

Data-Driven Methods in Control: Error Bounds and Guaranteed Stability

Manuel Schaller

Workshop and Summer School on Applied Analysis 2025

22.09.2025

A dynamical system

Consider the discrete and scalar model

$$x_{k+1} = 2x_k, \qquad k \in \mathbb{N},$$
$$x_0 = 1.$$

A dynamical system

Consider the discrete and scalar model

$$x_{k+1} = 2x_k, \qquad k \in \mathbb{N},$$

$$x_0 = 1.$$

Solution:

$$x_k = 2^k, \qquad k \in \mathbb{N}.$$

A dynamical system

Consider the discrete and scalar model

$$x_{k+1} = 2x_k, \qquad k \in \mathbb{N},$$

$$x_0 = 1.$$

Solution:

$$x_k = 2^k, \qquad k \in \mathbb{N}.$$

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Aim: Steer the system to the origin.

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Aim: Steer the system to the origin.

We choose the control sequence

$$(u_0, u_1, u_2, u_3, \ldots) = (-1.5, -0.5, -1, 0, \ldots)$$

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Aim: Steer the system to the origin.

We choose the control sequence

$$(u_0, u_1, u_2, u_3, \ldots) = (-1.5, -0.5, -1, 0, \ldots)$$

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Aim: Steer the system to the origin.

We choose the control sequence

$$(u_0, u_1, u_2, u_3, \ldots) = (-1.5, -0.5, -1, 0, \ldots)$$

Perturbed system:

$$x_{k+1} = 2x_k + u_k + 0.1$$

An attempt to control

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Aim: Steer the system to the origin.

We choose the control sequence

$$(u_0, u_1, u_2, u_3, \ldots) = (-1.5, -0.5, -1, 0, \ldots)$$

Perturbed system:

$$x_{k+1} = 2x_k + u_k + 0.1$$

Consider now a controlled model

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}$$
$$x_0 = 1$$

Aim: Steer the system to the origin.

We choose the control sequence

$$(u_0, u_1, u_2, u_3, \ldots) = (-1.5, -0.5, -1, 0, \ldots)$$

Perturbed system:

$$x_{k+1} = 2x_k + u_k + 0.1$$

This control strategy is not robust!

Consider again

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}.$$

We choose the feedback

$$u_k(x) = -1.5x \quad k \in \mathbb{N}.$$

Consider again

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}.$$

We choose the feedback

$$u_k(x) = -1.5x \quad k \in \mathbb{N}.$$

Solution:

$$x_{k+1} = 2x_k - 1.5x_k = 0.5x_k \quad \Rightarrow \quad x_k = 0.5^k x_0.$$

Consider again

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}.$$

We choose the feedback

$$u_k(x) = -1.5x \quad k \in \mathbb{N}.$$

Solution:

$$x_{k+1} = 2x_k - 1.5x_k = 0.5x_k \quad \Rightarrow \quad x_k = 0.5^k x_0.$$

Perturbed system:

$$x_{k+1} = 0.5x_k + 0.1$$
.

Consider again

$$x_{k+1} = 2x_k + u_k, \qquad k \in \mathbb{N}.$$

We choose the feedback

$$u_k(x) = -1.5x \quad k \in \mathbb{N}.$$

Solution:

$$x_{k+1} = 2x_k - 1.5x_k = 0.5x_k \quad \Rightarrow \quad x_k = 0.5^k x_0.$$

Perturbed system:

$$x_{k+1} = 0.5x_k + 0.1.$$

This control strategy is robust!

TECHNISCHE UNIVERSITÄT BIODE GLA SIDORUPTIONAT ELBOPIA CHEMNITZ

Retinal Photocoagulation

Laser treatment for retinal diseases (e.g. macular edema)

S. et al., Control Engineering Practice (2022)

S. et al., at-Automatisierungstechnik (2023)

Kleyman, S., et al. IEEE Transactions on Control Systems Technology (2023)

Laser treatment for retinal diseases (e.g. **macular edema**) **Welding** two layers of the eye to prevent blindness

S. et al., Control Engineering Practice (2022)

S. et al., at-Automatisierungstechnik (2023)

Kleyman, S., et al. IEEE Transactions on Control Systems Technology (2023)

Laser treatment for retinal diseases (e.g. **macular edema**) **Welding** two layers of the eye to prevent blindness **Tradeoff**:

- High enough temperature for coagulation (ca. 50° C)
- Stay below critical temperature (ca. 55° C)

Kleyman, S., et al. IEEE Transactions on Control Systems Technology (2023)

S. et al., Control Engineering Practice (2022)

S. et al., at-Automatisierungstechnik (2023)

Laser treatment for retinal diseases (e.g. macular edema)

Welding two layers of the eye to prevent blindness

Tradeoff:

- High enough temperature for coagulation (ca. 50° C)
- Stay below critical temperature (ca. 55° C)

Laser: 10 kHz repetition rate

Kleyman, S., et al. IEEE Transactions on Control Systems Technology (2023)

S. et al., Control Engineering Practice (2022)

S. et al., at-Automatisierungstechnik (2023)

Laser treatment for retinal diseases (e.g. macular edema)

Welding two layers of the eye to prevent blindness

Tradeoff:

- High enough temperature for coagulation (ca. 50° C)
- Stay below critical temperature (ca. 55° C)

Laser: 10 kHz repetition rate

→ **Optimal control** to guarantee effective and safe treatment

S. et al., Control Engineering Practice (2022)

S. et al., at-Automatisierungstechnik (2023)

Kleyman, S., et al. IEEE Transactions on Control Systems Technology (2023)

$$\partial_t x(t,\omega) = \Delta x(t,\omega) + B(\omega, p)u(t)$$
$$x(0,\omega) = x_0(\omega)$$

$$\begin{split} \min_{u \in L^{\infty}(0,T)} \int_{0}^{T} \|x(t,\cdot) - 50^{\circ}\|_{L^{2}(\Omega)}^{2} + \alpha |u(t)|^{2} \, \mathrm{d}t \\ \text{s.t.} \quad \partial_{t} x(t,\omega) &= \Delta x(t,\omega) + B(\omega,p) u(t) \\ x(0,\omega) &= x_{0}(\omega) \\ x(t,\omega) &\leq 55^{\circ} \\ 0 &\leq u(t) \leq P_{\max} \end{split}$$

$$\begin{split} \min_{u \in L^{\infty}(0,T)} & \int_{0}^{T} \|x(t,\cdot) - 50^{\circ}\|_{L^{2}(\Omega)}^{2} + \alpha |u(t)|^{2} \, \mathrm{d}t \\ \text{s.t.} \quad & \partial_{t} x(t,\omega) = \Delta x(t,\omega) + B(\omega,p) u(t) \\ & x(0,\omega) = x_{0}(\omega) \\ & x(t,\omega) \leq 55^{\circ} \\ & 0 \leq u(t) \leq P_{\max} \end{split}$$

$$\begin{split} \min_{u \in L^{\infty}(0,T)} \int_{0}^{T} & \|x(t,\cdot) - 50^{\circ}\|_{L^{2}(\Omega)}^{2} + \alpha |u(t)|^{2} \, \mathrm{d}t \\ \text{s.t.} \quad & \partial_{t} x(t,\omega) = \Delta x(t,\omega) + B(\omega,p) u(t) \\ & x(0,\omega) = x_{0}(\omega) \\ & x(t,\omega) \leq 55^{\circ} \\ & 0 \leq u(t) \leq P_{\max} \end{split}$$

Challenges:

- ▶ Patient behavior, e.g., saccades.
- ▶ Unknown patient-specific **absorption coeff.** $p \in \mathbb{R}$.

$$\begin{split} \min_{u \in L^{\infty}(0,T)} & \int_{0}^{T} \|x(t,\cdot) - 50^{\circ}\|_{L^{2}(\Omega)}^{2} + \alpha |u(t)|^{2} \, \mathrm{d}t \\ \text{s.t.} \quad & \partial_{t} x(t,\omega) = \Delta x(t,\omega) + B(\omega,p) u(t) \\ & x(0,\omega) = x_{0}(\omega) \\ & x(t,\omega) \leq 55^{\circ} \\ & 0 \leq u(t) \leq P_{\max} \end{split}$$

Challenges:

- Patient behavior, e.g., saccades.
- ▶ Unknown patient-specific **absorption coeff.** $p \in \mathbb{R}$.

