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Optimal transport
 is the cost of moving from 

position  to 
c(x, y)

x y
T

α β

Monge 1781: Given probability measures  and 
, find the optimal way of transporting  to .

α ∈ 𝒫(𝒳)
β ∈ 𝒫(𝒴) α β OT(α, β) = inf

T♯α=β ∫ c(x, T(x))dα(x)
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Kantorovich 1942

sup
f⊕g≤c ∫ fdα+∫ gdβ

Convex 

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X ◊Y

c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X , Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ

s
cdfi is a continuous function for this topology and the con-

straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.
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Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

OT(α, β) = inf
π1=α,π2=β ∫ c(x, y)dπ(x, y)



Entropic optimal transport 
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eOT(α, β) = inf
π∈𝒰(α,β) ∫ c(x, y)dπ(x, y) + ϵKL(π |α ⊗ β)

60 Entropic Regularization of Optimal Transport

Á = 10 Á = 1 Á = 10≠1 Á = 10≠2

Figure 4.2: Impact of Á on the couplings between two 1-D densities, illustrating Proposition 4.1.
Top row: between two 1-D densities. Bottom row: between two 2-D discrete empirical densities with
the same number n = m of points (only entries of the optimal (Pi,j)i,j above a small threshold are
displayed as segments between xi and yj).
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Figure 4.3: Impact of Á on coupling between two 2-D discrete empirical densities with the same
number n = m of points (only entries of the optimal (Pi,j)i,j above a small threshold are displayed as
segments between xi and yj).

Remark 4.1 (Entropic regularization between discrete measures). For discrete mea-
sures of the form (2.1), the definition of regularized transport extends naturally
to

L
Á

c(–, —) def.= LÁ

C(a, b), (4.8)

with cost Ci,j = c(xi, yj), to emphasize the dependency with respect to the posi-
tions (xi, yj) supporting the input measures.
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Remark 4.1 (Entropic regularization between discrete measures). For discrete mea-
sures of the form (2.1), the definition of regularized transport extends naturally
to

L
Á

c(–, —) def.= LÁ

C(a, b), (4.8)

with cost Ci,j = c(xi, yj), to emphasize the dependency with respect to the posi-
tions (xi, yj) supporting the input measures.

Regularize with   and KL(π |μ) := ∫ log(dπ/dμ)dπ ϵ > 0

Images credit [Peyré & Cuturi ’19]



Entropic optimal transport
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Natural modelling assumption


Alleviates the curse of dimensionality [Genevay et al ’19, Mena & Weed ’19]





Fast algorithms available [Sinkhorn ’64, Cuturi ’13]


eOT(α, β) − eOT(αn, βn) = 𝒪(n−1/2)

sup
f,g ∫ fdα+∫ gdβ−ϵ∫ exp ( f(x) + g(y) − c(x, y)

ϵ ) dα(x)dβ(y)

Regularize with   and  KL(π |μ) := ∫ log(dπ/dμ)dπ ϵ > 0

eOT(α, β) = inf
π∈𝒰(α,β) ∫ c(x, y)dπ(x, y) + ϵKL(π |α ⊗ β)



Sinkhorn algorithm

sup
f,g ∫ fdα+∫ gdβ−ϵ∫ exp ( f(x) + g(y) − c(x, y)

ϵ ) dα(x)dβ(y)

exp(−f/ϵ) = ∫ exp((g(y) − c(x, y))/ϵ)dβ(y)

exp(−g/ϵ) = ∫ exp(( f(x) − c(x, y))/ϵ)dα(y)

First order optimality:

fk+1 = − ϵ log (∫ exp((gk(y) − c(x, y))/ϵ)dβ(y))
gk+1 = − ϵ log (∫ exp(( fk+1(x) − c(x, y))/ϵ)dα(y))

Sinkhorn is alternating minimisation:

Fast algorithms available [Sinkhorn ’64, Cuturi ’13]
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c(x, y) πε(c)

Forward OT

̂π

Sampling

Inverse OT Alfred 
Galichon

Given probability measures  and a ground 
cost , compute the optimal coupling.

