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Abstract

These notes are intended to supplement my lecture at the 2025 Chemnitz summer school on
applied mathematics. They provide a brief overview of inverse optimal transport and provide
limited pointers to relevant literature.

1 Optimal transport

We begin with a few key equations for optimal transport. Refer to [14] for details on optimal
transport.

For simplicity, we assume throughout that X ,Y are compact spaces.

Monge’s formulation (1781) Given α ∈ P(X ) and a measurable map T : X → Y, the
push-forward of α by T is that measure T♯α such that given any measurable set A, (T♯α)(A) =
α(T−1(A)) and given any measurable function φ,

∫
φ(y)dT♯α(y) =

∫
φ(T (x))dα(x).

Given α ∈ P(X ), β ∈ P(Y), and some cost function c : X × Y → R, the goal of Monge is to
find T : X → Y with T♯α = β such that it minimizes the following problem:

OT(α, β)
def.
= inf

{∫
c(x, T (x))dα(x) \ T♯α = β

}
.

This is highly nonlinear in T and was difficult to analyse directly.

Kantorovich formulation (1942) Kantorovich introduced a relaxation of Monge’s prob-
lem as

OT(α, β) = inf

{∫
c(x, y)dπ(x, y) \ π ∈ U(α, β)

}
where U(α, β) def.

= {π ∈ P(X × Y) \ π1 = α, π2 = β} is the set of probability couplings of α,β.
We write π1 = (PX )♯π and π2 = (PY)♯π as the first marginal and second marginal of π.

Remark 1 (Kantorovich formulation is a relaxation). If T is such that T♯α = β, then (Id, T )♯α ∈
U(α, β). Indeed, ∫

φ(x, y)(Id, T )♯α =

∫
φ(x, T (x))dα(x).

Remark 2 (Kantorovich allows the splitting of mass). The constraint of the Monge formulation
can be empty. For example, if α = δ0 and β = 1

2δ0 +
1
2δ1, then there does not exist T such that

T♯α = β. On the other hand, U(α, β) is always nonempty, since it contains the product measure
α⊗ β.
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The Kantorovich problem is a convex optimization problem, and if you think in finite di-
mensions, this is a linear programme. The convex dual is

sup
f,g

{⟨f, α⟩+ ⟨g, β⟩ \ c ⩾ f ⊕ g} . (1)

where the supremum is over f ∈ C(X ) and g ∈ C(Y). We write f ⊕ g for the function (x, y) 7→
f(x) + g(y).

Entropic optimal transport The entropy regularized OT problem is: for ε > 0,

eOT(α, β) = inf

{∫
c(x, y)dπ(x, y) + εKL(π|α⊗ β) \ π ∈ U(α, β)

}
.

For ε = 0, this is the standard OT problem. As ε → ∞, the minimizing coupling becomes
π = α⊗ β.

This is again a convex problem with dual formulation

eOT(α, β) = sup
f,g

⟨f, α⟩+ ⟨g, β⟩ − ε

∫
exp

(
f(x) + g(y)− c(x, y)

ε

)
dα(x)dβ(y). (2)

The last decades have seen a sharp growth in applications of eOT for machine learning, some
of the attractions of using entropy regularization is the availability of fast algorithms such as
Sinkhorn [5] and also the favorable statistical properties of eOT [11].

In the following, we will consider the inverse problem that arises from entropic optimal
transport. The use of entropy is often considered a natural modelling assumption, describing
the uncertainty in the coupling π between α and β [10]. In fact, this formulation was naturally
derived in many economic application such as the so-called gravity model [7], independently
from the development of OT.

2 Inverse optimal transport (iOT)

Forward problem Let ε > 0 be a fixed entropic regularization parameter. Given two
probability measures α ∈ P(X ) and β ∈ P(Y), a cost function c ∈ C(X×Y), find π(c) ∈ P(X×Y)
that solves

π(c) = argmin
π∈U(α,β)

∫
c(x, y)dπ(x, y) + εKL(π|α⊗ β).

Inverse problem The inverse problem is to recover the cost function c given n samples

(xi, yi)
iid∼ π(c). We can think of the data as the empirical measure π̂n = 1

n

∑n
i=1 δ(xi,yi).