Need for feedback control.

Experiments with pig eyes

Feedback loop in 10 kHz:

- 1. **Solve** the optimal control problem with (x^0, p)
- 2. Apply optimal control u
- 3. Obtain **measurements** y
- 4. State and parameter estimation: Update (x^0, p) .

Experiments with pig eyes

Feedback loop in 10 kHz:

- 1. **Solve** the optimal control problem with (x^0, p)
- 2. Apply optimal control u
- 3. Obtain **measurements** y
- 4. State and parameter estimation: Update (x^0, p) .

Central topic for this course

Consider a control system

$$x^+ = F(x, u)$$

and a data-driven approximation

$$x^+ = \widehat{F}(x, u).$$

8 / 37 TUC

Central topic for this course

Consider a control system

$$x^+ = F(x, u)$$

and a data-driven approximation

$$x^+ = \widehat{F}(x, u).$$

Controller design for \widehat{F} : What can we say about F?

8 / 37 TUC

Outline

- 1. Today: Stability guarantees via kernel methods
- 2. Friday: Koopman operator-based techniques

9/37 TUC

Consider $F: \mathbb{R}^n \to \mathbb{R}^n$ and

$$x^+ = F(x)$$

Consider $F: \mathbb{R}^n \to \mathbb{R}^n$ and

$$x^+ = F(x)$$

and data-driven approximation $\widehat{F}: \mathbb{R}^n \to \mathbb{R}^n$ with

$$x^+ = \widehat{F}(x).$$

Consider $F: \mathbb{R}^n \to \mathbb{R}^n$ and

$$x^+ = F(x)$$

and data-driven approximation $\widehat{F}: \mathbb{R}^n \to \mathbb{R}^n$ with

$$x^+ = \widehat{F}(x).$$

Sampled-data systems

Given ODE

$$\dot{x} = f(x), \qquad x(0) = x^0$$

with associated flow $\varphi(t; x^0)$. Then, for fixed $\Delta t > 0$, we may define

$$x^+ = F(x) := \varphi(\Delta t; x).$$

Consider $F: \mathbb{R}^n \to \mathbb{R}^n$ and

$$x^+ = F(x)$$

and data-driven approximation $\widehat{F}: \mathbb{R}^n \to \mathbb{R}^n$ with

$$x^+ = \widehat{F}(x).$$

Sampled-data systems

Given ODE

$$\dot{x} = f(x), \qquad x(0) = x^0$$

with associated flow $\varphi(t;x^0)$. Then, for fixed $\Delta t>0$, we may define

$$x^+ = F(x) := \varphi(\Delta t; x).$$

When does (asymptotic) stability of \widehat{F} imply (asymptotic) stability of F?

Consider $F: \mathbb{R}^n \to \mathbb{R}^n$ and

$$x^+ = F(x)$$

and data-driven approximation $\widehat{F}: \mathbb{R}^n \to \mathbb{R}^n$ with

$$x^+ = \widehat{F}(x).$$

Sampled-data systems

Given ODE

$$\dot{x} = f(x), \qquad x(0) = x^0$$

with associated flow $\varphi(t;x^0)$. Then, for fixed $\Delta t>0$, we may define

$$x^+ = F(x) := \varphi(\Delta t; x).$$

When does (asymptotic) stability of \widehat{F} imply (asymptotic) stability of F?

Tools for stability analysis

Definition (Comparison functions)

- $\mathscr{K} := \{\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \mid \alpha \text{ continuous, strictly increasing and } \alpha(0) = 0\}.$
- $\blacktriangleright \ \mathscr{K}_{\infty} := \{ \alpha \in \mathscr{K} \mid \alpha \text{ unbounded} \}.$
- $\mathcal{KL} := \{ \beta : \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0} \text{ cont. } | \forall t \geq 0 \ \beta(\cdot, t) \in \mathcal{K}_{\infty} \text{ and } \\ \forall r > 0 : \beta(r, \cdot) \text{ strictly decreasing and } \lim_{t \to \infty} \beta(r, t) = 0 \}.$

Grüne, Pannek, 2017

Stability notions

Definition

Equilibrium $x^* = F(x^*)$ asymptotically stable with domain of attraction $Y \subset \mathbb{R}^n$ if $\exists \beta \in \mathscr{KL}$:

$$\forall x \in Y, n \in \mathbb{N}_0: \quad \|F^n(x) - x^*\| \le \beta(\|x - x^*\|, n). \tag{1}$$

Grüne, Pannek, 2017

Stability notions

Definition

Equilibrium $x^* = F(x^*)$ asymptotically stable with domain of attraction $Y \subset \mathbb{R}^n$ if $\exists \beta \in \mathscr{KL}$:

$$\forall x \in Y, n \in \mathbb{N}_0: \quad ||F^n(x) - x^*|| \le \beta(||x - x^*||, n).$$
 (1)

In addition, let $P \subset Y$. Then $x^* \in P$ P-practically asymptotically stable on Y if $\exists \beta \in \mathscr{KL}$:

$$\forall x \in Y, n \in \mathbb{N}_0 : F^n(x) \in P$$
 or (1).

Grüne, Pannek, 2017

Stability notions

Definition

Equilibrium $x^* = F(x^*)$ asymptotically stable with domain of attraction $Y \subset \mathbb{R}^n$ if $\exists \beta \in \mathscr{KL}$:

$$\forall x \in Y, n \in \mathbb{N}_0: \quad \|F^n(x) - x^*\| \le \beta(\|x - x^*\|, n).$$
 (1)

In addition, let $P \subset Y$. Then $x^* \in P$ P-practically asymptotically stable on Y if $\exists \beta \in \mathscr{KL}$:

$$\forall x \in Y, n \in \mathbb{N}_0: F^n(x) \in P$$
 or (1).

Grüne, Pannek, 2017

Z##5 TECHNISCHE UNIVERSITÄT BIODRIGUTUNGET ELBORGE CHEMNITZ

Lyapunov functions

Definition

A continuous function $V:Y\subset\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ is a Lyapunov function if $\exists \alpha_1,\alpha_2\in\mathscr{K}_\infty$ and $\alpha_V\in\mathscr{K}$:

$$\alpha_1(\|x - x^*\|) \le V(x) \le \alpha_2(\|x - x^*\|) \quad \forall x \in Y$$

and

$$V(F(x)) \le V(x) - \alpha_V(\|x - x^*\|) \qquad \forall x \in Y.$$
 (2)

Lyapunov functions

Definition

A continuous function $V:Y\subset\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ is a Lyapunov function if $\exists \alpha_1,\alpha_2\in\mathscr{K}_{\infty}$ and $\alpha_V\in\mathscr{K}$:

$$\alpha_1(||x - x^*||) \le V(x) \le \alpha_2(||x - x^*||) \quad \forall x \in Y$$

and

$$V(F(x)) \le V(x) - \alpha_V(\|x - x^*\|) \qquad \forall x \in Y.$$
 (2)

Proposition

Let Y forward invariant, $Y \ni x^* = F(x^*)$.