α, β
c(x, y)

Suppose you observe how two populations are coupled. How can we infer the ‘cost’ that led to this coupling?

Galichon, Alfred, and Bernard Salanié. "Cupid’s Invisible Hand: Social Surplus and Identification in Matching Models." (2015). 
Galichon, Alfred. Optimal transport methods in economics. Princeton University Press, 2016. 
Dupuy, Arnaud, Alfred Galichon, and Yifei Sun. "Estimating matching affinity matrices under low-rank constraints." Information and Inference: A Journal of the IMA 8.4 (2019): 677-689.



Understanding matching
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Dupuy & Galichon 2014. "Personality traits and the marriage market.”
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Modelling Global Trade with Optimal Transport
Thomas Gaskin, Marie-Therese Wolfram, Andrew Duncan, Guven Demirel

Gaskin et al. ����: Modelling Global Trade with Optimal Transport �

A Ukrainian wheat exports in metric tons, 2021 (left) and 2022

B Percent change in trade volume (left) and absolute change in cost

C Change in trade volume and cost, selected countries

Figure 1: Ukrainian wheat exports, 2021–2022. A Network of Ukrainian exports, 2021 and 2022. Shown are the largest trading partners, making up

99% of Ukrainian exports. The blue node represents the total Ukrainian export volume (in metric tons), the red nodes are the import volumes. Edge

widths represent the flow volume. B The change in trade volume (left) and trade cost (right) for the largest trading partners. C Percent change in trade

volume (left bar) and change in trade cost (right bar) for selected countries.

Results

Case study I: the impact of the Ukrainian war
on wheat trade

The Russian Federation’s invasion of Ukraine in early ����
sent shock waves through global food markets [��]. Russia
and Ukraine are two of the largest exporters of wheat,

together accounting for almost ��% of global wheat exports
in ����. The blockade of trading routes through the Black
Sea and the closure or destruction of ports in Mykolaiv and
Khersonmeant a drop in trade to the overwhelmingmajority
of Ukraine’s export destinations, in some cases by as much as
���% (�g. �A–B). An increase of wheat exports only occurred
to Europe, most signi�cantly to Poland, Spain, Slovakia,
and Romania, as well as slight increases to Algeria, India,

richer set of geographics features (present in MFG but not in NG)
and the model’s nonlinearity (present in NG but not in MFG).

The performance of all models does not change significantly if
we use regions of interest of 10 by 10 km2. In particular, all

models have a CPC25km around 0.03 higher than CPC10km (see
Supplementary Fig. 3, Supplementary Table 2, and Supplemen-
tary Note 3). However, the relative improvement of DG over G on
the last decile is slightly smaller with a region of interest size of

Fig. 2 Real flows versus generated flows. Visualization of the mobility network describing the observed flows (a), the flows generated by Deep Gravity
(DG, panel b), and those generated by the gravity model (G, panel c) on a region of interest with 1001 locations (OAs) in the north of Liverpool, England,
UK. Colored edges denote observed (a) or average flows (b, c): blue edges indicate flows with a number of commuters between 0 and 3, red edges
between 3 and 5, and yellow edges above 5 commuters. CPC indicates the Common Part of Commuters. While both DG and G underestimate the flows,
DG captures the overall structure of the flow network more accurately than G.

Fig. 3 Performance of the models. Common Part of Commuters (CPC) by region of interest (side size of 25 km) in England (a, b), Italy (d, e), and New
York State (g, h) according to the gravity model (G) and Deep Gravity (DG). The CPC in each region of interest is the average CPC over the runs in which
that region of interest has been selected in at least one test set. Gray regions of interest have never been selected in the test set. (c, f, i) Average relative
improvement over five independent experiments in terms of CPC (in percentage) of DG with respect to G for each region of interest of side size 25 km in
England, Italy, and New York State.
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ARTICLE

A Deep Gravity model for mobility flows generation
Filippo Simini 1,2,3, Gianni Barlacchi4, Massimilano Luca 5,6 & Luca Pappalardo 7✉

The movements of individuals within and among cities influence critical aspects of our

society, such as well-being, the spreading of epidemics, and the quality of the environment.

