y) =ao+ Z yl,mwl,m,

l,m

where sup Z‘W,m(:p)‘ <27 forall £>0
zeD ™

~» choose weights with pg ., ~ 2°¢ with 8 < a

Generally: > <, pj|j| < @— s with pj — oo is possible even when the
decay of [|1);]| L= is slow, due to localized supports of the ;. J

M. Bachmayr, A. Cohen, and G. Migliorati, Sparse polynomial approximation of parametric elliptic
PDEs. Part I: affine coefficients, ESAIM M2AN, 2017
25



Estimates for Taylor coefficients
1. (*-estimates, claim:  (UEA) implies Z .||} < oo.
veF

1
(UEA) 3= >11%;5] < a—r with r > 0 is equivalent to 6 := Hj g |1ZJ]|HL < 1, from which
= a oo
j=1

we obtain

Z/ |1ijHVty\2dx§9/ Vi, 2 dz, veF. ()
D D

jz1

Recursion for Taylor coefficients: / aVto - Vodx = (f,v)y v and, for v # 0,
D

/ avt, - Vvde =— Y / $jVty ;- Vvdz, veEV,
D jEsupp v D
which gives, with Young's inequality,

/a\VtU\deg 3 /|wj||wy,ej||wy|dz
D D

jEsupp v

1
<= iVt —e;|? d / ||Vt |? da ).
<3 X ([wlvi-gPas [ oive?a

jEsupp v
By (x),

0 _ 2 1 2
(175)/Da|VtV\ de < o > /ijuwu_ej\ dz.

JjEsupp v

26



Summing over |v| =k,

O")EI/“W“ dv <3 E: > /wmwuﬁﬁm

=k jEsupp v

_0
Z > [wivera<s S [ avifi
| |=k—1j>1 lv|=k—1
Therefore, since ||v]|2, ::/ alvo|? de,
D
0 _ .

STl <k > I, k= 75 <b in particular > [[t, ]|}, < oc.

lv|=k lv|=k—1 - vEF

2. Weighted ¢2-estimates from strengthened UEA

The assumption Zj>1 pil¥;l < @ — s is equivalent to <1
> Lo

1
=>" pilesl
“i>1
This is (UEA) for the modified coefficient a,(y) := a(D,y), where D,y := (p;y;)j>1, with
Taylor coefficients
1
tw = —0"up(0) = ptu,  up(y) = u(Dpy).

Applying the above gives

(P lItllv)® = D tpwll < oo

vEF veF

27



Sketch: Estimates for Legendre coefficients

2v; +1 vi
we = [ ul) Lo du) =TT 2oy o) = TT 0 (Y0 =10

j=>1 izl

By the latter Rodrigues’ formula,

uy = (H V2 + )/ =0 u(y) [] S |yj\)y2ju(j1+ lus )" du(y) (*)

j=1

For fixed y € Y: set wy(2) := u(Tyz) for z € Y, where Tyyz := (y; + (1 — |yj\)pjz]-)j>l, then

0wy (0) = (TT = lys)™ ) o 0 u(y)

jz1

Using modified equation with affine structure for w,, previous arguments yield
1 2
Z H—B”wy(O)H <C<oo
v! \%
veF
with C' > 0 independent of y.

Combine with () to show the weighted ¢2-estimate

> (e +0) " Pl < [ g\\%a”wy(oﬂ]id#(y) <c.

veF j2>1

28



We thus have

-1
ijhpﬂ < a—s implies Z P2 Ity < oo, Z(H 2v;+1) ) P2 w3 < oo.

7j>1 veF veF j2>1

Corollary. Let 0 < p < 2 and assume that for ¢ = ¢(p) := ffpp, there exists a
sequence p = (p;);>1 with p; > 1 satisfying (UEA*) and (/)]-71)j21 € ¢?(N). Then

(Iltvllv), e and ([luvllv), . - belong to £7(F).

