

Data-Driven Methods in Control: Error Bounds and Guaranteed Stability

Manuel Schaller

Workshop and Summer School on Applied Analysis 2025

26.09.2025

Koopman-based methods

For $\Omega \subset \mathbb{R}^n$ and $F: \Omega \to \Omega$, consider the dynamical system

$$x_{i+1} = F(x_i), \qquad x_0 \in \Omega.$$

Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mech. 2009 Mezić JNLS 2005, Annu. Rev. Fluid Mech 2013 Brunton, Budišić, Kaiser, Kutz, SIAM Rev. 2022 Lusch, Kutz, Brunton, Nature comm. 2018

Lusch, Kutz, Brunton, Nature comm. 2018

For $\Omega \subset \mathbb{R}^n$ and $F: \Omega \to \Omega$, consider the dynamical system

$$x_{i+1} = F(x_i), \qquad x_0 \in \Omega.$$

Goal: Predict the dynamics of an observable along the flow, i.e., $\varphi(x_i)$, $i \in \mathbb{N}$

▶ Obvious way: Predict x_i and evaluate $\varphi(x_i)$

Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mech. 2009 Mezić JNLS 2005, Annu. Rev. Fluid Mech 2013 Brunton, Budišić, Kaiser, Kutz, SIAM Rev. 2022

For $\Omega \subset \mathbb{R}^n$ and $F: \Omega \to \Omega$, consider the dynamical system

$$x_{i+1} = F(x_i), \qquad x_0 \in \Omega.$$

Goal: Predict the dynamics of an **observable** along the flow, i.e., $\varphi(x_i)$, $i \in \mathbb{N}$

- ▶ Obvious way: Predict x_i and evaluate $\varphi(x_i)$
- ▶ Alternatively: Koopman operator K acting on observables $\varphi : \Omega \to \mathbb{R}$:

$$(\mathcal{K}\varphi)(x_0) = \varphi(x^+(x_0)) = \varphi(F(x_0))$$

Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mech. 2009 Mezić JNLS 2005, Annu. Rev. Fluid Mech 2013 Brunton, Budišić, Kaiser, Kutz, SIAM Rev. 2022 Lusch, Kutz, Brunton, Nature comm. 2018

For $\Omega \subset \mathbb{R}^n$ and $F: \Omega \to \Omega$, consider the dynamical system

$$x_{i+1} = F(x_i), \qquad x_0 \in \Omega.$$

Goal: Predict the dynamics of an observable along the flow, i.e., $\varphi(x_i)$, $i \in \mathbb{N}$

- ▶ Obvious way: Predict x_i and evaluate $\varphi(x_i)$
- ▶ Alternatively: Koopman operator K acting on observables $\varphi : \Omega \to \mathbb{R}$:

$$(\mathcal{K}\varphi)(x_0) = \varphi(x^+(x_0)) = \varphi(F(x_0))$$

Central properties: \mathcal{K} linear and $(\mathcal{K}^i\varphi)(x_0)=\varphi(x_i(x_0))$.

Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mech. 2009 Mezić JNLS 2005, Annu. Rev. Fluid Mech 2013 Brunton, Budišić, Kaiser, Kutz, SIAM Rev. 2022 Lusch, Kutz, Brunton, Nature comm. 2018

For $\Omega \subset \mathbb{R}^n$ and $F: \Omega \to \Omega$, consider the dynamical system

$$x_{i+1} = F(x_i), \qquad x_0 \in \Omega.$$

Goal: Predict the dynamics of an observable along the flow, i.e., $\varphi(x_i)$, $i \in \mathbb{N}$

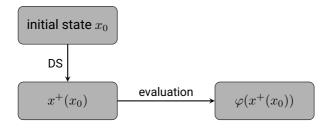
- ▶ Obvious way: Predict x_i and evaluate $\varphi(x_i)$
- ▶ Alternatively: Koopman operator K acting on observables $\varphi : \Omega \to \mathbb{R}$:

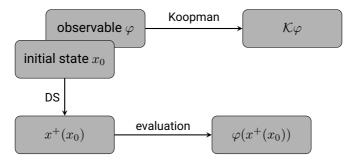
$$(\mathcal{K}\varphi)(x_0) = \varphi(x^+(x_0)) = \varphi(F(x_0))$$

Central properties: \mathcal{K} linear and $(\mathcal{K}^i\varphi)(x_0) = \varphi(x_i(x_0))$.

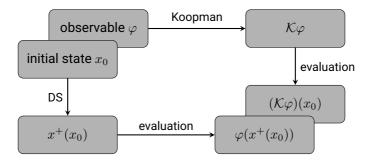
Predict observations from previous ones: $\varphi(x^+) = \mathcal{K}\varphi(x)$

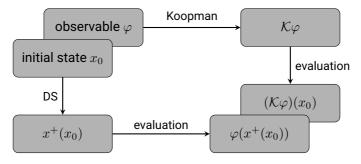
Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mech. 2009 Mezić JNLS 2005, Annu. Rev. Fluid Mech 2013 Brunton, Budišić, Kaiser, Kutz, SIAM Rev. 2022 Lusch, Kutz, Brunton, Nature comm. 2018





4/33 TUC

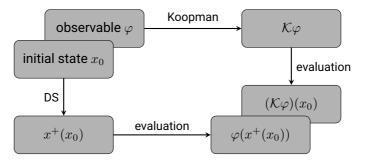




Old idea: Koopman 1931

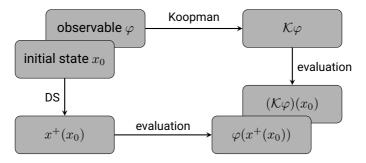
ZIIIS TECHNISCHE UNIVERSITÄT RICHR GE. THOMAST ER BODAS CHEMNITZ

Illustration of the Koopman scheme



Old idea: Koopman 1931

Today: Powerful tools to approximate $\mathcal K$ based on data: Extended Dynamic Mode Decomposition