Note that these samples also give access to the empirical marginals α̂n = 1
n

∑n
i=1 δxi

and

β̂n = 1
n

∑n
i=1 δyi .

The problem of inverse optimal transport was initially proposed for studying matching prob-
lems in economics (e.g. understanding labour or marriage markets) [8, 9, 6, 4], but has since
garnered attention in the machine learning community [16, 12].

3 A loss function for iOT

There are two natural and equivalent ways to derive a loss function between a cost c and π̂n.
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3.1 Maximum likelihood estimation

The first approach for iOT is via MLE [6]. Given cost function c, the optimal coupling has
density

dπ(c)

dα⊗ β
= exp

(
fc(x) + gc(y)− c(x, y)

ε

)
where fc, gc are the Kantorovich potentials. One can therefore parameterize the cost cθ by some
θ ∈ Rp, and perform MLE

θ = argmax
θ

Eπ̂[log(dπ(cθ)/dα⊗ β)]

One can think of this as a bilevel problem, since

Eπ̂[log(π(c)/α⊗ β)] = Eπ̂[− log(dπ̂/dπ(c)) + log(dπ̂/dα⊗ β)]

= −KL(π̂|π(c)) + Eπ̂[log(dπ̂/dα⊗ β)],

so, computing the MLE is equivalent to solving

min
θ

KL(π̂|πθ) where πθ ∈ argminπ∈U(α,β)⟨cθ, π⟩+ εKL(π|α⊗ β)

3.2 Fenchel-Young loss and inverse optimization

The second (equivalent) approach is to view iOT as an inverse optimization problem. Con-
sider the following inverse optimization problem: Recover the parameter c from noisy/sampled
observations of an optimization solution π(c) = argminc⟨c, π⟩+Ω(π). Given observation π̂, the
Fenchel-Young loss [3] is

L(c; π̂,Ω) := ⟨c, π̂⟩+Ω(π̂)− inf
π

{⟨c, π⟩+Ω(π)} . (3)

As a function of c, this loss satisfies the following three properties:

1. For all c, L(c; π̂,Ω) ⩾ 0 and L(c, π̂) = 0 if π̂ = π(c);

2. It is differentiable with respect to c if the inner problem over π has a unique solution;

3. It is convex in c since the infimum over affine functions is concave.

Remark 3. Note that Ω∗(c)
def.
= supπ {⟨c, π⟩+Ω(π)} is the convex conjugate of Ω. So,

L(c; π̂,Ω) = ⟨c, π̂⟩+Ω(π̂) + Ω∗(−c).

The fact that this is non-negative and zero when −c ∈ ∂Ω(π) is due to the Fenchel-Young
inequality.

In practice, we parameterize c in a linear manner1 cθ = θ⊤φ :=
∑S

j=1 θjφj for some basis {φj}j ,
π̂ corresponds to an empirical measure (from sampled data), and Ω is only given approximately
as Ω̂ since it often incorporates empirical data. In the following, since we are interested in
minimizing over c, we drop the Ω(π̂) term when writing the loss.

1other nonlinear parameterizations are possible, but linear or affine parametrizations will preserve convexity
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F-Y loss for iOT Let us now specialize to the case of iOT [1]: In the context of iOT,
Ω(π) := KL(π|α⊗ β) + ιU(α,β)(π) where ιU(α,β) denotes the indicator function on U(α, β). The
sampled loss, given data π̂n with marginals α̂n and β̂n, is

Fn(θ) = ⟨cθ, π̂n⟩ − inf
π∈U(α̂n,β̂n)

{
⟨cθ, π⟩+KL(π|α̂n ⊗ β̂n)

}
.

By convex duality on the inner problem, one can write

Fn(θ) = inf
f,g

⟨cθ − (f ⊕ g), π̂n⟩+ ε

∫
exp

(
f(x) + g(y)− cθ(x, y)

ε

)
dα̂n(x)dβ̂n(y). (4)

Finally, due to the noisy data, we consider the regularized problem

min
θ∈RS

λR(θ) + Fn(θ), (5)

for some (convex lower semi-continuous) regularizer R with parameter λ > 0, which is often
taken as the ℓ1 norm (to enforce sparsity) or nuclear norm (to enforce low-rankness).