Proof: By Hélder's inequality,
2 2-p)/2
Sl < (3 e el ) ()
vEF vEF veF

Now use that p; > 1 and (p;l)ij[ € LYN) imply 3~ .- p~ % < oo (very similar for
Legendre coefficients). O

29



Wavelet-type parametrization

y = (Ye,m)e,m With yem ~U(=1,1) i.id., and a
with affine parameterization, / \ A\

aly) =ao+ Y _ yem®em,

l,m

where sup Z|w€,m(x)‘ <27 forall £>0
zeD T

~ weights with p;., ~ 2% with 8 < «

Convergence of product Legendre expansions

Take A,, C F as indices of n largest ||u, ||y in the expansion v = 3" - u, L.

Then
u — Z Uy L,
vEA,

_ «
<n”*® foranys<E

L2(Y,V,p)

Note: a € C*?(D) a.s. for any 8 < «, implies u € H'™*(D) a.s. for any s < a
~» Work (at best) O(e’%) for finite element approximation of one realisation of u

30



Lognormal coefficients

Lognormal coefficients: a = exp(b) with b Gaussian random field
Starting point: expansion

b=y iid oy ~N(0,1), ¥ € L¥(D)

JEN

> b with Holder continuous realizations ~» v € L?(R", V:~) with v = ®N (0,1)
j=1
» Product Hermite polynomials

H,(y) = H H,, (yj) with univariate Hermite polynomials Hy,
jz1

are orthonormal basis of L?(R"; )

» Product Hermite expansion of u,

uw) = S wih)~ Y wh). w= [ ) )b

veF vEACF

31



Summability of Hermite coefficients

Cohen, DeVore, Migliorati '17). Let 0 < ¢ < oo and 0 < p < 2 such
Assume there exists a positive sequence p = (p;);>1 such that

(o)1 € ') und  sup 37 psfus; ()] < oo,
]>1

Theore
that 2=

m (B.
11
p 2

Then (Hu””‘/)ue}' € P(F).

> For {t;} with multilevel structure such that ||t} < 270

_ a
u—ZuVHV <n”?® forany5<a

vEA,

L2(RN,V,y)

M. Bachmayr, A. Cohen, R. DeVore, and G. Migliorati, Sparse polynomial approximation of parametric

elliptic PDEs. Part II: lognormal coefficients, ESAIM M2AN, 2017



Gaussian random fields

D C R?, centered Gaussian random field (b(:p))zeD with covariance function

E(b(z)b(z")) = K(z,2"), 2" € D.

Given K, find {;} such that  b(z) =Y w;1(x), y; ~N(0,1) iid.
j=1

» Classical choice: Karhunen-Loéve decomposition,
b(x) =D \VAjpsi(@)y;  with y; ~ N(0,1) iid.
j=1

with (), ¢;) eigenpairs of covariance operator, where ¢; is L?-orthonormal

» Not the only option! Precise criterion (Luschgy, Pages '09):

1; provide an expansion with y; i.i.d. precisely when 1); Parseval frame in
reproducing kernel Hilbert space of K

33



Expansions of the Brownian bridge

K(s,t) = min{s,t} — st, with RKHS H{ (0, 1),
series b= 3., y;4; on D = (0, 1):

2
» KL expansion: v;(z) = ﬂ% sin(mjx),

[95l[oe ~ " with [supp ;| = 1. /\

» Lévy-Ciesielski representation:
using Schauder basis (primitives of Haar system)

Yom(a) =272 —m), m=0,...,2° =1, £>
where ¢ (z) := 1 (1 — |2z — 1|)+.
Ordering from coarse to fine, 1 := ¢, for j = 2 +m,

| 1 -
[4jllLee ~ 7% and [supp ;| ~ 5"

34



Gaussian random fields

D C R?, centered and stationary Gaussian random field (b(w))weD with covariance
function
E(b(z)b(z")) = K(z,2") = k(z — a'), x,2" € D.

» Matérn covariances

k(z) = il(;; (@"’”')K(@) V>0,

where K, is the modified Bessel function of the second kind, Fourier transform:

—(v+d/2) d_d/2 v
S 2v 2 2% T (v 4 d/2)(2v)
k(w) = cun ()\2 + |w] ) , Cun = NOIG .