Old idea: Koopman 1931

Today: Powerful tools to approximate $\mathcal K$ based on data: Extended Dynamic Mode Decomposition

Successfully applied in fluid dynamics, epidemiology, neuroscience, video processing and molecular dynamics [Schmid '10], [Tu et al. '14], [Brunton, Kutz et al. '16] [Noé et al. '15]

Wake behind a cylinder

$$\dot{v} + (v \cdot \nabla)v = -\nabla p + \frac{1}{\text{Re}}\nabla^2 v$$

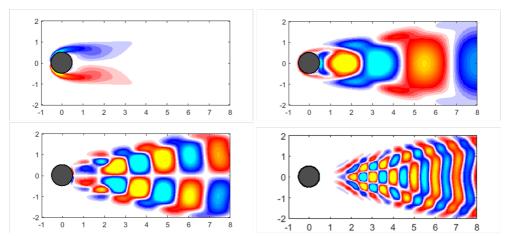
$$\text{div } v = 0$$

Dynamic mode decomposition: data-driven modeling of complex systems, Kutz, Brunton, Brunton, Proctor, SIAM 2016 Thanks to Emilia Krendelsberger and Karl Worthmann (TU Ilmenau)

Koopman eigenfunctions

Let $\varphi:\Omega\to\mathbb{R}$ and $\lambda\in\mathbb{C}$ satisfy

$$\mathcal{K}\varphi = \lambda\varphi.$$



Model reduction

$$r = 3$$

$$r = 11$$

r = 21

Eigenfunctions and Koopman mode decomposition: Let $\varphi:\Omega\to\mathbb{R}$ satisfy

$$\mathcal{K}\varphi = \lambda\varphi.$$

ZIIIS TECHNISCHE UNIVERSITÄT BIOGR GA. TADOMOTINAT ERBORA CHEMNITZ

Consequences of linearity

Eigenfunctions and Koopman mode decomposition: Let $\varphi:\Omega \to \mathbb{R}$ satisfy

$$\mathcal{K}\varphi = \lambda\varphi.$$

Long-term predictions

$$\varphi(x_k) = (\mathcal{K}^k \varphi)(x_0) = \lambda^k \varphi(x_0).$$

Eigenfunctions and Koopman mode decomposition: Let $\varphi:\Omega\to\mathbb{R}$ satisfy

$$\mathcal{K}\varphi = \lambda\varphi.$$

► Long-term predictions

$$\varphi(x_k) = (\mathcal{K}^k \varphi)(x_0) = \lambda^k \varphi(x_0).$$

Invariant sets: : If $\varphi(x_0) = 0$, then

$$\varphi(F(x_0)) = (\mathcal{K}\varphi)(x_0) = \lambda \varphi(x_0) = 0 \quad \leadsto \quad S_0 = \{x : \varphi(x) = 0\} \text{ invariant}$$

Eigenfunctions and Koopman mode decomposition: Let $\varphi:\Omega\to\mathbb{R}$ satisfy

$$\mathcal{K}\varphi = \lambda\varphi.$$

► Long-term predictions

$$\varphi(x_k) = (\mathcal{K}^k \varphi)(x_0) = \lambda^k \varphi(x_0).$$

Invariant sets: If $\varphi(x_0) = 0$, then

$$\varphi(F(x_0)) = (\mathcal{K}\varphi)(x_0) = \lambda \varphi(x_0) = 0 \quad \leadsto \quad S_0 = \{x : \varphi(x) = 0\} \text{ invariant}$$

► Conserved quantities: $\lambda = 1$, i.e.,

$$\varphi(x_k) = (\mathcal{K}^k \varphi)(x) = \varphi(x_0) = c \quad \forall x \in S_c = \{x : \varphi(x) = c\}.$$

Eigenfunctions and Koopman mode decomposition: Let $\varphi:\Omega\to\mathbb{R}$ satisfy

$$\mathcal{K}\varphi = \lambda\varphi.$$

► Long-term predictions

$$\varphi(x_k) = (\mathcal{K}^k \varphi)(x_0) = \lambda^k \varphi(x_0).$$

Invariant sets: : If $\varphi(x_0) = 0$, then

$$\varphi(F(x_0)) = (\mathcal{K}\varphi)(x_0) = \lambda \varphi(x_0) = 0 \quad \leadsto \quad S_0 = \{x : \varphi(x) = 0\} \text{ invariant}$$

▶ Conserved quantities: $\lambda = 1$, i.e.,

$$\varphi(x_k) = (\mathcal{K}^k \varphi)(x) = \varphi(x_0) = c \quad \forall x \in S_c = \{x : \varphi(x) = c\}.$$

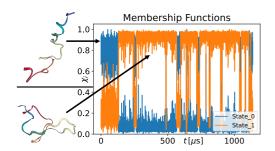
▶ Multiple eigenvalues: If φ_1 and φ_2 eigenfunctions with the same eigenvalue λ :

$$\frac{\varphi_1(x_k)}{\varphi_2(x_k)} = \frac{\lambda^k \varphi_1(x_0)}{\lambda^k \varphi_2(x_0)} = \frac{\varphi_1(x_0)}{\varphi_2(x_0)} = c \quad \text{invariant.}$$

More applications

Folding kinetics of a 35-amino acid protein

$$dX_t = \nabla V(X_t)dt + \sigma(X_t)dW_t$$

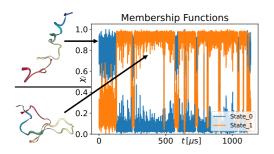


Wu, Nüske, Paul, Klus, Koltai, Noé. The Journal of Chemical Physics 2016 Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

More applications

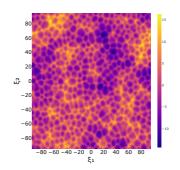
Folding kinetics of a 35-amino acid protein

$$dX_t = \nabla V(X_t)dt + \sigma(X_t)dW_t$$



Kuramoto-Sivashinsky: Chaotic flames

$$\partial_t x + \nabla^2 x + \nabla^4 x + |\nabla x|^2 = 0.$$



Wu, Nüske, Paul, Klus, Koltai, Noé. The Journal of Chemical Physics 2016 Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

Stochastic Differential Equations

Consider the SDE

$$dX_t = f(X_t)dt + \sigma(X_t)dW_t.$$

Suitable assumptions: solution $(X_t)_{t\geq 0}$ exists and is Markov process.