When information about mobility flows is not available for a particular region of interest, we

must rely on mathematical models to generate them. In this work, we propose Deep Gravity,

an effective model to generate flow probabilities that exploits many features (e.g., land use,

road network, transport, food, health facilities) extracted from voluntary geographic data, and

uses deep neural networks to discover non-linear relationships between those features and

mobility flows. Our experiments, conducted on mobility flows in England, Italy, and New York

State, show that Deep Gravity achieves a significant increase in performance, especially in

densely populated regions of interest, with respect to the classic gravity model and models

that do not use deep neural networks or geographic data. Deep Gravity has good general-

ization capability, generating realistic flows also for geographic areas for which there is no

data availability for training. Finally, we show how flows generated by Deep Gravity may be

explained in terms of the geographic features and highlight crucial differences among the

three considered countries interpreting the model’s prediction with explainable AI

techniques.

https://doi.org/10.1038/s41467-021-26752-4 OPEN
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Argonne National Laboratory Lemont, Lemont, IL, USA. 4Amazon Alexa, Berlin, Germany. 5 Fondazione Bruno Kessler, Trento, Italy. 6 Free University of
Bolzano, Bolzano, Italy. 7 Institute of Information Science and Technologies (ISTI), National Research Council (CNR), Pisa, Italy.
✉email: luca.pappalardo@isti.cnr.it
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Shi  et al. "Understanding and generalizing contrastive learning from the inverse 
optimal transport perspective.” ICLR2023.

Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective

Figure 2. The overview of our approach for CL. The regularized OT is used to analyze and estimate the coupling (matching), which
is supervised with ground truth matching for representation learning. Given a minibatch samples, features {zi}ni=1 and {z0j}mj=1 are
extracted from the neural networks f(·) and g(·) and the cost matrix C✓ can be calculated to evaluate the distance among features. Then
under different constraints in U , we can get the coupling with Eq. 19, Eq. 12 or Eq. 22 and supervise the coupling with KL divergence (i.e.
cross-entropy loss). Besides, the uniformity penalty is also used here to improve the contrastive learning.

involves bilevel optimization as:

min
✓

KL(P̃|P✓)

where P✓ = arg min
P2U

< C✓
,P > �✏H(P).

(8)

Here H(P) is the entropic regularization as defined in Eq. 4.
Different from previous works setting U = U(a,b), we
think U can be designed according to the specific circum-
stances of the problem, especially in the case of CL. We
will discuss it in detail in the next subsection. In the outer
minimization, the coupling P✓ is calculated by OT’s inner
minimization and P̃ is the ground truth for supervision de-
pending on the positive/negative pairs. For example, we
can set P̃ij = 1 when zi and z0j are positive pairs and 0
otherwise.

The aim of outer minimization is to supervise the soft match-
ing with the ground truth to learn the feature extractor (i.e.
representation learning) parameterized by ✓. In the inner
minimization, the soft matching problem is formulated with
the entropic regularized Optimal Transport. Our goal is to
solve the coupling P✓ with the cost matrix C✓. In addition
to setting U = U(a,b) where a = 1/n and b = 1/m, we
can relax the constraints in U as:

U(a) = {P 2 Rn⇥m
+ |P1m = a}, (9)

which only contains half of constraints in U(a,b) and we

can also further relax the constraints as

U(1) = {P 2 Rn⇥m
+ |

X

i,j

Pij = 1}, (10)

which involves basic probability requirements for coupling.
In practical sense, U(a,b) asks the equal contribution of
each sample in a and b. And U(a) only makes the sample
equality in a, while the contribution in b can be different.
And when U = U(a,b), we do not ask for any contribution
equality in a and b, and it depends on the training of neural
networks. By varying the degree of constraint relaxation,
we can get different contrastive losses of IOT-CL. In the
following subsections, we will analyze the contrastive loss
by setting U = U(1), U(a) and U(a,b) in detail and show
the generality of our contrastive loss.