- ▶ If V Lyapunov function then x^* asymptotically stable.
- ▶ If $P \ni x^*$ forward invariant s.t. decrease (2) holds on $S = Y \setminus P$, then P-practically as. stable.

Quadratic setting: Assume that $\alpha_V(r)=c_Vr^2, \alpha_1(r)=c_1r^2, \alpha_2(r)=c_2r^2$ for $c_V, c_1, c_2>0$.

Quadratic setting: Assume that
$$\alpha_V(r)=c_Vr^2, \alpha_1(r)=c_1r^2, \alpha_2(r)=c_2r^2$$
 for $c_V, c_1, c_2>0$. Then.

$$V(x^+) \le V(x) - c_V ||x||^2$$

Quadratic setting: Assume that $\alpha_V(r)=c_Vr^2, \alpha_1(r)=c_1r^2, \alpha_2(r)=c_2r^2$ for $c_V, c_1, c_2>0$. Then.

$$V(x^+) \le V(x) - c_V ||x||^2 \le (1 - \frac{c_V}{c_2})V(x) =: \rho V(x), \qquad \rho < 1.$$

ZIIIS TECHNISCHE UNIVERSITÄT BIODIC GLA TUPONOPHINATI EUROPIA CHEMNITZ

Sketch of the proof

Quadratic setting: Assume that $\alpha_V(r)=c_Vr^2, \alpha_1(r)=c_1r^2, \alpha_2(r)=c_2r^2$ for $c_V, c_1, c_2>0$. Then.

$$V(x^+) \le V(x) - c_V ||x||^2 \le (1 - \frac{c_V}{c_2})V(x) =: \rho V(x), \qquad \rho < 1.$$

Iterating this yields

$$V(x^k) \le \rho^k V(x^0)$$

Quadratic setting: Assume that $\alpha_V(r) = c_V r^2$, $\alpha_1(r) = c_1 r^2$, $\alpha_2(r) = c_2 r^2$ for c_V , c_1 , $c_2 > 0$. Then.

$$V(x^+) \le V(x) - c_V ||x||^2 \le (1 - \frac{c_V}{c_2})V(x) =: \rho V(x), \qquad \rho < 1.$$

Iterating this yields

$$V(x^k) \le \rho^k V(x^0)$$

hence

$$||x^k||^2 \le \frac{c_2}{c_1} \rho^k ||x^0||^2.$$

TUC 22.09.2025 · Manuel Schaller 14 / 37

Quadratic setting: Assume that $\alpha_V(r)=c_Vr^2, \alpha_1(r)=c_1r^2, \alpha_2(r)=c_2r^2$ for $c_V, c_1, c_2>0$. Then,

$$V(x^+) \le V(x) - c_V ||x||^2 \le (1 - \frac{c_V}{c_2})V(x) =: \rho V(x), \qquad \rho < 1.$$

Iterating this yields

$$V(x^k) \le \rho^k V(x^0)$$

hence

$$||x^k||^2 \le \frac{c_2}{c_1} \rho^k ||x^0||^2.$$

Remark A similar but more technical argument also works for $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\alpha_V \in \mathcal{K}$.

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Proposition

Assume there is a Lyapunov function for \widehat{F} w.r.t. $x^* \in \mathbb{R}^n$ and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon \quad \forall x \in Y$$

Then F is P-practically as. stable with $P \subset B_{\eta}(x^*)$ with $\eta = \alpha_V^{-1}(2\omega_V(\varepsilon))$.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Proposition

Assume there is a Lyapunov function for \widehat{F} w.r.t. $x^* \in \mathbb{R}^n$ and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon \quad \forall x \in Y$$

Then F is P-practically as. stable with $P \subset B_{\eta}(x^*)$ with $\eta = \alpha_V^{-1}(2\omega_V(\varepsilon))$.

$$V(F(x)) = \left[V(F(x)) - V(\widehat{F}(x))\right] + V(\widehat{F}(x))$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Proposition

Assume there is a Lyapunov function for \widehat{F} w.r.t. $x^* \in \mathbb{R}^n$ and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon \quad \forall x \in Y$$

Then F is P-practically as. stable with $P \subset B_{\eta}(x^*)$ with $\eta = \alpha_V^{-1}(2\omega_V(\varepsilon))$.

$$V(F(x)) = \left[V(F(x)) - V(\widehat{F}(x))\right] + V(\widehat{F}(x))$$

$$\leq \omega_V(\|F(x) - \widehat{F}(x)\|) + V(x) - \alpha_V(\|x - x^*\|)$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Proposition

Assume there is a Lyapunov function for \widehat{F} w.r.t. $x^* \in \mathbb{R}^n$ and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon \quad \forall x \in Y$$

Then F is P-practically as. stable with $P \subset B_{\eta}(x^*)$ with $\eta = \alpha_V^{-1}(2\omega_V(\varepsilon))$.

$$V(F(x)) = \left[V(F(x)) - V(\widehat{F}(x)) \right] + V(\widehat{F}(x))$$

$$\leq \omega_{V}(\|F(x) - \widehat{F}(x)\|) + V(x) - \alpha_{V}(\|x - x^{*}\|)$$

$$\leq \left[\omega_{V}(\varepsilon) - \frac{1}{2}\alpha_{V}(\|x - x^{*}\|) \right] + V(x) - \frac{1}{2}\alpha_{V}(\|x - x^{*}\|)$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Proposition

Assume there is a Lyapunov function for \widehat{F} w.r.t. $x^* \in \mathbb{R}^n$ and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon \quad \forall x \in Y$$

Then F is P-practically as. stable with $P \subset B_{\eta}(x^*)$ with $\eta = \alpha_V^{-1}(2\omega_V(\varepsilon))$.

$$V(F(x)) = \left[V(F(x)) - V(\widehat{F}(x)) \right] + V(\widehat{F}(x))$$

$$\leq \omega_{V}(\|F(x) - \widehat{F}(x)\|) + V(x) - \alpha_{V}(\|x - x^{*}\|)$$

$$\leq \left[\omega_{V}(\varepsilon) - \frac{1}{2}\alpha_{V}(\|x - x^{*}\|) \right] + V(x) - \frac{1}{2}\alpha_{V}(\|x - x^{*}\|) \qquad \stackrel{!}{\leadsto} \quad \omega_{V}(\varepsilon) \leq \frac{1}{2}\alpha_{V}(\|x - x^{*}\|)$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Assume in the following that V has modulus of continuity s.t. $|V(x) - V(y)| \le \omega_V(||x - y||)$.