TECHNISCHE UNIVERSITÄT BIOGROUNDOMPTIMAT ERROMA CHEMNITZ

Stochastic Differential Equations

Consider the SDE

$$dX_t = f(X_t)dt + \sigma(X_t)dW_t.$$

Suitable assumptions: solution $(X_t)_{t>0}$ exists and is Markov process. By

$$\rho_t(x, A) = \mathbb{P}(X_t \in A \mid X_0 = x)$$

we denote the associated transition probability.

Stochastic Differential Equations

Consider the SDE

$$dX_t = f(X_t)dt + \sigma(X_t)dW_t.$$

Suitable assumptions: solution $(X_t)_{t>0}$ exists and is Markov process. By

$$\rho_t(x, A) = \mathbb{P}(X_t \in A \mid X_0 = x)$$

we denote the associated transition probability. Here, one defines

$$(\mathcal{K}\varphi)(x^0) = \mathbb{E}[\varphi(X_t) | X_0 = x^0] = \int \varphi(y) \, \rho_t(x^0, dy).$$

10 / 33 TUC

Stochastic Differential Equations

Consider the SDE

$$dX_t = f(X_t)dt + \sigma(X_t)dW_t.$$

Suitable assumptions: solution $(X_t)_{t>0}$ exists and is Markov process. By

$$\rho_t(x, A) = \mathbb{P}(X_t \in A \mid X_0 = x)$$

we denote the associated transition probability. Here, one defines

$$(\mathcal{K}\varphi)(x^0) = \mathbb{E}[\varphi(X_t) \mid X_0 = x^0] = \int \varphi(y) \, \rho_t(x^0, dy).$$

In the deterministic case, $\rho_t(x^0,A) = \delta_{x(t;x^0)}(A)$ such that $(\mathcal{K}\varphi)(x^0) = \varphi(x(t;x^0))$.

ZIS TECHNISCHE UNIVERSITÄT BIOGREGA TARMAUTIVATI LEGINA CHEMNITZ

Extended Dynamic Mode Decomposition (EDMD)²

Consider data points $x_0,...,x_{d-1}\in\Omega$, a dictionary $\mathbb{V}:=\mathrm{span}\{\{\psi_j\}_{j=1}^N\}$ with $\psi_j:\Omega\to\mathbb{R}$,

$$X := \left(\begin{pmatrix} \psi_1(x_0) \\ \vdots \\ \psi_N(x_0) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x_{d-1}) \\ \vdots \\ \psi_N(x_{d-1}) \end{pmatrix} \right), \quad Y := \left(\begin{pmatrix} \psi_1(x^+(x_0))) \\ \vdots \\ \psi_N(x^+(x_0)) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x^+(x_{d-1})) \\ \vdots \\ \psi_N(x^+(x_{d-1})) \end{pmatrix} \right).$$

²Williams et al., Journal of Nonlinear Science, 2015

Extended Dynamic Mode Decomposition (EDMD)²

Consider data points $x_0,..,x_{d-1}\in\Omega$, a dictionary $\mathbb{V}:=\mathrm{span}\{\{\psi_j\}_{j=1}^N\}$ with $\psi_j:\Omega\to\mathbb{R}$,

$$X := \left(\begin{pmatrix} \psi_1(x_0) \\ \vdots \\ \psi_N(x_0) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x_{d-1}) \\ \vdots \\ \psi_N(x_{d-1}) \end{pmatrix} \right), \quad Y := \left(\begin{pmatrix} \psi_1(x^+(x_0))) \\ \vdots \\ \psi_N(x^+(x_0)) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x^+(x_{d-1})) \\ \vdots \\ \psi_N(x^+(x_{d-1})) \end{pmatrix} \right).$$

Data-based surrogate of the projected Koopman operator:

$$P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} \approx \operatorname{argmin}_{K \in \mathbb{R}^{N \times N}} \|Y - KX\|_{2}^{2}$$

²Williams et al., Journal of Nonlinear Science, 2015

Extended Dynamic Mode Decomposition (EDMD)²

Consider data points $x_0,..,x_{d-1}\in\Omega$, a dictionary $\mathbb{V}:=\mathrm{span}\{\{\psi_j\}_{j=1}^N\}$ with $\psi_j:\Omega\to\mathbb{R}$,

$$X := \left(\begin{pmatrix} \psi_1(x_0) \\ \vdots \\ \psi_N(x_0) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x_{d-1}) \\ \vdots \\ \psi_N(x_{d-1}) \end{pmatrix} \right), \quad Y := \left(\begin{pmatrix} \psi_1(x^+(x_0)) \\ \vdots \\ \psi_N(x^+(x_0)) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x^+(x_{d-1}) \\ \vdots \\ \psi_N(x^+(x_{d-1})) \end{pmatrix} \right).$$

Data-based surrogate of the projected Koopman operator:

$$P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} \approx \operatorname{argmin}_{K \subset \mathbb{D}^{N \times N}} \|Y - KX\|_{2}^{2} =: K_{d}$$