3.2. InfoNCE is a Special Case under U(a)

We first perform the analysis of contrastive loss when U =
U(a), which can be proven equivalent to the InfoNCE loss.
We begin with rewriting the inner minimization for solving
the coupling P✓:

P✓ = arg min
P2U(a)

< C✓
,P > �✏H(P), (11)
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Cell genomics 
Jules Samaran, Gabriel Peyré, Laura Cantini
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Learn the missing links
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How do populations evolve?
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dXi

dt
= vt(Xi) ∂tρt + ∇ ⋅ (ρtvt) = 0

Xi
iid∼ ρt

Goal: Given iid samples of , find .ρt0, ρt1, ρt2, …ρtT vt

Model using discretised dynamics: αk+1 = argmin
α∈𝒫(X)

ℱ(α) +
1
2τ

W2
2(α, αk)

Suppose   for some vt = − ∇δℱ(ρt) ℱ : 𝒫(X) → ℝ

Example:   so  and 


Example: ,  and 

ℱ(ρ) = ∫ V(x)dρ(x) δℱ = V v = ∇V

ℱ(ρ) =
1
2 ∫ W(x, y)dρ(x)dρ(y) δℱ(ρ) = ∫ W( ⋅ , x)dρ(x) v = ∫ ∇1W( ⋅ , x)dρ(x)

Discretisation of curve of 
probability measures αk ≈ ρkτ

Modelling using Wasserstein gradient flows:

Jordon Kinderlehrer Otto scheme (JKO)

Examples:  


 or v = ∇V v = ∫ ∇1W( ⋅ , x)dρ(x)



Cell Genomics

αt =
1
n

n

∑
i=1

δxt
i
, t = t0, t1, …

xt
i =  vector of genes

αt+1 = argminρ ∫ V(x)dρ(x) + W2
2(ρ, αt)

Reference: Learning cell fate landscapes from spatial transcriptomics using Fused Gromov-Wasserstein. 
Geert-Jan Huizing, Gabriel Peyré, Laura Cantini

<latexit sha1_base64="LIz5cv8SkqGoJa7sBtLUbjFelcY="></latexit>↵0
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Inverse problems in OT

(x1, y1)

(x2, y2)

(x4, y4) (x5, y5)
(x6, y6)

(x3, y3)

Outline
Learning framework Recovery guarantees

θθ⋆

J(θ)

inf
θ

J(θ) + λR(θ)

λ

N
um

be
r o

f w
ro

ng
ly 

es
tim

at
ed

 p
os

iti
on

sc(x, y) ̂π

mα
mβ

12



(x1, y1)

(x2, y2)

(x4, y4) (x5, y5)
(x6, y6)

(x3, y3)

Outline
Inverse problems in OT Learning framework Recovery guarantees

θθ⋆

J(θ)

inf
θ

J(θ) + λR(θ)

λ

N
um

be
r o

f w
ro

ng
ly 

es
tim

at
ed

 p
os

iti
on

sc(x, y) ̂π

mα
mβ

13



Stability guarantee

inf
θ∈ℝp

ℒ(cθ, ̂π, Ω̂) + λR(θ)

Theorem:  Let  be the ‘noise’ level. If there is:


Measurement stability,  for all basis elements 


Forward stability:  for all basis elements 


Local curvature:  is locally strongly convex and Lipschitz smooth.


Then, the minimizer  satisfies  

γ > 0

|⟨ψ, ̂π − π⋆⟩ | ≤ γ ψ

|⟨ψ, PΩ(c⋆
θ ) − PΩ̂(c⋆

θ )⟩ | ≤ γ ψ

J(θ) := ℒ(cθ | ̂π, Ω̂)

θ ∥θ − θ⋆∥ = 𝒪(λ + γ) .

