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A dynamical system

Consider the discrete and scalar model

xk+1 = 2xk, k ∈ N,
x0 = 1.

Solution:

xk = 2k, k ∈ N.
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An attempt to control

Consider now a controlled model

xk+1 = 2xk + uk, k ∈ N
x0 = 1

Aim: Steer the system to the origin.

We choose the control sequence

(u0, u1, u2, u3, . . .) = (−1.5,−0.5,−1, 0, . . .)

Perturbed system:

xk+1 = 2xk + uk + 0.1

This control strategy is not robust!
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Another attempt to control
Consider again

xk+1 = 2xk + uk, k ∈ N.

We choose the feedback

uk(x) = −1.5x k ∈ N.

Solution:

xk+1 = 2xk − 1.5xk = 0.5xk ⇒ xk = 0.5kx0.

Perturbed system:

xk+1 = 0.5xk + 0.1.

This control strategy is robust!
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Retinal Photocoagulation
Laser treatment for retinal diseases (e.g. macular edema)

Welding two layers of the eye to prevent blindness
Tradeoff:

- High enough temperature for coagulation (ca. 50° C)
- Stay below critical temperature (ca. 55° C)

Laser: 10 kHz repetition rate

↪→ Optimal control to guarantee effective and safe treatment

S. et al., Control Engineering Practice (2022)
S. et al., at-Automatisierungstechnik (2023)
Kleyman, S., et al. IEEE Transactions on Control Systems Technology (2023)
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Model-based planning via optimal control

min
u∈L∞(0,T )

∫ T

0

∥x(t, ·)− 50°∥2L2(Ω) + α|u(t)|2 dt

s.t.

∂tx(t, ω) = ∆x(t, ω) +B(ω, p)u(t)

x(0, ω) = x0(ω)

ω1
ω2

ω3

ze

zb Γ1

Γ2

Γ3
RRI

Challenges:
▶ Patient behavior, e.g., saccades.
▶ Unknown patient-specific absorption coeff. p ∈ R.

Need for feedback control.
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Experiments with pig eyes

Feedback loop in 10 kHz:
1. Solve the optimal control problem

with (x0, p)

2. Apply optimal control u
3. Obtain measurements y

4. State and parameter estimation:
Update (x0, p).
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Central topic for this course

Consider a control system

x+ = F (x, u)

and a data-driven approximation

x+ = F̂ (x, u).

Controller design for F̂ : What can we say about F?
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Outline

1. Today: Stability guarantees via kernel methods
2. Friday: Koopman operator-based techniques
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Autonomous systems
Consider F : Rn → Rn and

x+ = F (x)

and data-driven approximation F̂ : Rn → Rn with

x+ = F̂ (x).

Sampled-data systems
Given ODE

ẋ = f(x), x(0) = x0

with associated flow φ(t;x0). Then, for fixed ∆t > 0, we may define

x+ = F (x) := φ(∆t;x).

When does (asymptotic) stability of F̂ imply (asymptotic) stability of F?
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Tools for stability analysis

Definition (Comparison functions)

▶ K := {α : R≥0 → R≥0 |α continuous, strictly increasing and α(0) = 0}.
▶ K∞ := {α ∈ K |α unbounded}.
▶ KL := {β : R2

≥0 → R≥0 cont. | ∀t ≥ 0 β(·, t) ∈ K∞ and
∀r > 0 : β(r, ·) strictly decreasing and limt→∞ β(r, t) = 0}.

Grüne, Pannek, 2017
22.09.2025 · Manuel Schaller 11 / 37 TUC
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Stability notions

Definition
Equilibrium x∗ = F (x∗) asymptotically stable with domain of
attraction Y ⊂ Rn if ∃β ∈ KL :

∀x ∈ Y, n ∈ N0 : ∥Fn(x)− x∗∥ ≤ β(∥x− x∗∥, n). (1)

In addition, let P ⊂ Y . Then x∗ ∈ P P -practically
asymptotically stable on Y if ∃β ∈ KL :

∀x ∈ Y, n ∈ N0 : Fn(x) ∈ P or (1).

Grüne, Pannek, 2017
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Lyapunov functions

Definition
A continuous function V : Y ⊂ Rn → R≥0 is a Lyapunov function if ∃α1, α2 ∈ K∞ and αV ∈ K :

α1(∥x− x∗∥) ≤ V (x) ≤ α2(∥x− x∗∥) ∀x ∈ Y

and
V (F (x)) ≤ V (x)− αV (∥x− x∗∥) ∀x ∈ Y. (2)

Proposition
Let Y forward invariant, Y ∋ x∗ = F (x∗).
▶ If V Lyapunov function then x∗ asymptotically stable.
▶ If P ∋ x∗ forward invariant s.t. decrease (2) holds on S = Y \ P , then P -practically as. stable.
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Sketch of the proof
Quadratic setting: Assume that αV (r) = cV r

2, α1(r) = c1r
2, α2(r) = c2r

2 for cV , c1, c2 > 0.