Proposition

Assume there is a Lyapunov function for \widehat{F} w.r.t. $x^* \in \mathbb{R}^n$ and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon \quad \forall x \in Y$$

Then F is P-practically as. stable with $P \subset B_{\eta}(x^*)$ with $\eta = \alpha_V^{-1}(2\omega_V(\varepsilon))$.

$$V(F(x)) = \left[V(F(x)) - V(\widehat{F}(x)) \right] + V(\widehat{F}(x))$$

$$\leq \omega_{V}(\|F(x) - \widehat{F}(x)\|) + V(x) - \alpha_{V}(\|x - x^{*}\|)$$

$$\leq \left[\omega_{V}(\varepsilon) - \frac{1}{2}\alpha_{V}(\|x - x^{*}\|) \right] + V(x) - \frac{1}{2}\alpha_{V}(\|x - x^{*}\|) \qquad \stackrel{!}{\leadsto} \quad \omega_{V}(\varepsilon) \leq \frac{1}{2}\alpha_{V}(\|x - x^{*}\|)$$

In the quadratic case $\alpha_V(r)=c_Vr^2$ and if V has Lipschitz constant L_V , then $\eta=\frac{2L_V}{c_V}$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

ZIIIS TECHNISCHE UNIVERSITÄT BI COR OLA JAPANIPTUVAJA I ENGINA CHEMNITZ

A wish: proportional error

$$\|F(x) - \widehat{F}(x)\| \le \varepsilon \quad \leadsto \quad \|F(x) - \widehat{F}(x)\| \le \varepsilon \|x - x^*\|$$

A wish: proportional error

$$\|F(x) - \widehat{F}(x)\| \le \varepsilon \quad \leadsto \quad \|F(x) - \widehat{F}(x)\| \le \varepsilon \|x - x^*\|$$

Then,

$$V(F(x)) \le \underbrace{\left[\frac{\omega_V(\varepsilon \|x - x^*\|) - \frac{1}{2}\alpha_V(\|x - x^*\|)}{\le 0}\right]}_{\le 0} + V(x) - \frac{1}{2}\alpha_V(\|x - x^*\|)$$

A wish: proportional error

$$\|F(x) - \widehat{F}(x)\| \le \varepsilon \quad \leadsto \quad \|F(x) - \widehat{F}(x)\| \le \varepsilon \|x - x^*\|$$

Then,

$$V(F(x)) \le \underbrace{\left[\frac{\omega_V(\varepsilon \|x - x^*\|) - \frac{1}{2}\alpha_V(\|x - x^*\|)}{\leq 0}\right]}_{\le 0} + V(x) - \frac{1}{2}\alpha_V(\|x - x^*\|)$$

$$\rightsquigarrow \omega_V(\varepsilon ||x - x^*||) \leq \frac{1}{2}\alpha_V(||x - x^*||) \text{ for } \varepsilon \text{ small}$$

TUC 16 / 37

A wish: proportional error

$$\|F(x) - \widehat{F}(x)\| \le \varepsilon \quad \leadsto \quad \|F(x) - \widehat{F}(x)\| \le \varepsilon \|x - x^*\|$$

Then,

$$V(F(x)) \le \underbrace{\left[\omega_V(\varepsilon \|x - x^*\|) - \frac{1}{2}\alpha_V(\|x - x^*\|)\right]}_{\le 0} + V(x) - \frac{1}{2}\alpha_V(\|x - x^*\|)$$

$$\leadsto \quad \omega_V(\varepsilon \|x - x^*\|) \le \frac{1}{2}\alpha_V(\|x - x^*\|) \quad \text{for } \varepsilon \quad \text{small}$$

If decrease at least as strong as modulus of continuity: Asymptotic stability.

Corollary

Let \widehat{F} be asymptotically stable with Lyapunov function V such that

$$\limsup_{r \searrow 0} \frac{\omega_V(r)}{\alpha_V(r)} < \infty.$$

and

$$||F(x) - \widehat{F}(x)|| \le \varepsilon ||x - x^*||.$$

Then F is also asymptotically stable with Lyapunov function V.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Norm-based Lyapunov functions

Assume $V(x) = x^2$ and $\alpha_V(r) = cr^2$ for some c > 0.

TECHNISCHE UNIVERSITÄT BLOCK OLL TURBUNGTUNGET ELERGYAN CHEMNITZ

Norm-based Lyapunov functions

Assume
$$V(x)=x^2$$
 and $\alpha_V(r)=cr^2$ for some $c>0$.

Then

$$V(x) - V(y) = ||x||^2 - ||y||^2 = \langle x - y, x + y \rangle$$

Norm-based Lyapunov functions

Assume
$$V(x)=x^2$$
 and $\alpha_V(r)=cr^2$ for some $c>0$.

Then

$$V(x) - V(y) = ||x||^2 - ||y||^2 = \langle x - y, x + y \rangle \quad \Rightarrow \quad \omega_V(r) \sim r$$

TUC 18 / 37

ZIIIS TECHNISCHE UNIVERSITÄT EICEK GA TARABETTVAST ELEDIPAS CHEMNITZ

Norm-based Lyapunov functions

Assume $V(x) = x^2$ and $\alpha_V(r) = cr^2$ for some c > 0.

Then

$$V(x) - V(y) = ||x||^2 - ||y||^2 = \langle x - y, x + y \rangle \quad \Rightarrow \quad \omega_V(r) \sim r \quad \Rightarrow \quad \frac{\omega_V(r)}{\alpha_V(r)} = \frac{r}{r^2} \to \infty$$

the compatibility assumption does not hold.

Norm-based Lyapunov functions

Assume $V(x) = x^2$ and $\alpha_V(r) = cr^2$ for some c > 0.

Then

$$V(x) - V(y) = ||x||^2 - ||y||^2 = \langle x - y, x + y \rangle \quad \Rightarrow \quad \omega_V(r) \sim r \quad \Rightarrow \quad \frac{\omega_V(r)}{\alpha_V(r)} = \frac{r}{r^2} \to \infty$$

the compatibility assumption does not hold.

Remark

If
$$V(x) = \|x - x^*\|^p$$
 for some $p \in \mathbb{N}$, then

$$\limsup_{r \searrow 0} \frac{r^p}{\alpha_V(r)} < \infty$$

is sufficient.

Intermediate summary

Practical asymptotic stability

$$||F(x) - \hat{F}(x)|| \le \varepsilon$$

allow to infer

 \hat{F} as. stab. $\Rightarrow F$ prac. as. stab.

ZIIIS TECHNISCHE UNIVERSITÄT BI COR GA. NORMOTINAST ELEBOTAN CHEMNITZ

Intermediate summary

Practical asymptotic stability

$$||F(x) - \hat{F}(x)|| \le \varepsilon$$

allow to infer

$$\hat{F}$$
 as. stab. $\Rightarrow F$ prac. as. stab.

Asymptotic stability

$$||F(x) - \hat{F}(x)|| \le \varepsilon ||x - x^*||$$

allow to infer

$$\hat{F}$$
 as. stab. $\Rightarrow F$ as. stab.

Kernel-based approximations

A **RKHS** \mathbb{H} over $\Omega \subset \mathbb{R}^n$ is a

- ▶ Hilbert space of functions $f: \Omega \to \mathbb{R}$
- lacktriangle with s.p.d. kernel $k:\Omega\times\Omega\to\mathbb{R}$ with $k(x,\cdot)\in\mathbb{H}$ for all $x\in\Omega$ and

 $\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$ reproducing property

A RKHS \mathbb{H} over $\Omega \subset \mathbb{R}^n$ is a

- ▶ Hilbert space of functions $f: \Omega \to \mathbb{R}$
- \blacktriangleright with s.p.d. kernel $k: \Omega \times \Omega \to \mathbb{R}$ with $k(x, \cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Important consequence: $\mathbb{H} \hookrightarrow C_b(\Omega)$ continuously.

TUC 22.09.2025 · Manuel Schaller 20 / 37

A RKHS \mathbb{H} over $\Omega \subset \mathbb{R}^n$ is a

- ightharpoonup Hilbert space of functions $f:\Omega\to\mathbb{R}$
- \blacktriangleright with s.p.d. kernel $k: \Omega \times \Omega \to \mathbb{R}$ with $k(x,\cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Important consequence: $\mathbb{H} \hookrightarrow C_b(\Omega)$ continuously.