Suppose that . Assume that  is noisy version of . Solve: π⋆ = PΩ(c⋆
θ ) := argminc⟨cθ⋆, π⟩ + Ω(π) ̂π π⋆

14



Assumptions

15

Non-uniqueness for iOT 
 1. If  minimizers    are minimisers 

for all constants . 
 2. Replace  with     are 

minimisers.

f, g ⟺ f + a, g − a
a

c c − u ⊕ v ⟺ f + u, g + v

Assume  are centred: 

 

and linearly independent.

cθ(x, y) = ∑
k

θkck(x, y)

∫ ck(x, y)dα(x) = 0, ∫ ck(x, y)dβ(y) = 0

Assume that  have compact supports.α, β

Loss to minimize in the case of iOT:


  inf
f,g,c

⟨c − ( f ⊕ g), ̂π⟩ + ϵ∫ exp ( f(x) + g(y) − c(x, y)
ϵ ) dα̂(x)d ̂β(y)



Sample complexity for iUOT
π⋆(c⋆) ̂πn

Sampling How accurate is  constructed from  ?cθn,λ ̂πn

Theorem:  
Let  be the cost that gave rise to . Let  be a convex, l.s.c. regularizer. Given  iid 
with , the solution to  is unique and with probability at least ,


c⋆ = Φθ⋆ π⋆, α⋆, β⋆ R (xi, yi) ∼ π⋆

i = 1,…, n θ = argmin
θ

L(θ; ̂πn, α̂n, ̂βn) + λR(θ) 1 − e−t

∥θ − θ⋆∥ = 𝒪 (λ +
log(n) + t

n )
16



Structure preservation?
Typical regularisers:  

Sparsity.       


Low rank   where  = singular values of .

R(θ) =
n

∑
i=1

|θi |

R(θ) =
n

∑
i=1

σi(θ) σi(θ) θ

Question: 

If  that generated  is sparse/low rank, is the solution  also of the same sparsity/rank  
when  is large enough and  is small enough?

θ⋆ π⋆, α⋆, β⋆ ̂θ
n λ

̂θ = argmin
θ

L(θ; ̂πn, α̂n, ̂βn) + λR(θ)

17



Structure preservation
Certificate: Let , and define


 in the case of l1 where  is the support of  


 where  is the projection onto the row/column 
space spanned by .


M := ∇2J(θ⋆)

̂z1 = M(:,I)M−1
(I,I)Sign(θ⋆

I ) I θ⋆

̂z* = MPT(PTMPT)−1Sign(θ⋆
I ) PT

θ⋆

Theorem: Suppose that  is nondegenerate. 


Then, provided that , with 

probability at least ,


 in the case of  


  in the case of .

̂z

1 ≳ λ ≳
t + log(n)

n
1 − e−t

Supp(θn,λ) = Supp(θ⋆) R(θ) = ∥θ∥1

Rank(θn,λ) = Rank(θ⋆) R(θ) = ∥θ∥*

18

J(θ) := L(cθ |π(cθ⋆))

θθ⋆

J(θ)

We say that


  is non degenerate if  


  is non degenerate if .

̂z1 ∥ ̂z1
Ic∥∞ < 1

̂z* ∥P⊥
T ̂z*∥2 < 1

+1

−1

I

non-degenerate degenerate



The iOT loss in the Gaussian setting
α = 𝒩(mα, Σα) β = 𝒩(mβ, Σβ)

[Bojilov & Galichon’16]

πϵ(cθ) = 𝒩(mα
mβ

, (Σα Σ
Σ Σβ))

mα mβ

min
θ

L(cθ | ̂π) + λ∥θ∥1

min
θ

1
2 ∥(Σ

1
2
β ⊗ Σ

1
2
α)(θ − ̂θ)∥2

F + λ0∥θ∥1

λ = λ0/ε
ε → + ∞

min
θ≻0

1
2 log det(θ)+ 1

2 ⟨θ, ̂θ−1⟩ + λ0∥θ∥1

ε → 0
λ = λ0ε

LassoGraphical-Lasso

∂2J(θ⋆) = 2ε[4ε2(Σβ−ΣTΣαΣ)−1 ⊗ (Σα − ΣΣβ
−1Σ⊤)−1 + (θ⋆⊤ ⊗ θ⋆)]−1

Proposition:

 Numerically check when  is non-degenerated. → η⋆

19



Numerical illustrations of  certificatesℓ1

20

Circular Planar Erdös-Rényi

dgeod(i, j) dgeod(i, j) dgeod(i, j) = 2

θ⋆ = δI + diag(G1) − G
Va
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e 
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 z*



Numerical illustrations
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Recovery performance of -iOT for a circular graph.ℓ1



The iJKO loss
Lr(θ) := ⟨Vθ, αk+1⟩ − inf

α∈𝒫(𝒳)
⟨Vθ, α⟩ +

1
τ

W2
2,ϵ(α, αk |α ⊗ αk) + rKL(α |αk+1) .

argmin
θ

λR(θ) + Varαk+1 [Vθ + τ−1f*(αk+1, αk)]θs = argmin
θ

λ
r

R(θ) + Lr(θ) r → ∞

Investigate using the closed form certificate at r = ∞

Gaussian experiment


Consider  where  and .


Then,  with  and .


Suppose we observe samples of  at discrete time point.

d
dt

Xt = − ∇V(Xt) X0 ∼ 𝒩(m⋆, Σ⋆) V(x) = x⊤θ⋆x

αt := law(Xt) = 𝒩(mt, Σt) mt = e−2tθ⋆m⋆ Σt = e−2tθ⋆Σ⋆e−2tθ⋆

αt

Question: what kind of  are easy to recover?θ⋆

22

c.f. loss  of Terpin, Lanzetti, Gadea, and 
Dörfler. Learning diffusion at lightspeed 

∥∇Vθ + τ−1 ∇f*(αk+1, αk)∥2
L2(αk+1)



The sparse setting

Figure 4: The adjacency matrix ✓? of a circular graph

m
? = 1

10 · 1 m
? = 1 m

? = 2 · 1

Figure 5: Display of nondegeneracy of `1 certificates as we vary ⌃? = N (m?, w2Id). The top row is
d = 4 and the bottom row is d = 10. The y-axis shows kz?k1 where z? = PIcz where I is the true
support and z is the certificate. The certificate is degenerate when kz?k1 > 1.
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θ⋆ =

Σ⋆ = σ2I, m⋆ = 2 ⋅ 1
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� = 0.1, T = 2 � = 0.1, T = 6 � = 1, T = 2

Figure 5: This figure shows the fraction of incorrectly estimated positions (y-axis) against log(�)
(x-axis) for di↵erent numbers of samples N . A position is considered incorrectly estimated if it takes
an absolute value greater than 10�5. The initial distribution ↵0 = N (2 · 1,�2Id). For � = 0.1
and T = 2, one can observe from Figure 1 that the problem is degenerate while the problem is
nondegenerate for � = 1, and indeed, support identification does not occur for � = 0.1 here but is
far superior for � = 1 or if we increase T to 6. In the case of the iJKO* loss, notice that it is closer
to being degenerate in the case of T = 6 and � = 0.1 than in the case of the FY loss, hence leading
to worse stability properties.
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Low rank Sparse

Figure 1: Left: Plots of zmax := kP?

T
zk2 where z is the precertificate, a problem setting is nonde-

generate when zmax is small than 1 (i.e. below the red line). FY denotes Fenchel-Young. Here, d = 6,
m? = 0. We plot zmax for di↵erent values of !, where ! denotes the angle between ⌃? := ⌃! and ✓?.
Both certificates become degenerate as the angle ! increases. Right: Plots of zmax := maxi2Ic zi and
a problem setting is nondegenerate when zmax < 1. Here, d = 4, m? = 2 ·1 and the di↵erent problem
settings are for varying �, where ⌃? = �2Id. In this case, the certificates become nondegenerate as
we either increase � or increase T .