MLE and FY losses are equivalent In general, the FY viewpoint is perhaps more
versatile as it allows to develop losses for problems where there is no clear MLE formulation.
However, in the case of iOT, the two approaches are equivalent :

−Eπ̂[log(dπ(cθ)/dα⊗ β)] = ⟨cθ − fθ − gθ, π̂⟩
= ⟨cθ, π̂⟩ − ⟨fθ, α⟩ − ⟨gθ, β⟩.

At optimality,
∫
exp((fθ ⊕ gθ − cθ)/ε)dα̂⊗ β̂ = πcθ (X × Y) = 1. So,

⟨fθ, α̂⟩+ ⟨gθ, β̂⟩ − ε = sup
f,g

⟨f, α⟩+ ⟨g, β⟩ − ε

∫
exp

(
f(x) + g(y)− cθ(x, y)

ε

)
dα̂(x)dβ̂(y).

We can therefore replace ⟨fθ, α⟩+ ⟨gθ, β⟩ with the supf,g problem, and this gives precisely the
FY loss.

4 Solvers

Proximal gradient descent The F-Y loss Fn is differentiable in θ, the most direct ap-
proach is to apply proximal gradient descent [6]. The gradient of the loss is

∇Fn(θ) =

(∫
φj(x, y)d(π̂ − πθ)(x, y)

)
j

where πθ is the solution to the inner problem. So, one can apply pGD with stepsize τk, k =
1, 2, . . .,

θk+1 = ProxτkλR (θk − τk∇Fn(θ))

where ProxτR(θ
′) = argminθ

1
2 ||θ−θ′||22+τR(θ). This requires solving the inner problem at each

iteration (e.g. using Sinkhorn).
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Sinkhorn-ISTA This algorithm was introduced in [4] where R(θ) = ||θ||1, although their
method applies easily to any convex regularizer with an easy-to-compute proximal map. Their
idea was to avoid solving fully the inner problem at every iteration by alternating between
Sinkhorn iterations (i.e. doing block coordinate descent) and proximal steps.

From the Kantorovich formulation (4), we have infθ λR(θ)+Fn(θ) = infθ,f,g λR(θ)+K(θ, f, g)
where

K(θ, f, g)
def.
= ⟨cθ − (f ⊕ g), π̂n⟩+ ε

∫
exp

(
f(x) + g(y)− cθ(x, y)

ε

)
dα̂n(x)dβ̂n(y) (6)

One therefore computes for k = 1, 2, . . . ,

1. fk+1 = argminf K(θk, f, gk).

2. gk+1 = argming K(θk, fk+1, g).

3. θk+1 = ProxτkλR (θk − τk∂θK(θ, fk+1, gk+1)) .

The two minimization problems in f and g have closed form solutions are correspond exactly
to Sinkhorn steps. One can prove that for τk = τ sufficiently small, there is linear convergence
in ||θk+1 − θ⋆|| = O(ρk) to a minimizer θ⋆.

Applying quasi-Newton solvers In the case where R admits a quadratic variational
form, one can reparameterize θ to obtain a smooth problem. We focus on the case of R(θ) = ||θ||1,
although this can also be done for nuclear norm and group l1. The Hadamard product over-
parameterization of the ℓ1 norm

||θ||1 = min
u⊙v

||u||22
2

+
||v||22
2

.

where the Hadamard product is u⊙ v
def.
= (uivi)i. We can therefore replace θ by u⊙ v to obtain

a smooth optimization problem: λ
2 (||u||

2 + ||v||2) +K(u⊙ v, f, g).
To obtain a better-conditioned optimization problem, we consider the semi-dual problem,

which is derived by leveraging the closed-form expression for the optimal g, given f, c. In
particular, with f, c fixed, the optimal g in (6) satisfies for β̂n a.e.

eg(y)/ε =

(∫
exp

(
f(x)− c(x, y)

ε

)
dα̂(x)

)−1

.

and so,

g(y) = −ε log

(∫
exp

(
f(x)− c(x, y)

ε

)
dα̂(x)

)
Plugging this into (6), one can write infg K(θ, f, g) as

⟨cθ, π̂n⟩ − ⟨f, α̂n⟩+ ε

∫
log

(∫
exp

(
f(x)− cθ(x, y)

ε

)
dα̂n(x)

)
dβ̂n(y) + ε.