Popular kernels:

Gaussian kernel (smooth functions)

$$k(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$

22 09 2025 · Manuel Schaller 20 / 37 TUC

A RKHS \mathbb{H} over $\Omega \subset \mathbb{R}^n$ is a

- ightharpoonup Hilbert space of functions $f:\Omega\to\mathbb{R}$
- \blacktriangleright with s.p.d. kernel $k: \Omega \times \Omega \to \mathbb{R}$ with $k(x,\cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Important consequence: $\mathbb{H} \hookrightarrow C_b(\Omega)$ continuously.

Popular kernels:

Gaussian kernel (smooth functions)

$$k(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$

Wendland or Matérn kernels (fractional Sobolev spaces)

22 09 2025 · Manuel Schaller 20 / 37 TUC

Workshop and Summer School on Applied Analysis 2025

Reproducing Kernel Hilbert Spaces (RKHS)

A RKHS \mathbb{H} over $\Omega \subset \mathbb{R}^n$ is a

- ightharpoonup Hilbert space of functions $f:\Omega\to\mathbb{R}$
- \blacktriangleright with s.p.d. kernel $k: \Omega \times \Omega \to \mathbb{R}$ with $k(x,\cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Important consequence: $\mathbb{H} \hookrightarrow C_b(\Omega)$ continuously.

Popular kernels:

Gaussian kernel (smooth functions)

$$k(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$

- Wendland or Matérn kernels (fractional Sobolev spaces)
- ► Thin-Plate splines (Beppo Levi spaces)

$$k(x,y) = ||x - y||^2 \log(||x - y||)$$

22 09 2025 · Manuel Schaller 20 / 37 TUC

Data-driven approximations

Given data points $\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$ and set

$$V_{\mathcal{X}} := \operatorname{span}\{k(x_1,\cdot), k(x_2,\cdot), \dots, k(x_d,\cdot)\} \subset \mathbb{H}$$

Data-driven approximations

Given data points $\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$ and set

$$V_{\mathcal{X}} := \operatorname{span}\{k(x_1,\cdot), k(x_2,\cdot), \dots, k(x_d,\cdot)\} \subset \mathbb{H}$$

Best-approximation, i.e., \mathbb{H} -orthogonal projection of $f \in \mathbb{H}$

$$v \in \operatorname{argmin}_{g \in V_{\mathcal{X}}} \|f - g\|_{\mathbb{H}}^2$$

ZIIIS TECHNISCHE UNIVERSITÄT REGER GA. TAPPAUPTINAT I LEGIPAI CHEMNITZ

Data-driven approximations

Given data points $\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$ and set

$$V_{\mathcal{X}} := \operatorname{span}\{k(x_1,\cdot), k(x_2,\cdot), \dots, k(x_d,\cdot)\} \subset \mathbb{H}$$

Best-approximation, i.e., \mathbb{H} -orthogonal projection of $f \in \mathbb{H}$

$$v \in \operatorname{argmin}_{g \in V_{\mathcal{X}}} \|f - g\|_{\mathbb{H}}^2 \implies 0 = \langle f - v, k(x_i, \cdot) \rangle = f(x_i) - v(x_i).$$

Data-driven approximations

Given data points $\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$ and set

$$V_{\mathcal{X}} := \operatorname{span}\{k(x_1,\cdot), k(x_2,\cdot), \dots, k(x_d,\cdot)\} \subset \mathbb{H}$$

Best-approximation, i.e., \mathbb{H} -orthogonal projection of $f \in \mathbb{H}$

$$v \in \operatorname{argmin}_{g \in V_{\mathcal{X}}} \|f - g\|_{\mathbb{H}}^2 \implies 0 = \langle f - v, k(x_i, \cdot) \rangle = f(x_i) - v(x_i).$$

Kernel trick: Inner products correspond to point evaluations.

Data-driven approximations

Given data points $\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$ and set

$$V_{\mathcal{X}} := \operatorname{span}\{k(x_1,\cdot), k(x_2,\cdot), \dots, k(x_d,\cdot)\} \subset \mathbb{H}$$

Best-approximation, i.e., \mathbb{H} -orthogonal projection of $f \in \mathbb{H}$

$$v \in \operatorname{argmin}_{g \in V_{\mathcal{X}}} \|f - g\|_{\mathbb{H}}^2 \implies 0 = \langle f - v, k(x_i, \cdot) \rangle = f(x_i) - v(x_i).$$

Kernel trick: Inner products correspond to point evaluations.

Easy to compute: Basis representation $v(x) = \sum_{i=1}^{d} \alpha_i k(x_i, x)$ satisfies

$$\sum_{i=1}^{d} \alpha_i k(x_i, x_j) = f(x_j) \quad \rightsquigarrow \quad \alpha = \mathbf{K}_{\mathcal{X}}^{-1} f_{\mathcal{X}}$$

with

$$(f_{\mathcal{X}})_i = f(x_i), \quad (\mathbf{K}_{\mathcal{X}})_{ij} = k(x_i, x_j)$$
 s.p.d..

A first simple data-driven model

Given $(x_i, F(x_i))_{i=1}^d$ and define best approximation componentwise

$$\widehat{F}_i := P_{V_{\mathcal{X}}} F_i = \sum_{j=1}^d (K_{\mathcal{X}}^{-1} F_{i,\mathcal{X}})_j k(x_j,\cdot).$$

A first simple data-driven model

Given $(x_i, F(x_i))_{i=1}^d$ and define best approximation componentwise

$$\widehat{F}_i := P_{V_{\mathcal{X}}} F_i = \sum_{j=1}^d (K_{\mathcal{X}}^{-1} F_{i,\mathcal{X}})_j k(x_j, \cdot).$$

Then

$$||F_i(x) - \widehat{F}_i(x)|| \le ||F_i - P_{V_{\mathcal{X}}} F_i||_{C_b(\Omega)} \le ||I - P_{V_{\mathcal{X}}}||_{\mathbb{H} \to C_b(\Omega)} ||F_i||_{\mathbb{H}}$$

TUC 22 / 37

EEHNISCHE UNIVERSITÄT BI COR OA TUDORUMTSVAS I ENDOM CHEMNITZ

A first simple data-driven model

Given $(x_i, F(x_i))_{i=1}^d$ and define best approximation componentwise

$$\widehat{F}_i := P_{V_{\mathcal{X}}} F_i = \sum_{j=1}^d (K_{\mathcal{X}}^{-1} F_{i,\mathcal{X}})_j k(x_j, \cdot).$$

Then

$$||F_i(x) - \widehat{F}_i(x)|| \le ||F_i - P_{V_{\mathcal{X}}} F_i||_{C_b(\Omega)} \le ||I - P_{V_{\mathcal{X}}}||_{\mathbb{H} \to C_b(\Omega)} ||F_i||_{\mathbb{H}}$$