Then.

V (x+) ≤ V (x)− cV ∥x∥2

≤ (1− cV
c2

)V (x) =: ρV (x), ρ < 1.

Iterating this yields

V (xk) ≤ ρkV (x0)

hence

∥xk∥2 ≤ c2
c1

ρk∥x0∥2.

Remark A similar but more technical argument also works for α1, α2 ∈ K∞ and αV ∈ K.
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Asymptotic stability
Assume in the following that V has modulus of continuity s.t. |V (x)− V (y)| ≤ ωV (∥x− y∥).

Proposition
Assume there is a Lyapunov function for F̂ w.r.t. x∗ ∈ Rn and

∥F (x)− F̂ (x)∥ ≤ ε ∀x ∈ Y

Then F is P -practically as. stable with P ⊂ Bη(x
∗) with η = α−1

V (2ωV (ε)).

V (F (x)) =
[
V (F (x))− V (F̂ (x))

]
+ V (F̂ (x))

≤
[
ωV (ε)− 1

2αV (∥x− x∗∥)
]
+ V (x)− 1

2αV (∥x− x∗∥) !
⇝ ωV (ε) ≤ 1

2αV (∥x− x∗∥)

In the quadratic case αV (r) = cV r
2 and if V has Lipschitz constant LV , then η = 2LV

cV

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025
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A wish: proportional error

(((((((((
∥F (x)− F̂ (x)∥ ≤ ε ⇝ ∥F (x)− F̂ (x)∥ ≤ ε∥x− x∗∥

Then,

V (F (x)) ≤
[
ωV (ε∥x− x∗∥)− 1

2αV (∥x− x∗∥)
]

︸ ︷︷ ︸
≤0

+V (x)− 1
2αV (∥x− x∗∥)

⇝ ωV (ε∥x− x∗∥) ≤ 1
2αV (∥x− x∗∥) for ε small

If decrease at least as strong as modulus of continuity: Asymptotic stability.
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Asymptotic stability

Corollary
Let F̂ be asymptotically stable with Lyapunov function V such that

lim sup
r↘0

ωV (r)

αV (r)
< ∞.

and

∥F (x)− F̂ (x)∥ ≤ ε∥x− x∗∥.

Then F is also asymptotically stable with Lyapunov function V .

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025
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Norm-based Lyapunov functions
Assume V (x) = x2 and αV (r) = cr2 for some c > 0.

Then

V (x)− V (y) = ∥x∥2 − ∥y∥2 = ⟨x− y, x+ y⟩

⇒ ωV (r) ∼ r ⇒ ωV (r)

αV (r)
=

r

r2
→ ∞

the compatibility assumption does not hold.

Remark
If V (x) = ∥x− x∗∥p for some p ∈ N, then

lim sup
r↘0

rp

αV (r)
< ∞

is sufficient.
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Intermediate summary

Practical asymptotic stability

∥F (x)− F̂ (x)∥ ≤ ε

allow to infer
F̂ as. stab. ⇒ F prac. as. stab.

Asymptotic stability

∥F (x)− F̂ (x)∥ ≤ ε∥x− x∗∥

allow to infer

F̂ as. stab. ⇒ F as. stab.
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Kernel-based approximations
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Reproducing Kernel Hilbert Spaces (RKHS)
A RKHS H over Ω ⊂ Rn is a
▶ Hilbert space of functions f : Ω → R
▶ with s.p.d. kernel k : Ω× Ω → R with k(x, ·) ∈ H for all x ∈ Ω and

∀φ ∈ H : φ(x) = ⟨φ, k(x, ·)⟩ reproducing property

Important consequence: H ↪→ Cb(Ω) continuously.

Popular kernels:

▶ Gaussian kernel (smooth functions)

k(x, y) = e−
∥x−y∥2

2σ2

▶ Wendland or Matérn kernels (fractional Sobolev spaces)
▶ Thin-Plate splines (Beppo Levi spaces)

k(x, y) = ∥x− y∥2 log(∥x− y∥)
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Data-driven approximations
Given data points X = {x1 . . . , xd} ⊂ Ω and set

VX := span{k(x1, ·), k(x2, ·), . . . , k(xd, ·)} ⊂ H

Best-approximation, i.e., H-orthogonal projection of f ∈ H

v ∈ argming∈VX
∥f − g∥2H

=⇒ 0 = ⟨f − v, k(xi, ·)⟩ = f(xi)− v(xi).
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Data-driven approximations
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VX := span{k(x1, ·), k(x2, ·), . . . , k(xd, ·)} ⊂ H

Best-approximation, i.e., H-orthogonal projection of f ∈ H

v ∈ argming∈VX
∥f − g∥2H =⇒ 0 = ⟨f − v, k(xi, ·)⟩ = f(xi)− v(xi).