So, combining this with the Hadamard product form for θ, minθ Fn(θ) is equivalent to solving

inf
u,v,f

⟨cuv, π̂n⟩ − ⟨f, α̂n⟩+ ε

∫
log

(∫
exp

(
f(x)− cuv(x, y)

ε

)
dα̂n(x)

)
dβ̂n(y) +

λ

2
||u||2 + λ

2
||v||2.

The minimizer u, v is related to the optimal θ by θ = u⊙ v. This is now a smooth optimization
problem, for which we employ a quasi-Newton solver (L-BFGS) [1].
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5 Extension to inverse gradient flows

Inverse gradient flow (iJKO). Suppose one observes samples iid samples of probability dis-
tributions ρk for k = 1, 2, . . ., where

ρk+1 = argminρ∈P(X )F(ρ) +
1

2τ
W 2

2 (ρ, ρk)

where W 2
2 is the (entropy regularized) Wasserstein distance with Euclidean metric. The inverse

problem is to recover the functional F : P(X ) → R. This is (on a very formal level) the so-called
Jordan Kinderlehre Otto discretization of the PDE div(µt∇δF (µt)) + ∂tµt = 0 with µkτ ≈ ρk
when τ is small. We will call this the iJKO problem and for simplicity, consider the case where
we have observations of two snapshots ρ0 and ρ1 One particular example of interest is where
F(ρ) =

∫
V (x)dρ(x) and in this context, we are tasked with recovering the potential function V

from iid samples of ρk. Such problems are of particular interest for understanding cell population
dynamics in single-cell genomics [15].

Application of the FY loss In the notation of the inverse optimization problem from
before, for iJKO, we have Ω(ρ) = W 2

2 (ρ, ρ0). Although one could write down the FY loss (3) in
this case, one can consider an extension where we insert the data into the inner problem: Given
observation π̂ and a discrepancy D : P(Z) × P(Z) → [0,∞] with D(ρ, ρ) = 0, the sharpened
Fenchel-Young loss is

L(c, π̂,Ω, D) := ⟨c, π̂⟩+Ω(π̂)− inf
π

{⟨c, π⟩+Ω(π) +D(π, π̂)} .

One can contrast this with (3) where D ≡ 0. If D is the Bregman distance induced by Ω, then
this is the so-called Fitzpatrick function.

For iJKO, if one seeks to recover a functional of the form F(ρ) =
∫
Vθ(x)dρ(x) where Vθ is

the potential of interest, parameterized by θ, the sampled loss given empirical data ρ̂0, ρ̂1 is

Fn(θ) = ⟨Vθ, ρ̂1⟩ − inf
α∈P(X )

{
⟨Vθ, α⟩+W 2

2,ε(α, ρ̂0) + rKL(α|ρ̂1)
}
,

where we have taken D(α, ρ) = rKL(α|ρ̂1) for some r > 0.

Equivalence to inverse unbalanced optimal transport In this case, one can write
the inner minimization problem as

inf
α∈P(X ),π∈U(α,ρ̂0)

∫ (
Vθ(x) + ||x− y||2

)
dπ(x, y) + εKL(π|α⊗ ρ̂0) + rKL(α|ρ̂1)

Note that since α ≪ ρ̂1, we have∫
log

(
dπ

d(α⊗ ρ̂0)

)
dπ =

∫
log

(
dπ

d(ρ̂1 ⊗ ρ̂0)

)
dπ −

∫
log

(
dα

dρ̂1

)
dα.