²Williams et al., Journal of Nonlinear Science, 2015

TECHNISCHE UNIVERSITÄT BEDEK OLI TERMENTINSAT ELEGIPAS CHEMNITZ

Extended Dynamic Mode Decomposition (EDMD)²

Consider data points $x_0,..,x_{d-1}\in\Omega$, a dictionary $\mathbb{V}:=\mathrm{span}\{\{\psi_j\}_{j=1}^N\}$ with $\psi_j:\Omega\to\mathbb{R}$,

$$X := \left(\begin{pmatrix} \psi_1(x_0) \\ \vdots \\ \psi_N(x_0) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x_{d-1}) \\ \vdots \\ \psi_N(x_{d-1}) \end{pmatrix} \right), \quad Y := \left(\begin{pmatrix} \psi_1(x^+(x_0)) \\ \vdots \\ \psi_N(x^+(x_0)) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x^+(x_{d-1}) \\ \vdots \\ \psi_N(x^+(x_{d-1})) \end{pmatrix} \right).$$

Data-based surrogate of the projected Koopman operator:

$$P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} \approx \operatorname{argmin}_{K \in \mathbb{R}^{N \times N}} \|Y - KX\|_{2}^{2} =: K_{d}$$

Approximation error can be split up into two sources:

- ▶ Projection: $K P_{\mathbb{V}}K_{|\mathbb{V}}$ due to finite dictionary $\mathbb{V} := \operatorname{span}\{(\psi_j)_{j=1}^N\}$
- **Estimation**: $P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} K_d$ due to finite data points $x_0,..,x_{d-1} \in \Omega$

²Williams et al., Journal of Nonlinear Science, 2015

Extended Dynamic Mode Decomposition (EDMD)²

Consider data points $x_0,..,x_{d-1}\in\Omega$, a dictionary $\mathbb{V}:=\mathrm{span}\{\{\psi_j\}_{j=1}^N\}$ with $\psi_j:\Omega\to\mathbb{R}$,

$$X := \left(\begin{pmatrix} \psi_1(x_0) \\ \vdots \\ \psi_N(x_0) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x_{d-1}) \\ \vdots \\ \psi_N(x_{d-1}) \end{pmatrix} \right), \quad Y := \left(\begin{pmatrix} \psi_1(x^+(x_0))) \\ \vdots \\ \psi_N(x^+(x_0)) \end{pmatrix} \middle| \dots \middle| \begin{pmatrix} \psi_1(x^+(x_{d-1})) \\ \vdots \\ \psi_N(x^+(x_{d-1})) \end{pmatrix} \right).$$

Data-based surrogate of the projected Koopman operator:

$$P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} \approx \operatorname{argmin}_{K \in \mathbb{R}^{N \times N}} \|Y - KX\|_{2}^{2} =: K_{d}$$

Approximation error can be split up into two sources:

- ▶ Projection: $K P_{\mathbb{V}}K_{|\mathbb{V}}$ due to finite dictionary $\mathbb{V} := \operatorname{span}\{(\psi_j)_{j=1}^N\}$
- **Estimation**: $P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} K_d$ due to finite data points $x_0,..,x_{d-1} \in \Omega$

Convergence in infinite-data and infinite-dictionary limit³

³Korda, Mezić, Journal of Nonlinear Science, 2018

²Williams et al., Journal of Nonlinear Science, 2015

Sampling strategies

Data $x_0, \ldots, x_{d-1} \in \Omega$ with successor states $y_0, \ldots, y_{d-1} \in \Omega$ from either

1) i.i.d. sampling: $X_0=x_j$ drawn i.i.d. w.r.t. μ , $y_j=X_{\Delta t}$.

TECHNISCHE UNIVERSITÄT BIOGR GA.TIPONIPTINATI LIGORIA CHEMNITZ

Sampling strategies

Data $x_0, \ldots, x_{d-1} \in \Omega$ with successor states $y_0, \ldots, y_{d-1} \in \Omega$ from either

- 1) i.i.d. sampling: $X_0 = x_j$ drawn i.i.d. w.r.t. μ , $y_j = X_{\Delta t}$.
- 2) sampling from a long trajectory: $x_k = X_{k\Delta t}$, $y_k = X_{(k+1)\Delta t}$.

ZIIIS TECHNISCHE UNIVERSITÄT BEGER DA. TERBORA CHEMNITZ

Sampling strategies

Data $x_0, \ldots, x_{d-1} \in \Omega$ with successor states $y_0, \ldots, y_{d-1} \in \Omega$ from either

- 1) i.i.d. sampling: $X_0 = x_j$ drawn i.i.d. w.r.t. $\mu_i y_j = X_{\Delta t}$.
- 2) sampling from a long trajectory: $x_k = X_{k\Delta t}$, $y_k = X_{(k+1)\Delta t}$.

Assume there is an **invariant probability measure** μ on Ω , i.e.,

$$\int \rho_t(x, A) \, d\mu(x) \equiv \mu(A)$$

Sampling strategies

Data $x_0, \ldots, x_{d-1} \in \Omega$ with successor states $y_0, \ldots, y_{d-1} \in \Omega$ from either

- 1) i.i.d. sampling: $X_0 = x_i$ drawn i.i.d. w.r.t. $\mu_i y_i = X_{\Delta t}$.
- 2) sampling from a long trajectory: $x_k = X_{k\Delta t}, y_k = X_{(k+1)\Delta t}$.