(Exponential covariance v = 1, Gaussian covariance v — c0)

35



Matérn samples

36



Construction of wavelet expansions

For class of stationary random fields including Matérn:
» Embed D into a torus T, periodized random field with covariance kg,

» Apply square root of covariance operator to periodic L2-orthonormal Meyer
wavelets (in terms of Fourier exponentials), yields orthonormal basis of
RKHS of k

» Difficult part: verify localization properties
» Restrict back to D to obtain Parseval frame of RKHS of k

Conclusion: For a = exp(b), Matérn-type b with realizations in C%# (D) for 8 < « in
wavelet representation, where |9, e < 27,

u— Z u, H,

vEAy

<n™® foranys<
L2 (RN, V)

(0%
a

d

M. Bachmayr, A. Cohen, and G. Migliorati, Representations of Gaussian random fields and
approximation of elliptic PDEs with lognormal coefficients, JFAA, 2018
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Matérn wavelets, 1D case on D = [—%_/ %}

Matérn covariance with A =1, v = é plots of ¥y, where 1 1, (2) = ¥ (2¢z — m)
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Matérn covariance with A = 1, v = 4: plots of v, where ¥y () = 10 (20z — m)
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Fully discrete approximability

Back to affine case: a(y) =a+ Zyz_:,mz/)g,m uniformly elliptic, ¥ ~ [—1,1]"

Lm

Legendre expansion of u € V:

u(y) = u,Lu(y)

veF

For each v € F, choose V,, C V with N, :=dimV, < oo,

VN:{ZUVL,,:UVGVV}, N=3 M.

veF veF

Approximations u ~ uy € Vn: FC Fand u, =, €V, forv e F,

u(y) = un(y) =Y Lu(y)

veF
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Fully discrete approximability: affine case

Adaptive approximations (d > 2) (B., Cohen, Diing, Schwab '17)

Let d > 2 and a € (0, 1], let a be given in multilevel expansion with

sup Z|w47m| <27 sup Z|V’(/)g’m| <27 forall £ >0,

let D be convex or smooth and let f € L?(D). Then for each N there exist (V,),cx
such that for the corresponding Vy,

. s a

u;ré{;N”u_uN”“(YvV’“) <N for any s < I

Proof via summability

Do (PlAL L))" < o0
vEF

with 7 € [1,2) and interpolation arguments.

M. Bachmayr, A. Cohen, D. Diing, and Ch. Schwab, Fully discrete approximation of parametric and

stochastic elliptic PDEs, SINUM, 2017
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Space-parameter adaptivity

» How to choose (V. ).cr, total number of degrees of freedom N =Y N, ?

veF

» Adaptive wavelet approximation for each v:

{¥1}res wavelet Riesz basis of V = H{ (D),
HZVA WIN® L

~» expansion u = E wy, ¥y ® Ly
A, v

1 > vaul? ver(SxF)
v

» Best N-term approximation by keeping (A, v) with N largest |ux,,|:

_ 1 1
lu =l L2y, v = la—=ulle, < N“lal|as ~ N(e) = [lul| g6 =

42



Example

Multiscale representation in d = 1, with a = 1,

Ye,m(T) = 02_4111(221’ —m)

_1+nymwlm ~r uy) ZUV Vy

l,m vEF

AAA
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d=1: aly)=a+ Zyj t;, ; hierarchical hat functions, ||1;|pe <2740
j=1

Values |uy,| (for o =1):

v (decreasing |luy||v)
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Stochastic Galerkin discretization: ux € Vy such that

/ / aVuy - Vodz du(y) = / (f,v)du(y), forallveVy
v JD Y

Operator representation w.r.t. spatial-parametric Riesz basis {U\ ® L, }res,ver,

A= A;@M;: *(SxF) = (S x F)

Jj=0

where Ao = (/ aviw,, -V‘l!,\) Mo = (80u)yprer
D NN ES ’

A= ( / %‘V‘I’A"V\I’A) M= ( / ijy(wLuf(y)du(y)) EESY
D AN ES Y v, €F

~» well-conditioned sequence-space formulation Au = f.
Standard adaptive Galerkin scheme
(Cohen, Dahmen, DeVore '01; Gantumur, Harbrecht, Stevenson '07)