Plugging this in, and using π1 = α, we arrive at

inf
π2=ρ̂0

∫ (
Vθ(x) + ||x− y||2

)
dπ(x, y) + εKL(π|α⊗ ρ̂0) + (r − ε)KL(π1|ρ̂1)

The inner problem corresponds to an unbalanced OT problem between ρ̂1 and ρ̂0 where we
replace the hard constraint of π1 = ρ̂1 with the KL term. The ‘cost’ that one seeks to find is
then Vθ(x) + ||x − y||2. One can therefore study this setting under the general framework of
inverse unbalanced optimal transport [2].
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6 Recovery guarantees

6.1 Uniqueness

We first mention that if π̂ = π(c) = π(c′), i.e. c and c′ both give rise to the same data, then
there exists functions f and g such that for a.e. x, y,

(c− c′)(x, y) = f(x) + g(y).

In particular, we have uniqueness only up to functions f ⊕ g.

Example 1. Let cθ(x, y) = x⊤θy. Suppose that cθ(x, y) = x⊤θy = f(x) + g(y), we will show
that this implies that θ ≡ 0:

(x− α(X ))⊤θ(y − β(Y)) = cθ −
∫

cθ(x, y)dα(x)−
∫

cθ(x, y)dβ(y) +

∫
cθ(x, y)dα(x)dβ(y)

= cθ(x, y)− ⟨f, α⟩ − g(y)− ⟨g, β⟩ − f(x) + ⟨f, α⟩+ ⟨g, β⟩
= cθ − f ⊕ g = 0.

This is true for all x and y, so θ = 0.

In general, to cater for this invariance of f ⊕ g, we make the following assumption

Assumption 1. Given parameterization cθ(x, y) = θ⊤φ(x, y), the centred functions φ̄ are lin-
early independent:

φ̄(x, y) = φ−
∫

φ(x, y)dα(x)−
∫

φ(x, y)dβ(y) +

∫
φ(x, y)dα(x)dβ(y)

are such that Eα⊗β [φφ
⊤] ∈ Rp×p is invertible.

By construction,
∫
φ̄(x, y)dα(x) = 0 and

∫
φ̄(x, y)dβ(y) = 0 and one can see by emulating the

argument with the quadratic parameterization that there is at most one solution to minθ L(cθ; π̂).

6.2 Stability

We consider the case where R is the ℓ1 regularizer, so

inf
θ
λ||θ||1 + Fn(θ) = inf

θ,f,g
λ||θ||1 +K(θ, f, g)

To obtain stability guarantees, it is not sufficient that θ 7→ Fn(θ) is a convex function. We
would require some local curvature properties, such as local strong convexity and local Lipchitz
smoothness.

An abstract stability result for inverse optimization Let

PΩ(c)
def.
= argminπ⟨c, π⟩+Ω(π).

Let F̂ (θ) = LΩ̂(cθ, π̂) be the Fenchel-Young loss constructed from noisy Ω̂ ≈ Ω and noisy data
π̂. For

θ̂ ∈ argminθF̂ (θ) + λ||θ||,

we have the following abstract result.

Theorem 1. [2] Suppose that π⋆ = PΩ(cθ⋆). Let π̂ be an approximation to π⋆ and Ω̂ be an
approximation to Ω. Suppose that

1. Measurement stability ||⟨φ, π̂ − π⋆⟩|| ⩽ ε.
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2. Forward stability: ||⟨φ, PΩ(cθ⋆)− PΩ̂(cθ⋆)⟩|| ⩽ ε.

3. Local curvature of the loss: F̂ (θ) = L(cθ; Ω̂, π̂) is locally Lipschitz smooth and locally
strongly convex.

Then, for all ε and λ sufficiently small, there exists a unique minimizer to (3) with

||θ − θ⋆|| = O(ε+ λ).

By checking these three conditions for iOT, one can derive the following stability result.

Theorem 2. [2, 1] Fix the entropy regularization parameter ε > 0. Let π⋆ be the entropic OT
plan associated with cost c⋆ = (θ⋆)⊤φ, and let α⋆, β⋆ be its marginals. Assume that

• α⋆, β⋆ are compactly supported,

• the cost parameterization φ is such that its centered version is nondegenerate: define
φ̄(x, y) = φ(x, y) −

∫
φ(x, y)dα⋆(x) −

∫
φ(x, y)dβ⋆(y) +

∫
φ(x, y)dα⋆(x)dβ⋆(y), and as-

sume that
(Eα⋆⊗β⋆ [φ̄i(x, y)φ̄j(x, y)])i,j

is invertible.