Projection error controlled by fill distance

$$h_{\mathcal{X}} := \sup_{x \in \Omega} \min_{1 \le i \le d} \|x - x_i\|_2,$$

2 15 5 TECHNISCHE UNIVERSITÄT DI CORT DA TOPPROPTOMAT ELEGENA

Wendland radial basis functions

Function	Smoothne
$\phi_{1,0}(r) = (1-r)_+$	C^0
$\phi_{1,1}(r) \doteq (1-r)_+^3(3r+1)$	C^2
$\phi_{1,2}(r) \doteq (1-r)^5_+(8r^2+5r+1)$	C^4
$\phi_{3,0}(r) = (1-r)_+^2$	C^0
$\phi_{3,1}(r) \doteq (1-r)_+^4 (4r+1)$	C^2
$\phi_{3,2}(r) \doteq (1-r)_+^6 (35r^2 + 18r + 3)$	C^4
$\phi_{3,3}(r) \doteq (1-r)_+^8 (32r^3 + 25r^2 + 8r + 1)$	C^6

with compactly supported radially symmetric kernel

$$k(x,y) := \phi_{n,k}(||x-y||).$$

Wendland, Advances in Computational Mathematics 1995

TECHNISCHE UNIVERSITÄT BLOOK GA. TOPPHUTTURAT ERROPAN CHEMNITZ

Wendland radial basis functions

Function	Smoothnes
$\phi_{1,0}(r) = (1-r)_+$	C^0
$\phi_{1,1}(r) \doteq (1-r)_+^3(3r+1)$	C^2
$\phi_{1,2}(r) \doteq (1-r)^5_+(8r^2+5r+1)$	C^4
$\phi_{3,0}(r) = (1-r)_+^2$	C^0
$\phi_{3,1}(r) \doteq (1-r)_+^4 (4r+1)$	C^2
$\phi_{3,2}(r) \doteq (1-r)_+^6 (35r^2 + 18r + 3)$	C^4
$\phi_{3,3}(r) \doteq (1-r)^8_+(32r^3+25r^2+8r+1)$	C^6

with compactly supported radially symmetric kernel

$$k(x,y) := \phi_{n,k}(||x-y||).$$

and

$$\mathbb{H} \cong H^{\sigma_{n,k}}(\Omega).$$

Wendland, Advances in Computational Mathematics 1995

An error bound

Theorem (Wendland 1995)

There are $C,h_0>0$ such that for every set $\mathcal{X}=\{x_i\}_{i=1}^d\subset\Omega$ with $h_{\mathcal{X}}\leq h_0$ and all $\alpha\in\mathbb{N}_0^d$, $|\alpha|\leq k$,

$$|D^{\alpha}\varphi(x) - D^{\alpha}(P_{\mathcal{X}}\varphi)(x)| \le Ch_{\mathcal{X}}^{k+1/2-|\alpha|} \|\varphi\|_{\mathbb{H}_{\Phi_{n,k}}} \qquad \forall x \in \Omega$$

In particular, with $\alpha = 0$,

$$||I - P_{\mathcal{X}}||_{\mathbb{H}_{\Phi_{n,k}} \to C_b(\Omega)} \le Ch_{\mathcal{X}}^{k+1/2}.$$

An error bound

Theorem (Wendland 1995)

There are $C,h_0>0$ such that for every set $\mathcal{X}=\{x_i\}_{i=1}^d\subset\Omega$ with $h_{\mathcal{X}}\leq h_0$ and all $\alpha\in\mathbb{N}_0^d$, $|\alpha|\leq k$,

$$|D^{\alpha}\varphi(x) - D^{\alpha}(P_{\mathcal{X}}\varphi)(x)| \le Ch_{\mathcal{X}}^{k+1/2-|\alpha|} \|\varphi\|_{\mathbb{H}_{\Phi_{n,k}}} \qquad \forall x \in \Omega$$

In particular, with $\alpha = 0$,

$$||I - P_{\mathcal{X}}||_{\mathbb{H}_{\Phi_{n,k}} \to C_b(\Omega)} \le Ch_{\mathcal{X}}^{k+1/2}.$$

Direct consequence:

$$||F(x) - \widehat{F}(x)|| \le Ch_{\mathcal{X}}^{k+1/2} ||F||_{\mathbb{H}^n}$$

Constant error bound → practical asymptotic stability.

A proportional error bound

Theorem (BPSW 2024)

There are $C,h_0>0$ such that, for every set $\mathcal{X}=\{x_j\}_{j=1}^d\subset\Omega$ with $h_{\mathcal{X}}\leq h_0$,

$$\left|\varphi(x) - (P_{\mathcal{X}}\varphi)(x)\right| \le Ch_{\mathcal{X}}^{k-1/2} \operatorname{dist}(x,\mathcal{X}) \|\varphi\|_{\mathbb{H}_{\Phi_{n,k}}} \qquad \forall x \in \Omega.$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

A proportional error bound

Theorem (BPSW 2024)

There are $C, h_0 > 0$ such that, for every set $\mathcal{X} = \{x_j\}_{j=1}^d \subset \Omega$ with $h_{\mathcal{X}} \leq h_0$,

$$|\varphi(x) - (P_{\mathcal{X}}\varphi)(x)| \le Ch_{\mathcal{X}}^{k-1/2} \operatorname{dist}(x,\mathcal{X}) \|\varphi\|_{\mathbb{H}_{\Phi_{n,k}}} \quad \forall x \in \Omega.$$

Sketch of the proof: Set
$$e = \varphi - P_{\mathcal{X}}\varphi$$
. Then for $x \in \Omega$ and $z \in \mathcal{X}$

$$e(x) = \underbrace{e(z)}_{=0} + \underbrace{\nabla e(z)}_{< Ch_{\nu}^{k-1/2} ||\varphi||} (x-z) + \dots$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Stability

Corollary

If $x^* \in \mathcal{X}$:

 \blacktriangleright x^* is equilibrium of \widehat{F} iff x^* equilibrium of F:

$$\widehat{F}(x^*) = P_{\mathcal{X}}F(x^*) = F(x^*).$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Stability

Corollary

If $x^* \in \mathcal{X}$:

 $ightharpoonup x^*$ is equilibrium of \widehat{F} iff x^* equilibrium of F:

$$\widehat{F}(x^*) = P_{\mathcal{X}}F(x^*) = F(x^*).$$

Proportional bound

$$||F(x) - \widehat{F}(x)|| \le Ch^{k-1/2} \operatorname{dist}(x, \mathcal{X})||F|| \le \widetilde{c}||x - x^*||$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Stability

Corollary

If $x^* \in \mathcal{X}$:

 $\blacktriangleright x^*$ is equilibrium of \widehat{F} iff x^* equilibrium of F:

$$\widehat{F}(x^*) = P_{\mathcal{X}}F(x^*) = F(x^*).$$

Proportional bound

$$||F(x) - \widehat{F}(x)|| \le Ch^{k-1/2} \operatorname{dist}(x, \mathcal{X}) ||F|| \le \widetilde{c} ||x - x^*||$$

ightharpoonup Suitable compatbility assumptions on the Lyapunov function \Rightarrow asymptotic stability is preserved.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

An example¹

$$x^+ = F(x) := \frac{1}{8} \begin{pmatrix} \|x\|^2 - 1 & -1 \\ 1 & \|x\|^2 - 1 \end{pmatrix} x \quad \rightsquigarrow V(x) = \|x\|^2, \ \alpha_V(r) = 7r^2/32.$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

¹Li, Hafstein, Kellett, CDC 2014

An example¹

$$x^{+} = F(x) := \frac{1}{8} \begin{pmatrix} \|x\|^{2} - 1 & -1 \\ 1 & \|x\|^{2} - 1 \end{pmatrix} x \longrightarrow V(x) = \|x\|^{2}, \ \alpha_{V}(r) = 7r^{2}/32.$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

¹Li, Hafstein, Kellett, CDC 2014

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$ with successors

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$ with successors

- u = 0: $x_{i,0}^+ = g_0(x_i)$
- $\blacktriangleright u = e_j : x_{i,j}^+ = g_0(x_i) + G(x_i)e_j \quad \forall j = 0, ..., m$

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$ with successors

- u = 0: $x_{i,0}^+ = g_0(x_i)$
- $\blacktriangleright u = e_j : x_{i,j}^+ = g_0(x_i) + G(x_i)e_j \quad \forall j = 0, ..., m$

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$ with successors

- u = 0: $x_{i,0}^+ = g_0(x_i)$
- $\blacktriangleright u = e_j : x_{i,j}^+ = g_0(x_i) + G(x_i)e_j \quad \forall j = 0, \dots, m$

 \hookrightarrow Samples of $H(x_i) := [g(x_i), G(x_i)], x_i \in \mathcal{X}$.