! = 0 ! = 0.1⇡ ! = 0.3⇡ ! = 0.4⇡

Figure 2: Visualization of trajectories. In this case, ✓ is a rank-1 matrix, and the red line shows the
eigenvector of ✓. Darkest blue is at t = 0 and lightest blue is at t = ⌧T . Here, ⌧ = 0.1 and T = 10.
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� = 0.1 � = 0.2 � = 1

Figure 4: Evolution across 6 time points with ⌧ = 0.1, m? = 2 · 1 and ⌃? = �2Id.

becomes degenerate. Figure 4 provides a visualization of how the populations evolve. From
the non-degeneracy graphs of Figure 1, we expect that in the case of m? = 2 · 1, with T = 2,
the support of ✓? can be stably recovered when � = 1 and cannot be stably recovered when
� = .1. On the other hand, if we increase T to T = 6, then ✓

? can be stably recovered even
when � = 0.1. We numerically verify this in Figure 5, where one can observe this behaviour
as the number of samples N increases.

Conclusion

We introduced a general methodology for solving inverse problems over the space of prob-
ability measures using sharpened Fenchel-Young losses. While our analysis centered on two
instances – iUOT and iJKO – rooted in optimal transport theory, the framework itself is
broadly applicable. The key ingredients of our approach, namely convexity, di↵erentiability,
and sample-dependent stability, make it a flexible tool for a wider class of inverse problems
involving distributions. In particular, this opens up promising directions for future work in
generative modeling, where learning mechanisms from sampled data are central.
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The low rank setting

θ⋆ = uu⊤

� = 0 � = 0.1⇡ � = 0.3⇡ � = 0.4⇡

Figure 1: Visualization of trajectories. In this case, ✓ is a rank-1 matrix and the red line shows the
eigenvector of ✓. Darkest blue is at t = 0 and lightest blue is at t = ⌧T . Here, ⌧ = 0.1 and T = 10.

d = 2, r = 1 d = 10, r = 1 d = 10, r = 5

Figure 2: Nondegeneracy in the low rank setting.
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  with  
 

Σ⋆ = δI + uϕu⊤
ϕ

uϕ = cos(ϕ)u + sin(ϕ)u⊥

� = 0 � = 0.1⇡ � = 0.3⇡ � = 0.4⇡

Figure 1: Visualization of trajectories. In this case, ✓ is a rank-1 matrix and the red line shows the
eigenvector of ✓. Darkest blue is at t = 0 and lightest blue is at t = ⌧T . Here, ⌧ = 0.1 and T = 10.

d = 2, r = 1 d = 10, r = 1 d = 10, r = 5

Figure 2: Nondegeneracy in the low rank setting.
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! = 0 ! = 0.1⇡ ! = 0.4⇡
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Figure 3: Here, both ✓? = u?(u?)> is a rank 1 matrix and we consider ⌃? = vv>, varying the angle
! between u? and v. The x-axis shows in log-scale the parameter � and the y-axis shows kŨ�Ũ>

� �
u?(u?)>k2 + |Errrank| where Ũ� are the reconstructed eigenvectors. Observe that the eigenvectors
are better recovered for small !, which corroborates the fact that the certificate is nondegenerate
when ! is small. Note that an error of less than 1 is required to indicate recovery of the correct rank
– for both the iJKO* and Fenchel-Young losses, we have exact recovery of the rank in the case of
! = 0, 0.1 where the corresponding certificates are nondegenerate and the rank is not recovered in
the case of the ! = 0.4 where the certificates are degenerate.
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Summary
• Optimal transport computes a coupling given two distributions and a cost metric.


• In some applications, the metric is unknown; or we might be interested in recovering certain dynamics given 
observations of probability distributions.


• Fenchel-Young losses allow us to construct convex losses to handle these inverse problems with probability 
measures.


• We derived a theoretical analysis of the sample complexity, and structural properties of regularization.
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