Then, the iOT loss F defined with the full data π⋆ is locally strongly convex, locally Lipschitz
smooth and is twice differentiable. Moreover, for all t > 0, with probability at least 1− e−t, the
minimizer θ̂λn to the sampled problem (5) is unique and satisfies

∥θ̂λn − θ⋆∥2 = O

(√
mαmβ(log(n) + t)

n

)
+O(λ). (7)

Let us comment on the three conditions of Theorem 1 the first condition on measurement
stability is generally straightforward. In the iOT setting, π̂ = 1

n

∑n
i=1 δ(xi,yi) where (xi, yi) are

iid samples drawn from π⋆. So, using concentration inequalities such as Hoeffding’s inequality,
one has ||⟨φ, π̂ − π⋆⟩|| = O(1/

√
n) with high probability.

Forward stability The second on forward stability is non-trivial to prove, but is well-
studied in the context of iOT. It is essentially asking that the transport plan computed from
empirical data α̂n, β̂n

π̃
def.
= argminπ∈U(α̂n,β̂n)⟨cθ⋆ , π⟩+ εKL(π|α̂n ⊗ β̂n)

is close to the one computed from true data π⋆. In fact, one has

||⟨φ, π̃ − π⋆⟩|| = O(1/
√
n)

with high probability [13]. The only slight caveat here is that in the iOT setting, α̂n, β̂n are the
marginals of π̂n are therefore not independent as in the setting of [11, 13], so a slightly more
careful analysis needs to be carried out [2].

Local curvature The main work is checking the local curvature properties of F . To do so,
one shows that the loss function constructed full data F = F∞ has local curvature properties
and these are retained with high probability when considering the empirical loss. Recall that
F (θ) = inff,g K(θ, f, g), where

K(θ, f, g)
def.
= ⟨cθ − (f ⊕ g), π⟩+ ε

∫
exp

(
f(x) + g(y)− cθ(x, y)

ε

)
dα(x)dβ(y).
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At the heart of the local curvature results on F , is that fact that the exponential function is
locally lipschitz smooth and locally strongly convex.

Below, I list a few results to give some idea of the main mechanisms behind the proof for
stability of the recovered cost: the first lemma shows that the functiion K is coercive. As a
result, given the cost c, we can restrict the optimization of K over f and g to bounded sets.
The third lemma shows that K is locally strongly convex thanks to the exponential term.

Lemma 1 (Coercivity).

K(f, g, c) ⩾
∫

|f ⊕ g − c|dπ̂ + constant.

Lemma 2 (Restriction to bounded sets). Fix c and assume that c is Lipschitz. Then, there
exists M > 0 such that

inf
f,g

K(f, g, c) = inf
(f,g)∈SM

K(f, g, c)

where SM
def.
=
{
(f, g) \ ||f || ⩽ M, ||g||∞ ⩽ M,

∫
fdα = 0

}
.

The following lemma shows K is locally strongly convex.

Lemma 3 (local strong convexity). If ||f ⊕ g − c||∞, ||f ′ ⊕ g′ − c′||∞ ⩽ M ,

K(f, g, c) ⩾ K(f ′, g′, c′)+⟨∇K(f ′, g′, c′), (f, g, c)−(f ′, g′, c′)⟩+C||(f−f ′)⊕(g−g′)−(c−c′)||2L2(α⊗β)

If
∫
f(x)dα(x) = 0 and

∫
c(x, y)dα(x) =

∫
c(x, y)dβ(y) = 0, then

||(f − f ′)⊕ (g − g′)− (c− c′)||2L2(α⊗β) = ||f − f ′||L2(α) + ||g − g′||L2(β) + ||c− c′||L2(α⊗β)

6.3 Preservation of sparsity patterns

One often takes R(θ) = ∥θ∥1 to enforce sparsity of the solution. One can therefore ask:

Let the ground truth θ⋆ be s-sparse. Under ℓ1-norm regularization, for appropriately chosen
regularization parameter λ and sufficiently many samples n, is the recovered solution θ̂ also

s-sparse?