Given A* € 8 x F, compute Galerkin solution u on A, approximate rj, = Auy, — f,
and with fixed p € (0,1) set

AFTT = A" UA  with A of minimal size such that ||r

allez > pllrll2
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Direct residual approximation

» Residual approximation for stochastic Galerkin systems can be done based on
standard compression techniques for A (using s*-compressibility)

> For v; with global supports, rates generally not optimal (Gittelson '13, '14)

> Observation? for {1/} with multilevel structure such that ||i);||zoc < 270
(ordered by level): A =3, ,A; @ M; satisfies

HZAj®Mj SMi%.
J>M

» Compression based on approximations Zj<M A ® M; combined with spatial
s*-compressibility of the A;: sub-optimal rates
" t
s =

T t+d

ale

when ; VW, € H'.

2M. Bachmayr, A. Cohen, and W. Dahmen, Parametric PDEs: Sparse or low-rank approximations?, IMA

JNA, 2018
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Optimal solver using wavelets

» [teratively refined stochastic Galerkin discretizations with spatial approximation by
H?-regular spline wavelets, piecewise polynomial (approximations of) v;

New residual approximation strategy:
» Adaptive semidiscrete operator compression in parametric variables, based on
> <m A @My,
» Spatial error estimation using tree index sets and piecewise polynomial structure
without adaptive operator compression (Stevenson '14; Binev '18)

Optimality (B., Voulis '22)

If the best approximation to u converges at rate s < 9 then for each € > 0, the

adaptive scheme with appropriately chosen parameters finds an approximation u. with
1

lu — uelly < e using O(1+= = (1+[loge|)) operations.

(see also Bespalov, Praetorius, Ruggeri '21: optimal cardinality under saturation assumption)

M. Bachmayr and I. Voulis, An adaptive stochastic Galerkin method based on multilevel expansions of
random fields: Convergence and optimality, ESAIM M2AN, 2022
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Numerical experiments: wavelets, d = 2 (B., Voulis '22)

D = (0,1)%, the,m hierarchical piecewise linear hat functions with ||¢be,m |1, < 27,
spatial discretization by C'' piecewise polynomial DGH multiwavelets of order 6;

H e
expected fully discrete rate 5.
5 1 . 2

d=2a=3; d=2a=3
6x 107 \. mate s = 1 N\, rate s = 1

N, \,

\, \,

N\, \
4x 1078 N, \,
N, \,
\. \
3107 \, "\,
N, ~.
\ ~.
\ N
2% 107 \ .
\ N,
\ 1078 \,
N \,
N N,
A N\

10* 10* 10° 10° 10° 10* 10°

103

10-*
10~

10° 10° 10 10° 10° 10° 10! 10°

Residual estimates as a function of #dof (—) and of computation time (--)
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Finite element approximations in space?

Aim: u(y) = Z uy Ly (y) with u, € P1(T,) NV, separate mesh 7T, for each v
veEA

Same example withd =1, a =1, [\ [\
Yom(x) == 2~ (2" — m)

ay) =1+ Y yemtbem ~ u(y) =Y wli(y)

,m veF
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Legendre coefficient functions v, : [0,1] — R in u(y) = >, c 7 uv Lu(y) with
diffusion coefficient a expanded in terms of hierarchical hat functions:

v =(0,0,0,...
( ) v =(0,0,0,1,...)

v =(0,0,0,0,1,...)
v =(0,0,0,0,0,1,...) v=(1,0,1,0,...)
v =(0,0,0,0,0,0,1,...)

v =(1,0,0,...)
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Best (dyadic) grids for piecewise linear approximations of u,:

Wl R
W
Al
\J \&
b,
v =(0,0,0,... .
( ) v =(0,0,0,1,...) v=(1,1,0,0,...
v =(0,0,0,0,1,...)
v =(0,0,0,0,0,1,...) v=(1,0,1,0,...)
v =(0,0,0,0,0,0,1,...)
A
/h v=1(0,...... ,0,1,
v=0(0,...... ,0,0,1,...)
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Towards an optimal adaptive finite element solver
» Piecewise affine linear finite element approximation on independent adaptive mesh
for each u,, refinement by standard newest vertex bisection

» Again using adaptive operator compression in the stochastic variables.