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$ with successors

- u = 0: $x_{i,0}^+ = g_0(x_i)$
- $\mathbf{v} = e_j : x_{i,j}^+ = g_0(x_i) + G(x_i)e_j \quad \forall j = 0, \dots, m$
- \hookrightarrow Samples of $H(x_i) := [q(x_i), G(x_i)], x_i \in \mathcal{X}$.

Componentwise projection. Compute

$$H_{pq}pprox \widehat{H}_{pq}:=\sum_{i=1}^d (\mathbf{K}_{\mathcal{X}}^{-1}(H_{pq})_{\mathcal{X}})_i k(x_i,x)$$
 Best-approximation of H_{pq} .

28 / 37 TUC

Control-affine dynamics

$$x^{+} = F(x, u) = g_0(x) + G(x)u.$$

Data points $\mathcal{X} = \{x_1, \dots, x_d\}$ with successors

- u = 0: $x_{i,0}^+ = g_0(x_i)$
- $\bullet u = e_j : x_{i,j}^+ = g_0(x_i) + G(x_i)e_j \quad \forall j = 0, \dots, m$
- \hookrightarrow Samples of $H(x_i) := [g(x_i), G(x_i)], x_i \in \mathcal{X}$.

Componentwise projection. Compute

$$H_{pq} pprox \widehat{H}_{pq} := \sum_{i=1}^{d} (\mathbf{K}_{\mathcal{X}}^{-1}(H_{pq})_{\mathcal{X}})_{i} k(x_{i}, x)$$
 Best-approximation of H_{pq} .

Set
$$\left[\widehat{g}_{0} \quad \widehat{G} \right] = \widehat{H}$$
 and define

$$x^{+} = \widehat{F}(x, u) = \widehat{g}_{0}(x) + \widehat{G}(x)u$$

Error bound

Corollary

There are
$$C, h_0 > 0$$
 s.t. for every set $\mathcal{X} = \{x_j\}_{j=1}^d \subset \Omega$ with $h_{\mathcal{X}} \leq h_0$,

$$||F(x,u) - \widehat{F}(x,u)||_{\infty} \le C \cdot h_{\mathcal{X}}^{k-1/2} \operatorname{dist}(x,\mathcal{X}) \max_{p,q} ||H_{pq}||_{\mathbb{H}} (1 + ||u||_1) \qquad \forall x \in \Omega, u \in \mathbb{R}^m.$$

Error bound

Corollary

There are $C, h_0 > 0$ s.t. for every set $\mathcal{X} = \{x_j\}_{j=1}^d \subset \Omega$ with $h_{\mathcal{X}} \leq h_0$,

$$||F(x,u) - \widehat{F}(x,u)||_{\infty} \le C \cdot h_{\mathcal{X}}^{k-1/2} \operatorname{dist}(x,\mathcal{X}) \max_{\mathbf{u}} ||H_{pq}||_{\mathbb{H}} (1 + ||u||_1) \qquad \forall x \in \Omega, u \in \mathbb{R}^m.$$

Definition (Stabilizing feedbacks)

We say that a feedback law $\kappa:\mathbb{R}^n\to\mathbb{R}^m$ is asymptotically stabilizing a system F(x,u) if the autonomous system

$$C(x) := F(x, \kappa(x))$$

is asymptotically stable towards x^* .

Example

$$x^+ = F(x, u) = 2x + u$$

Example

$$x^+ = F(x, u) = 2x + u$$
 Feedback $\kappa(x) = -1.5x$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Example

$$x^{+} = F(x, u) = 2x + u$$
 Feedback $\kappa(x) = -1.5x \Rightarrow x^{+} = F(x, \kappa(x)) = 2x - 1.5x = 0.5x$.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Example

$$x^{+} = F(x, u) = 2x + u \text{ Feedback } \kappa(x) = -1.5x \Rightarrow x^{+} = F(x, \kappa(x)) = 2x - 1.5x = 0.5x.$$

Corollary (Feedback control)

Given feedback law $\kappa: \mathbb{R}^n \to \mathbb{R}^m$ bounded on bounded sets stabilizing \widehat{F} with Lyapunov function satisfying compatibility assumption.

Then, if $x^* \in \mathcal{X}$, κ is also asymptotically stabilizing F.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Example

$$x^{+} = F(x, u) = 2x + u \text{ Feedback } \kappa(x) = -1.5x \Rightarrow x^{+} = F(x, \kappa(x)) = 2x - 1.5x = 0.5x.$$

Corollary (Feedback control)

Given feedback law $\kappa: \mathbb{R}^n \to \mathbb{R}^m$ bounded on bounded sets stabilizing \widehat{F} with Lyapunov function satisfying compatibility assumption.

Then, if $x^* \in \mathcal{X}$, κ is also asymptotically stabilizing F.

Proof: $\widehat{C}(x) = \widehat{F}(x, \kappa(x))$ is asymptotically stable.

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Example

$$x^{+} = F(x, u) = 2x + u$$
 Feedback $\kappa(x) = -1.5x \Rightarrow x^{+} = F(x, \kappa(x)) = 2x - 1.5x = 0.5x$.

Corollary (Feedback control)

Given feedback law $\kappa: \mathbb{R}^n \to \mathbb{R}^m$ bounded on bounded sets stabilizing \widehat{F} with Lyapunov function satisfying compatibility assumption.

Then, if $x^* \in \mathcal{X}$, κ is also asymptotically stabilizing F.

Proof: $\widehat{C}(x) = \widehat{F}(x, \kappa(x))$ is asymptotically stable. Further, proportional bound

$$||C(x) - \widehat{C}(x)|| \lesssim h_{\mathcal{X}}^{k-1/2} \operatorname{dist}(x, \mathcal{X}) \leq h_{\mathcal{X}}^{k-1/2} ||x - x^*||^2$$

Example

$$x^{+} = F(x, u) = 2x + u$$
 Feedback $\kappa(x) = -1.5x \Rightarrow x^{+} = F(x, \kappa(x)) = 2x - 1.5x = 0.5x$.

Corollary (Feedback control)

Given feedback law $\kappa: \mathbb{R}^n \to \mathbb{R}^m$ bounded on bounded sets stabilizing \widehat{F} with Lyapunov function satisfying compatibility assumption.

Then, if $x^* \in \mathcal{X}$, κ is also asymptotically stabilizing F.

Proof: $\widehat{C}(x) = \widehat{F}(x, \kappa(x))$ is asymptotically stable. Further, proportional bound

$$||C(x) - \widehat{C}(x)|| \lesssim h_{\mathcal{X}}^{k-1/2} \operatorname{dist}(x, \mathcal{X}) \leq h_{\mathcal{X}}^{k-1/2} ||x - x^*||^2$$

Bold, Philipp, S., Worthmann, to appear in SIAM Journal on Control and Optimization, 2025

Data-driven Model Predictive Control

TECHNISCHE UNIVERSITÄT BIORICE ADVANDTINGST ERBORI CHEMNITZ

Experiments with pig eyes

Feedback loop in 10 kHz:

- 1. **Solve** the optimal control problem with (x^0, p)
- 2. Apply optimal control u
- 3. Obtain **measurements** y
- 4. State and parameter estimation: Update (x^0, p) .