One can analyse such questions using dual certificates which govern the structural stability
of our reconstruction method. In particular, under certain properties of the so-called dual cer-
tificate, one can guarantee that the recovered solution θ̂nλ has the same support as the underlying
ground truth θ⋆.

The dual certificate The iOT loss F with full data π⋆ can be shown to be twice differen-
tiable. Let H := ∇2F (θ⋆) and define the certificate

z⋆ := argmin
{
⟨z, (H⋆)−1z⟩ : z ∈ ∂∥θ⋆∥1

}
.

It is said to be nondegenerate if z⋆ is in the relative interior of ∂∥θ⋆∥1. That is,

∀i ∈ Supp(θ⋆), (z⋆)i = sign(θ⋆i ) and ∀i ̸∈ Supp(θ⋆), |(z⋆)i| < 1.

Remark 4. In general, the optimality condition to θλ ∈ argminθ F (θ) + λ||θ||1 reads as zλ =
− 1

λ∇F (θλ) ∈ ∂||θλ||1. The points where |zλi | = 1 contain the support of θλ. One can show that
z⋆ is the limit of zλ, so it gives one certificate to analyse the behaviour of θλ when λ is small.

We have the following result:

Theorem 3. Consider the setting of Theorem 2. Suppose that the certificate z∗ is non-
degenerate. Let θ̂ minimize (5) with R(θ) = λ∥θ∥1. Let δ > 0. Then, for all sufficiently small
regularization parameters λ and sufficiently many number of samples n with λ ⩾ C

√
n−1 log(n/δ),

with probability at least 1− δ, the minimizer θ̂ has the same support as θ⋆.
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6.3.1 The Gaussian setting

For simple settings (such as sampling from Gaussians), the non-degeneracy condition can be
checked numerically and we carry out such a numerical investigation in [1]. Similar investigations
are carried out for the iJKO setting in [2].

In the case where α = N (mα,Σα) and β = N (mβ ,Σβ), and the cost function is cθ(x, y) =
x⊤θy, the eOT plan is a Gaussian, has a closed form expression πε(θ) = N (

(
mα

mβ

)
,Σ) where

Σ =

(
Σα Σ̂

Σ̂⊤ Σβ

)
.

where the cross covariance has a closed form expression, but asymptotically, for small ε, it has

the expansion Σ = Σ
1
2
αUV ⊤Σ

1
2

β + εA⊤,† + O(ε2). Since everything is explicit here, one can
compute the Hessian

∂2F (θ⋆) = 2ε
[
4ε2(Σβ − ΣTΣαΣ)

−1 ⊗ (Σα − ΣΣβ
−1Σ⊤)−1 + (θ⋆⊤ ⊗ θ⋆)

]−1

and hence the certificate can be computed in closed form.
In general, it is still difficult to analyse theoretically, but one can consider its limits as ε → ∞

and ε → 0. As ε → ∞, the problem converges minθ λ/ε||θ||1 + J(θ;πε(θ
⋆)) to a Lasso problem

min
θ

1

2
||(Σ

1
2

β ⊗ Σ
1
2
α)(θ − θ⋆)||2F + λ||θ||1.

The certificate corresponds to a Lasso certificate and is typically non-degenerate.
On the other hand, in the special case where Σα = Σβ = Id, as ε → 0, the problem

minθ λε||θ||1 + J(θ;πε(θ
⋆)) converges to a graphical lasso problem

min
θ≻0

λ||θ||1 + ⟨θ, (θ⋆)†⟩+ log det(θ).

The certificate corresponds to a graphical lasso certificate and is typically degenerate.
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divergences. In The 22nd international conference on artificial intelligence and statistics,
pages 1574–1583. PMLR, 2019.

[12] R. Li, X. Ye, H. Zhou, and H. Zha. Learning to match via inverse optimal transport.
Journal of machine learning research, 20(80):1–37, 2019.

[13] P. Rigollet and A. J. Stromme. On the sample complexity of entropic optimal transport.
arXiv preprint arXiv:2206.13472, 2022.

[14] F. Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-
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