Assume there is an **invariant probability measure** μ on Ω , i.e.,

$$\int \rho_t(x, A) \, d\mu(x) \equiv \mu(A)$$

and that $(X_t)_{t\geq 0}$ is **ergodic**, i.e. for all t>0

$$\rho_t(x, A) = 1 \,\forall x \in A \quad \Rightarrow \quad \mu(A) \in \{0, 1\}$$

12 / 33 TUC

For i.i.d. sampling w.r.t. μ , we have with $\varphi:=\sum_{i=1}^N \psi_i^2 \in L^2_\mu$

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \frac{\|\varphi\|_{L^2_{\mu}}^2}{d\varepsilon^2}.$$

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024. Nüske, Peitz, Philipp, S., Worthmann, Journal of Nonlinear Science, 2023 Kostic et al., NeurlPS, 2022/2023

For i.i.d. sampling w.r.t. μ , we have with $\varphi:=\sum_{i=1}^N \psi_i^2 \in L^2_\mu$

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \frac{\|\varphi\|_{L^2_{\mu}}^2}{d\varepsilon^2}.$$

If $\varphi\in L^\infty_\mu(\Omega)$,

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \exp\left(-\frac{d\varepsilon^2}{\|\varphi\|_{L^{\infty}_{\mu}}^2}\right),$$

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024. Nüske, Peitz, Philipp, S., Worthmann, Journal of Nonlinear Science, 2023 Kostic et al., NeurIPS, 2022/2023

For i.i.d. sampling w.r.t. μ , we have with $\varphi:=\sum_{i=1}^N \psi_i^2 \in L^2_\mu$

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \frac{\|\varphi\|_{L^2_{\mu}}^2}{d\varepsilon^2}.$$

If $\varphi \in L^{\infty}_{\mu}(\Omega)$,

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \exp\left(-\frac{d\varepsilon^2}{\|\varphi\|_{L^{\infty}_{\mu}}^2}\right),$$

For ergodic sampling, assume $\lambda = 1$ is an isolated eigenvalue of \mathcal{K} . Then

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \frac{1}{d\varepsilon^2}.$$

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024. Nüske, Peitz, Philipp, S., Worthmann, Journal of Nonlinear Science, 2023 Kostic et al., NeurIPS, 2022/2023

For i.i.d. sampling w.r.t. μ , we have with $\varphi:=\sum_{i=1}^N \psi_i^2 \in L^2_\mu$

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \frac{\|\varphi\|_{L^2_{\mu}}^2}{d\varepsilon^2}.$$

If $\varphi \in L^{\infty}_{\mu}(\Omega)$,

$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \exp\left(-\frac{d\varepsilon^2}{\|\varphi\|_{L^{\infty}_{\mu}}^2}\right),$$

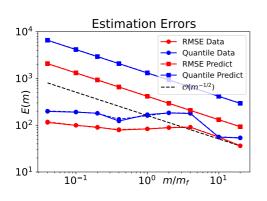
For ergodic sampling, assume $\lambda = 1$ is an isolated eigenvalue of \mathcal{K} . Then

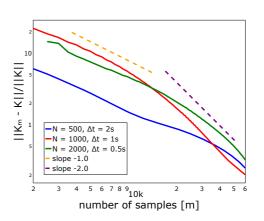
$$\mathbb{P}(\|P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} - K_d\|_F \le \varepsilon) \gtrsim 1 - \frac{1}{d\varepsilon^2}.$$

 $\lambda=1$ is never isolated for deterministic systems: Condition related to the spectral measure

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024. Nüske, Peitz, Philipp, S., Worthmann, Journal of Nonlinear Science, 2023 Kostic et al., NeurIPS, 2022/2023

Back to examples





Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

We may write the projected Koopman operator via¹

$$P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} = C^{-1}A$$
 with $C_{i,j} = \langle \psi_i, \psi_j \rangle_{L^2(\Omega)}, A_{i,j} = \langle \psi_i, \mathcal{K}\psi_j \rangle_{L^2(\Omega)}$

We may write the projected Koopman operator via¹

$$P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} = C^{-1}A$$
 with $C_{i,j} = \langle \psi_i, \psi_j \rangle_{L^2(\Omega)}, \quad A_{i,j} = \langle \psi_i, \mathcal{K}\psi_j \rangle_{L^2(\Omega)}$

Data-driven approximation:

$$K_d = \operatorname{argmin}_{K \in \mathbb{R}^{N \times N}} \|Y - KX\|_2^2$$

We may write the projected Koopman operator via¹

$$P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} = C^{-1}A$$
 with $C_{i,j} = \langle \psi_i, \psi_j \rangle_{L^2(\Omega)}, \quad A_{i,j} = \langle \psi_i, \mathcal{K}\psi_j \rangle_{L^2(\Omega)}$

Data-driven approximation:

$$K_d = (XX^\top)^{-1}XY^\top$$

¹Klus, Nüske, et al., Physica D, 2018

We may write the projected Koopman operator via¹

$$P_{\mathbb{V}}\mathcal{K}|_{\mathbb{V}} = C^{-1}A$$
 with $C_{i,j} = \langle \psi_i, \psi_j \rangle_{L^2(\Omega)}, A_{i,j} = \langle \psi_i, \mathcal{K}\psi_j \rangle_{L^2(\Omega)}$

Data-driven approximation:

$$K_d = (XX^{\top})^{-1}XY^{\top} = C_d^{-1}A_d$$

with

$$(C_d)_{i,j} = \frac{1}{d} \sum_{k=0}^{d-1} \psi_i(x_k) \psi_j(x_k), \quad (A_d)_{i,j} = \frac{1}{d} \sum_{k=0}^{d-1} \psi_i(x_k) \cdot (\mathcal{K}\psi_j)(x_k)$$

as

$$X := \left(\left(\begin{array}{c} \psi_1(x_0) \\ \vdots \\ \psi_N(x_0) \end{array} \right) \middle| \dots \middle| \left(\begin{array}{c} \psi_1(x_{d-1}) \\ \vdots \\ \psi_N(x_{d-1}) \end{array} \right) \right), \quad Y := \left(\left(\begin{array}{c} \psi_1(x^+(x_0))) \\ \vdots \\ \psi_N(x^+(x_0)) \end{array} \right) \middle| \dots \middle| \left(\begin{array}{c} \psi_1(x^+(x_{d-1})) \\ \vdots \\ \psi_N(x^+(x_{d-1})) \end{array} \right) \right).$$