Kernel trick: Inner products correspond to point evaluations.

Easy to compute: Basis representation v(x) =
∑d

i=1 αik(xi, x) satisfies

d∑
i=1

αik(xi, xj) = f(xj) ⇝ α = K−1
X fX

with

(fX )i = f(xi), (KX )ij = k(xi, xj) s.p.d..

22.09.2025 · Manuel Schaller 21 / 37 TUC

TUC


Data-Driven Methods in Control
Workshop and Summer School on Applied Analysis 2025

A first simple data-driven model

Given (xi, F (xi))
d
i=1 and define best approximation componentwise

F̂i := PVXFi =

d∑
j=1

(K−1
X Fi,X )jk(xj , ·).

Then

∥Fi(x)− F̂i(x)∥ ≤ ∥Fi − PVXFi∥Cb(Ω) ≤ ∥I − PVX ∥H→Cb(Ω)∥Fi∥H

Projection error controlled by fill distance

hX := sup
x∈Ω

min
1≤i≤d

∥x− xi∥2,
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Wendland radial basis functions

with compactly supported radially symmetric kernel

k(x, y) := ϕn,k(∥x− y∥).

and

H ∼= Hσn,k(Ω).

Wendland, Advances in Computational Mathematics 1995
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An error bound

Theorem (Wendland 1995)
There are C, h0 > 0 such that for every set X = {xi}di=1 ⊂ Ω with hX ≤ h0 and all α ∈ Nd

0 , |α| ≤ k,

|Dαφ(x)−Dα(PXφ)(x)| ≤ Ch
k+1/2−|α|
X ∥φ∥HΦn,k

∀x ∈ Ω

In particular, with α = 0,

∥I − PX ∥HΦn,k
→Cb(Ω) ≤ Ch

k+1/2
X .

Direct consequence :

∥F (x)− F̂ (x)∥ ≤ Ch
k+1/2
X ∥F∥Hn

Constant error bound⇝ practical asymptotic stability.
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A proportional error bound

Theorem (BPSW 2024)
There are C, h0 > 0 such that, for every set X = {xj}dj=1 ⊂ Ω with hX ≤ h0,∣∣φ(x)− (PXφ)(x)

∣∣ ≤ Ch
k−1/2
X dist(x,X )∥φ∥HΦn,k

∀x ∈ Ω.

Sketch of the proof: Set e = φ− PXφ. Then for x ∈ Ω and z ∈ X

e(x) = e(z)︸︷︷︸
=0

+ ∇e(z)︸ ︷︷ ︸
≤Ch

k−1/2
X ∥φ∥

(x− z) + . . .

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025
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Stability

Corollary
If x∗ ∈ X :
▶ x∗ is equilibrium of F̂ iff x∗ equilibrium of F :

F̂ (x∗) = PXF (x∗) = F (x∗).

▶ Proportional bound

∥F (x)− F̂ (x)∥ ≤ Chk−1/2 dist(x,X )∥F∥ ≤ c̃∥x− x∗∥

▶ Suitable compatbility assumptions on the Lyapunov function ⇒ asymptotic stability is preserved.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025
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An example1

x+ = F (x) :=
1

8

(
∥x∥2 − 1 −1

1 ∥x∥2 − 1

)
x ⇝ V (x) = ∥x∥2, αV (r) = 7r2/32.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025
1Li, Hafstein, Kellett, CDC 2014
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Learning control systems
Control-affine dynamics

x+ = F (x, u) = g0(x) +G(x)u.

Data points X = {x1, . . . , xd} with successors

▶ u = 0: x+
i,0 = g0(xi)

▶ u = ej : x+
i,j = g0(xi) +G(xi)ej ∀j = 0, . . . ,m

↪→ Samples of H(xi) := [g(xi), G(xi)], xi ∈ X .

Componentwise projection. Compute

Hpq ≈ Ĥpq :=
d∑

i=1

(K−1
X (Hpq)X )ik(xi, x) Best-approximation of Hpq.

Set
[
ĝ0 Ĝ

]
= Ĥ and define

x+ = F̂ (x, u) = ĝ0(x) + Ĝ(x)u
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ĝ0 Ĝ
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]
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Error bound

Corollary
There are C, h0 > 0 s.t. for every set X = {xj}dj=1 ⊂ Ω with hX ≤ h0,

∥F (x, u)− F̂ (x, u)∥∞ ≤ C · hk−1/2
X dist(x,X )max

p,q
∥Hpq∥H(1 + ∥u∥1) ∀x ∈ Ω, u ∈ Rm.