> Standard finite element error estimation strategies (e.g., residual estimators) not
applicable due to interactions between meshes, lack of Galerkin orthogonality
(see also Cohen, DeVore, Nochetto '12)

> Instead use BPX frame coefficients (cf. Harbrecht, Schneider '16): for

reV' =H (D),
Il = > > 1 esn))?

j=0 keN;
with ¢, 1 piecewise linear hat function on level 5 (with ||4Pj,k||H3(D) ~1)
» Choose refinements by tree-based selection of frame-based indicators (Binev '18)

First result®: reduction of stochastic Galerkin energy norm error by uniform factor in
each step of the adaptive scheme, linear convergence to exact solution.

)

3M. Bachmayr, M. Eigel, H. Eisenmann and |. Voulis, A convergent adaptive finite element stochastic
Galerkin method based on multilevel expansions of random fields, SINUM, 2025.
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Finite elements, d = 2 (B., Eigel, Eisenmann, Voulis '25)

L-shaped domain, multilevel hat functions ¢ . with [|[$em|lz., < 27,
spatial discretization by IP; elements on newest vertex bisection meshes.

A\ 6x 1070

Residual estimates as a function of #dof (parametric —, all —) and of computation time (--)
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(B., Eigel, Eisenmann, Voulis '25)

2

Finite elements, d
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Optimal complexity

First consider optimality of generated discretizations assuming

> affine coefficients a(y) = a + Zyj'l/]j,
j>1

> best approximations of u in Vn converging as O(N %) with s < a/d.
Theorem (B., Eisenmann, Voulis '25; abridged).
» The meshes generated by the method have optimal cardinality:
lu —unllreyvv,y <€ with NS et/e,

» If {¢);} have multilevel structure, near-optimal total number of operations

0(871/3(1 + |logel®)) for all s < a/d.

» Main new ingredient: stability property of finite element frames on adaptively
refined (newest vertex bisection) meshes

M. Bachmayr, H. Eisenmann and |. Voulis, Adaptive stochastic Galerkin finite element methods:
Optimality and non-affine coefficients, arXiv:2503.18704
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Extension to non-affine coefficients

» Uniformly elliptic coefficients of the form (e.g., log-uniform case g = exp)
a(y) = 9(D u0;) with iid. y; ~U(-1,1),
j=1
» Requires new semi-discrete operator compression

» Basic strategy: for g analytic in sufficiently large rectangle in C, use polynomial
approximations of g.

Theorem (B., Eisenmann, Voulis '25; abridged).

Assuming {¢; } with multilevel structure as before and best approximation rate
s < a/d, then

lu —unllrzyvv,y <€ with NS e~te

using a number of operations of order
(’)(afl/s/(l + [loge|)") forall s < s < a/d

with r > 0 independent of s', s, k.

M. Bachmayr, H. Eisenmann and |. Voulis, Adaptive stochastic Galerkin finite element methods:
Optimality and non-affine coefficients, arXiv:2503.18704
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Summary and outlook

> Representations of parameterized (or random) coefficients in terms of localized
functions lead to improved approximability of PDE solutions

» Taking full advantage of this requires a separately adapted mesh for each term in
the Legendre expansion of u

> Stochastic Galerkin methods with optimal convergence (rates up to a/d) and
computational costs optimal up to log-factors

» M. Bachmayr and |. Voulis, An adaptive stochastic Galerkin method based on multilevel
expansions of random fields: Convergence and optimality, ESAIM M2AN, 2022.

> M. Bachmayr, M. Eigel, H. Eisenmann and |. Voulis, A convergent adaptive finite
element stochastic Galerkin method based on multilevel expansions of random fields,
SINUM, 2025.

» M. Bachmayr, H. Eisenmann and |. Voulis, Adaptive stochastic Galerkin finite element
methods: optimality and non-affine coefficients, arXiv:2503.18704.

» M. Bachmayr and H. Yang, Sparse and low-rank approximations of parametric elliptic
PDEs: the best of both worlds, arXiv:2506.19584.