¹Klus, Nüske, et al., Physica D, 2018

It's all about
$$\frac{1}{d}\sum_{k=1}^{d-1}\psi_i(x_k)\psi_j(x_k)-\int\psi_i\psi_j$$

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

It's all about
$$\frac{1}{d} \sum_{k=1}^{d-1} \psi_i(x_k) \psi_j(x_k) - \int \psi_i \psi_j$$

Step 1: Estimate variance:

- 1. i.i.d. sampling $\sigma_{d,i,j}^2 = \frac{1}{d}\sigma_{i,j}^2$
- 2. ergodic sampling $\sigma_{d,i,j}^2 = \frac{1}{d} \Big(\underbrace{\sigma_{\infty,i,j}^2}_{\text{asymptotic variance}} \underbrace{R_{i,j}^d}_{\text{remainder term}} \Big)$

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

It's all about
$$\frac{1}{d} \sum_{k=1}^{d-1} \psi_i(x_k) \psi_j(x_k) - \int \psi_i \psi_j$$

Step 1: Estimate variance:

- 1. i.i.d. sampling $\sigma_{d,i,j}^2 = \frac{1}{d}\sigma_{i,j}^2$
- 2. ergodic sampling $\sigma_{d,i,j}^2 = \frac{1}{d} \Big(\sigma_{\infty,i,j}^2 \Big)$ asymptotic variance

Step 2: Apply concentration inequality (Chebychev, Hoeffding...)

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

26.09.2025 · Manuel Schaller TUC 16 / 33

It's all about
$$rac{1}{d}\sum_{k=1}^{d-1}\psi_i(x_k)\psi_j(x_k)-\int\psi_i\psi_j$$

Step 1: Estimate variance:

- 1. i.i.d. sampling $\sigma_{d,i,j}^2 = \frac{1}{d}\sigma_{i,j}^2$
- 2. ergodic sampling $\sigma_{d,i,j}^2 = \frac{1}{d} \Big(\underbrace{\sigma_{\infty,i,j}^2}_{\text{asymptotic variance}} \underbrace{R_{i,j}^d}_{\text{remainder term}} \Big)$

Step 2: Apply concentration inequality (Chebychev, Hoeffding...)

Decay of $\frac{1}{d}$ remainder term: Ergodic theory and mixing conditions.

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

It's all about
$$\frac{1}{d}\sum_{k=1}^{d-1}\psi_i(x_k)\psi_j(x_k)-\int\psi_i\psi_j$$

Step 1: Estimate variance:

- 1. i.i.d. sampling $\sigma_{d,i,j}^2 = \frac{1}{d}\sigma_{i,j}^2$
- 2. ergodic sampling $\sigma_{d,i,j}^2 = \frac{1}{d} \Big(\underbrace{\sigma_{\infty,i,j}^2}_{\text{asymptotic variance}} \underbrace{R_{i,j}^d}_{\text{remainder term}} \Big)$

Step 2: Apply concentration inequality (Chebychev, Hoeffding...)

Decay of ¹/_d remainder term: Ergodic theory and mixing conditions.

Approximation error:

- ▶ Projection: $K P_{\mathbb{V}}K_{|\mathbb{V}}$ due to finite dictionary $\mathbb{V} := \operatorname{span}\{(\psi_j)_{j=1}^N\}$
- **Estimation**: $P_{\mathbb{V}}\mathcal{K}_{|\mathbb{V}} K_d$ due to finite data points $x_0,..,x_{d-1} \in \Omega$

TECHNISCHE UNIVERSITÄT BIOGRICULTURART ERBORAS CHEMNITZ

Kernel Extended Dynamic Mode Decomposition

A Reproducing Kernel Hilbert Space H is a

- ▶ Hilbert space of functions $f: \Omega \to \mathbb{R}$
- lacktriangle with s.p.d. kernel $k:\Omega imes \Omega o \mathbb{R}$ with $k(x,\cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Kernel Extended Dynamic Mode Decomposition

A Reproducing Kernel Hilbert Space H is a

- ▶ Hilbert space of functions $f: \Omega \to \mathbb{R}$
- lacktriangle with s.p.d. kernel $k:\Omega imes \Omega o \mathbb{R}$ with $k(x,\cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Dictionary: For data points
$$\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$$
 set $V_{\mathcal{X}} := \operatorname{span}\{k(x_1, \cdot), k(x_2, \cdot), \dots, k(x_d, \cdot)\} \subset \mathbb{H}$

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Kernel Extended Dynamic Mode Decomposition

A Reproducing Kernel Hilbert Space H is a

- ▶ Hilbert space of functions $f: \Omega \to \mathbb{R}$
- ightharpoonup with s.p.d. kernel $k:\Omega\times\Omega\to\mathbb{R}$ with $k(x,\cdot)\in\mathbb{H}$ for all $x\in\Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Dictionary: For data points $\mathcal{X}=\{x_1\dots,x_d\}\subset\Omega$ set $V_{\mathcal{X}}:=\mathrm{span}\{k(x_1,\cdot),k(x_2,\cdot),\dots,k(x_d,\cdot)\}\subset\mathbb{H}$

$$X = \begin{bmatrix} k(x_0, x_0) & \dots & k(x_0, x_{d-1}) \\ \vdots & \ddots & \vdots \\ k(x_{d-1}, x_0) & \dots & k(x_{d-1}, x_{d-1}) \end{bmatrix}, \quad Y = \begin{bmatrix} k(x_0, x_0^+) & \dots & k(x_0, x_{d-1}^+) \\ \vdots & \ddots & \vdots \\ k(x_{d-1}, x_0^+) & \dots & k(x_{d-1}, x_{d-1}^+) \end{bmatrix}.$$