Definition (Stabilizing feedbacks)
We say that a feedback law κ : Rn → Rm is asymptotically stabilizing a system F (x, u) if the
autonomous system

C(x) := F (x, κ(x))

is asymptotically stable towards x∗.
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Feedback control
Example

x+ = F (x, u) = 2x+ u

Feedback κ(x) = −1.5x⇒ x+ = F (x, κ(x)) = 2x− 1.5x = 0.5x.

Corollary (Feedback control)
Given feedback law κ : Rn → Rm bounded on bounded sets stabilizing F̂ with Lyapunov function
satisfying compatibility assumption.

Then, if x∗ ∈ X , κ is also asymptotically stabilizing F .

Proof: Ĉ(x) = F̂ (x, κ(x)) is asymptotically stable. Further, proportional bound

∥C(x)− Ĉ(x)∥ ≲ h
k−1/2
X dist(x,X ) ≤ h

k−1/2
X ∥x− x∗∥2

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025
22.09.2025 · Manuel Schaller 30 / 37 TUC

TUC


Data-Driven Methods in Control
Workshop and Summer School on Applied Analysis 2025

Feedback control
Example

x+ = F (x, u) = 2x+ u Feedback κ(x) = −1.5x

⇒ x+ = F (x, κ(x)) = 2x− 1.5x = 0.5x.

Corollary (Feedback control)
Given feedback law κ : Rn → Rm bounded on bounded sets stabilizing F̂ with Lyapunov function
satisfying compatibility assumption.

Then, if x∗ ∈ X , κ is also asymptotically stabilizing F .
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Data-driven Model Predictive Control
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Experiments with pig eyes

Feedback loop in 10 kHz:
1. Solve the optimal control problem

with (x0, p)

2. Apply optimal control u
3. Obtain measurements y

4. State and parameter estimation:
Update (x0, p).
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Model Predictive Control (MPC)

System
x+ = F (x, u)

Solve OCP

stat
e

x̂

minu
∑N

k=0 ℓ(xk, uk)

s.t. xk+1 = F (xk, uk)

x0 = x̂

Initial part of
opt.

con
tro

l

µN(x̂
) :=

u∗0

i = i+ 1
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Model Predictive Control (MPC)

System
x+ = F (x, u)

Solve OCP

stat
e

x̂

minu
∑N

k=0 ℓ(xk, uk)

s.t. xk+1 = F̂ (xk, uk)

x0 = x̂

Initial part of
opt.

con
tro

l

µN(x̂
) :=

u∗0

i = i+ 1

What happens, if the model in the OCP is a data-driven surrogate for the true dynamics?
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Model Predictive Control

Set-point stabilization of the origin with F (0, 0) = 0

MPC scheme with prediction horizon N

1) Measure current state x0 := x(n)

2) Minimize JN (x̂, u) =
∑N−1

k=1 ∥x(k)∥2 + ∥u(k)∥2

subject to
• x(k + 1) = F (x(k), u(k)) with x(0) = x0

• x(k) ∈ X, u(k) ∈ U ∀ k ∈ 0 . . . N − 1.

3) Apply first element u⋆(0) of optimal control sequence⇝ F (x0, u∗(0)).

MPC feedback law µN : Rn → U via µN (x0) := u⋆(0)⇝ Nominal closed loop: F (·, µN (·))

Here: Optimization with data-driven surrogate F̂ ⇝ Closed loop: F (·, µ̂N (·))
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How to prove stability?

Central tool: Optimal value function

VN (x0) = inf
u∈Uε

N (x̂)

N−1∑
k=0

∥xu(k;x
0)∥2 + ∥u(k)∥2

Definition2

An OCP is cost controllable if
∃γ > 0 : V (x0) ≤ γ · ∥x0∥2 ∀N ≥ 1, x0 ∈ X

2Coron, Grüne, Worthmann, SICON 2020
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Relaxed Lyapunov inequality

Theorem
Let the OCP be cost controllable.

Then there is α ∈ (0, 1] and N ∈ N such that for all x ∈ S,

VN (F (x, µN (x))) ≤ VN (x)− αℓ(x, µN (x))

In addition, there exist α1, α2 ∈ K∞ s.t. ∀x ∈ S, u ∈ U.

α1(∥x∥) ≤ VN (x) ≤ α2(∥x∥)

Corollary
For small enough fill distance, the MPC controller achieves asymptotic stability.

Schimperna, Worthmann, S., Bold, Magni, arXiv:2505.05951, 2025
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Numerical example

Van der Pol oscillator:

ẋ =
(

x2

ν(1−x1)2x2−x1+u

)
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S
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S 0

(
qa
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)
.
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