Experiments with pig eyes

Feedback loop in 10 kHz:

- 1. **Solve** the optimal control problem with (x^0, p)
- 2. Apply optimal control u
- 3. Obtain **measurements** y
- 4. State and parameter estimation: Update (x^0, p) .

Model Predictive Control (MPC)

ZIIIS TECHNISCHE UNIVERSITÄT BI COL OLI DISABIPTIOZET I ROSPAN CHEMNITZ

Model Predictive Control (MPC)

ZIIIS TECHNISCHE UNIVERSITÄT BIGBY GA THOMPSON CHEMNITZ

Model Predictive Control (MPC)

Model Predictive Control (MPC)

ZIIIS TECHNISCHE UNIVERSITÄT BI CER CA. TERMINITZ

Model Predictive Control (MPC)

Model Predictive Control (MPC)

What happens, if the model in the OCP is a data-driven surrogate for the true dynamics?

Set-point stabilization of the origin with F(0,0) = 0

MPC scheme with prediction horizon N

1) Measure current state $x^0 := x(n)$

Set-point stabilization of the origin with F(0,0)=0

MPC scheme with prediction horizon N

- 1) Measure current state $x^0 := x(n)$
- 2) Minimize $J_N(\hat{x}, u) = \sum_{k=1}^{N-1} ||x(k)||^2 + ||u(k)||^2$ subject to
 - x(k+1) = F(x(k), u(k)) with $x(0) = x^0$
 - $x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U} \qquad \forall k \in 0 \dots N-1.$

TUC 34 / 37

Set-point stabilization of the origin with F(0,0) = 0

MPC scheme with prediction horizon N

- 1) Measure current state $x^0 := x(n)$
- 2) Minimize $J_N(\hat{x},u) = \sum_{k=1}^{N-1} \|x(k)\|^2 + \|u(k)\|^2$ subject to
 - x(k+1) = F(x(k), u(k)) with $x(0) = x^0$
 - $x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U} \qquad \forall k \in 0 \dots N-1.$
- 3) Apply first element $u^*(0)$ of optimal control sequence $\rightsquigarrow F(x^0, u^*(0))$.

Set-point stabilization of the origin with F(0,0)=0

MPC scheme with prediction horizon N

- 1) Measure current state $x^0 := x(n)$
- 2) Minimize $J_N(\hat{x}, u) = \sum_{k=1}^{N-1} ||x(k)||^2 + ||u(k)||^2$ subject to
 - x(k+1) = F(x(k), u(k)) with $x(0) = x^0$
 - $x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U} \qquad \forall k \in 0 \dots N-1.$
- 3) Apply first element $u^*(0)$ of optimal control sequence $\leadsto F(x^0, u^*(0))$.

MPC feedback law $\mu_N : \mathbb{R}^n \to \mathbb{U}$ via $\mu_N(x^0) := u^*(0) \rightsquigarrow \text{Nominal closed loop: } F(\cdot, \mu_N(\cdot))$

34 / 37 TUC

Set-point stabilization of the origin with F(0,0) = 0

MPC scheme with prediction horizon N

- 1) Measure current state $x^0 := x(n)$
- 2) Minimize $J_N(\hat{x},u) = \sum_{k=1}^{N-1} \|x(k)\|^2 + \|u(k)\|^2$ subject to
 - x(k+1) = F(x(k), u(k)) with $x(0) = x^0$
 - $x(k) \in \mathbb{X}, \ u(k) \in \mathbb{U} \qquad \forall k \in 0 \dots N-1.$
- 3) Apply first element $u^*(0)$ of optimal control sequence $\rightsquigarrow F(x^0, u^*(0))$.

 $\mathsf{MPC} \ \mathsf{feedback} \ \mathsf{law} \ \mu_N : \mathbb{R}^n \to \mathbb{U} \ \mathsf{via} \ \mu_N(x^0) := u^\star(0) \leadsto \mathsf{Nominal} \ \mathsf{closed} \ \mathsf{loop} \colon F(\cdot, \mu_N(\cdot))$

Here: Optimization with data-driven surrogate $\widehat{F} \leadsto \mathsf{Closed\ loop}$: $F(\cdot, \widehat{\mu}_N(\cdot))$

How to prove stability?

Central tool: Optimal value function

$$V_N(x^0) = \inf_{u \in \mathcal{U}_{\mathbb{N}}^{\epsilon}(\hat{x})} \sum_{k=0}^{N-1} ||x_u(k; x^0)||^2 + ||u(k)||^2$$

Definition²

An OCP is cost controllable if

$$\exists \gamma > 0: \quad V(x^0) \le \gamma \cdot ||x^0||^2 \qquad \forall N \ge 1, x^0 \in \mathbb{X}$$

²Coron, Grüne, Worthmann, SICON 2020

Relaxed Lyapunov inequality

Theorem

Let the OCP be cost controllable.

Schimperna, Worthmann, S., Bold, Magni, arXiv:2505.05951, 2025

Relaxed Lyapunov inequality

Theorem

Let the OCP be cost controllable. Then there is $\alpha \in (0,1]$ and $N \in \mathbb{N}$ such that for all $x \in S$,

$$V_N(F(x,\mu_N(x))) \le V_N(x) - \alpha \ell(x,\mu_N(x))$$

In addition, there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ s.t. $\forall x \in S$, $u \in \mathbb{U}$.

$$\alpha_1(||x||) \le V_N(x) \le \alpha_2(||x||)$$

Schimperna, Worthmann, S., Bold, Magni, arXiv:2505.05951, 2025

Relaxed Lyapunov inequality

Theorem

Let the OCP be cost controllable. Then there is $\alpha \in (0,1]$ and $N \in \mathbb{N}$ such that for all $x \in S$,

$$V_N(F(x,\mu_N(x))) \le V_N(x) - \alpha \ell(x,\mu_N(x))$$

In addition, there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ s.t. $\forall x \in S$, $u \in \mathbb{U}$.

$$\alpha_1(||x||) \le V_N(x) \le \alpha_2(||x||)$$

Corollary

For small enough fill distance, the MPC controller achieves asymptotic stability.

Schimperna, Worthmann, S., Bold, Magni, arXiv:2505.05951, 2025

Numerical example

Van der Pol oscillator:

$$\dot{x} = \binom{x_2}{\nu(1-x_1)^2 x_2 - x_1 + u}$$

Numerical example

Van der Pol oscillator:

$$\dot{x} = \binom{x_2}{\nu(1-x_1)^2 x_2 - x_1 + u}$$

Four tank system:

$$\begin{pmatrix} \dot{h}_1 \\ \dot{h}_2 \\ \dot{h}_3 \\ \dot{h}_4 \end{pmatrix} = -\frac{\sqrt{2g}}{S} \begin{pmatrix} a_1\sqrt{h_1} + a_3\sqrt{h_3} \\ a_2\sqrt{h_2} + a_4\sqrt{h_4} \\ a_3\sqrt{h_3} \\ a_4\sqrt{h_4} \end{pmatrix} + \begin{bmatrix} \frac{\gamma_a}{S} & 0 \\ 0 & \frac{\gamma_b}{S} \\ 0 & \frac{1-\gamma_b}{S} \\ \frac{1-\gamma_a}{S} & 0 \end{bmatrix} \begin{pmatrix} q_a \\ q_b \end{pmatrix}.$$