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Kernel Extended Dynamic Mode Decomposition

A Reproducing Kernel Hilbert Space H is a

- ightharpoonup Hilbert space of functions $f:\Omega\to\mathbb{R}$
- \blacktriangleright with s.p.d. kernel $k: \Omega \times \Omega \to \mathbb{R}$ with $k(x, \cdot) \in \mathbb{H}$ for all $x \in \Omega$ and

$$\forall \varphi \in \mathbb{H}: \quad \varphi(x) = \langle \varphi, k(x, \cdot) \rangle$$
 reproducing property

Dictionary: For data points $\mathcal{X} = \{x_1 \dots, x_d\} \subset \Omega$ set $V_{\mathcal{X}} := \operatorname{span}\{k(x_1, \cdot), k(x_2, \cdot), \dots, k(x_d, \cdot)\} \subset \mathbb{H}$

$$X = \begin{bmatrix} k(x_0, x_0) & \dots & k(x_0, x_{d-1}) \\ \vdots & \ddots & \vdots \\ k(x_{d-1}, x_0) & \dots & k(x_{d-1}, x_{d-1}) \end{bmatrix}, \quad Y = \begin{bmatrix} k(x_0, x_0^+) & \dots & k(x_0, x_{d-1}^+) \\ \vdots & \ddots & \vdots \\ k(x_{d-1}, x_0^+) & \dots & k(x_{d-1}, x_{d-1}^+) \end{bmatrix}.$$

kEDMD approximant

$$K_d = (XX^{\top})^{-1}X^{\top}Y = X^{-1}X^{-1}XY = X^{-1}Y$$

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Compatibility assumptions such that $\mathbb{H} \stackrel{d}{\hookrightarrow} L^2_u(\Omega)$

18 / 33 TUC

Compatibility assumptions such that $\mathbb{H} \stackrel{d}{\hookrightarrow} L^2_{\mu}(\Omega)$

Central concept: Mercer integral operator $\mathcal{E}:L^2_{\mu}(\Omega) o \mathbb{H}$

$$\mathcal{E}\psi = \int k(x,\cdot)\psi(x) \, d\mu(x).$$

Compatibility assumptions such that $\mathbb{H} \stackrel{d}{\hookrightarrow} L^2_u(\Omega)$

Central concept: Mercer integral operator $\mathcal{E}: L^2_{\mu}(\Omega) \to \mathbb{H}$

$$\mathcal{E}\psi = \int k(x,\cdot)\psi(x) \, d\mu(x).$$

with

$$\langle \mathcal{E}\psi, \eta \rangle = \int \psi(x) \langle k(x, \cdot), \eta \rangle \, d\mu(x) = \int \psi(x) \eta(x) \, d\mu(x) = \langle \psi, \eta \rangle_{\mu} \qquad \forall \psi \in L^{2}_{\mu}(\Omega), \eta \in \mathbb{H}$$

18 / 33 TUC

Compatibility assumptions such that $\mathbb{H} \stackrel{d}{\hookrightarrow} L^2_u(\Omega)$

Central concept: Mercer integral operator $\mathcal{E}: L^2_{\mu}(\Omega) \to \mathbb{H}$

$$\mathcal{E}\psi = \int k(x,\cdot)\psi(x) \, d\mu(x).$$

with

$$\langle \mathcal{E}\psi, \eta \rangle = \int \psi(x) \langle k(x, \cdot), \eta \rangle \, d\mu(x) = \int \psi(x) \eta(x) \, d\mu(x) = \langle \psi, \eta \rangle_{\mu} \qquad \forall \psi \in L^{2}_{\mu}(\Omega), \eta \in \mathbb{H}$$

Adjoint $\mathcal{E}^*: \mathbb{H} \to L^2_\mu(\Omega)$ is the compact inclusion operator from \mathbb{H} into $L^2_\mu(\Omega)$

$$\mathcal{E}^*\eta = \eta, \qquad \eta \in \mathbb{H}.$$

18 / 33 TUC

Z##5 TECHNISCHE UNIVERSITÄT BEGER GA TADOMOTENAT ELEGANI CHEMNITZ

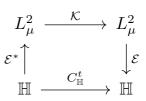
Koopman through the lens of the Mercer operator

Set

$$C_{\mathbb{H}}^t = \mathcal{EKE}^*$$

such that

$$\langle \eta, C_{\mathbb{H}}^t \psi \rangle = \langle \eta, \mathcal{K} \psi \rangle_{\mu}$$



Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Koopman through the lens of the Mercer operator

Set

$$C_{\mathbb{H}}^t = \mathcal{EKE}^*$$

such that

$$\langle \eta, C_{\mathbb{H}}^t \psi \rangle = \langle \eta, \mathcal{K} \psi \rangle_{\mu}$$

$$L^{2}_{\mu} \xrightarrow{\mathcal{K}} L^{2}_{\mu}$$

$$\varepsilon^{*} \uparrow \qquad \qquad \downarrow \varepsilon$$

$$\mathbb{H} \xrightarrow{C^{t}_{\mathbb{H}}} \mathbb{H}$$

Setting $C_{\mathbb{H}} = \mathcal{E}\mathcal{E}^*$

$$(\mathcal{E}^*)^{-1}\mathcal{K}\mathcal{E}^* = (\mathcal{E}\mathcal{E}^*)^{-1}\mathcal{E}\mathcal{E}^*(\mathcal{E}^*)^{-1}\mathcal{K}\mathcal{E}^* = C_{\mathbb{H}}^{-1}\mathcal{E}\mathcal{K}\mathcal{E}^* = C_{\mathbb{H}}^{-1}C_{\mathbb{H}}^t$$

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Koopman through the lens of the Mercer operator

Set

$$C_{\mathbb{H}}^t = \mathcal{EKE}^*$$

such that

$$\langle \eta, C_{\mathbb{H}}^t \psi \rangle = \langle \eta, \mathcal{K} \psi \rangle_{\mu}$$

$$\begin{array}{ccc} L_{\mu}^{2} & \stackrel{\mathcal{K}}{\longrightarrow} & L_{\mu}^{2} \\ \varepsilon^{*} \uparrow & & \downarrow \varepsilon \\ \mathbb{H} & \stackrel{C_{\mathbb{H}}^{t}}{\longrightarrow} & \mathbb{H} \end{array}$$

Setting $C_{\mathbb{H}} = \mathcal{E}\mathcal{E}^*$

$$(\mathcal{E}^*)^{-1}\mathcal{K}\mathcal{E}^* = (\mathcal{E}\mathcal{E}^*)^{-1}\mathcal{E}\mathcal{E}^*(\mathcal{E}^*)^{-1}\mathcal{K}\mathcal{E}^* = C_{\mathbb{H}}^{-1}\mathcal{E}\mathcal{K}\mathcal{E}^* = C_{\mathbb{H}}^{-1}C_{\mathbb{H}}^t$$

Strategy: Approximate $C_{\mathbb{H}}^{-1}$, $C_{\mathbb{H}}^{t}$ and transfer to Koopman operator

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Koopman through the lens of the Mercer operator

Set

$$C_{\mathbb{H}}^t = \mathcal{EKE}^*$$

such that

$$\langle \eta, C_{\mathbb{H}}^t \psi \rangle = \langle \eta, \mathcal{K} \psi \rangle_{\mu}$$

$$\begin{array}{ccc} L_{\mu}^{2} & \stackrel{\mathcal{K}}{\longrightarrow} & L_{\mu}^{2} \\ \varepsilon^{*} & & & \downarrow \varepsilon \\ \mathbb{H} & \stackrel{C_{\mathbb{H}}^{t}}{\longrightarrow} & \mathbb{H} \end{array}$$

Setting
$$C_{\mathbb{H}} = \mathcal{E}\mathcal{E}^*$$

$$(\mathcal{E}^*)^{-1}\mathcal{K}\mathcal{E}^* = (\mathcal{E}\mathcal{E}^*)^{-1}\mathcal{E}\mathcal{E}^*(\mathcal{E}^*)^{-1}\mathcal{K}\mathcal{E}^* = C_{\mathbb{H}}^{-1}\mathcal{E}\mathcal{K}\mathcal{E}^* = C_{\mathbb{H}}^{-1}C_{\mathbb{H}}^t$$

Strategy: Approximate $C_{\mathbb{H}}^{-1}$, $C_{\mathbb{H}}^{t}$ and transfer to Koopman operator

Caution: \mathcal{E}^{-1} , \mathcal{E}^{-*} are unbounded

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

Empirical estimator for $C_{\mathbb{H}}^t$

We compute

$$C_{\mathbb{H}}^{t}\psi = \mathcal{E}\mathcal{K}\mathcal{E}^{*}\psi = \int (\mathcal{K}\psi)(x)k(x,\cdot)\,d\mu(x) = \int \int \underbrace{\psi(y)k(x,\cdot)}_{=:C_{-t}} \rho_{t}(x,dy)d\mu(x).$$

Empirical estimator for C^t_{\square}

We compute

$$C_{\mathbb{H}}^{t}\psi = \mathcal{E}\mathcal{K}\mathcal{E}^{*}\psi = \int (\mathcal{K}\psi)(x)k(x,\cdot)\,d\mu(x) = \int \int \underbrace{\psi(y)k(x,\cdot)}_{=:C_{t-1}\psi}\rho_{t}(x,dy)d\mu(x).$$

Empirical estimator of time-lagged cross-covariance:

$$\hat{C}^{d,t}_{\mathbb{H}}:=rac{1}{d}\sum_{i=0}^{d-1}C_{x_k,y_k}$$
 with matrix rep. $rac{1}{d}(Y)_{ij}=k(x_i,y_j)$

TUC 20 / 33

ZIIIS TECHNISCHE UNIVERSITÄT RICER OLI TAPONISTINAST ILBOTAN CHEMNITZ

Empirical estimator for $C_{\mathbb{H}}^t$

We compute

$$C_{\mathbb{H}}^{t}\psi = \mathcal{E}\mathcal{K}\mathcal{E}^{*}\psi = \int (\mathcal{K}\psi)(x)k(x,\cdot)\,d\mu(x) = \int \int \underbrace{\psi(y)k(x,\cdot)}_{=:C_{\mathbb{H}},\psi} \rho_{t}(x,dy)d\mu(x).$$

Empirical estimator of time-lagged cross-covariance:

$$\hat{C}^{d,t}_{\mathbb{H}}:=rac{1}{d}\sum_{i=1}^{d-1}C_{x_k,y_k}$$
 with matrix rep. $rac{1}{d}(Y)_{ij}=k(x_i,y_j)$

Empirical estimator of kernel covariance:

$$C_{\mathbb{H}} = \mathcal{E}^*\mathcal{E} = \int C_{xx} \,\mathrm{d}\mu(x) \approx \frac{1}{d} \sum_{i=1}^{d-1} C_{x_k,x_k} =: \hat{C}^d_{\mathbb{H}} \qquad \text{with matrix rep.} \qquad \frac{1}{d}(X)_{ij} = k(x_i,x_j)$$

Finite-data error bound

Theorem

For all $\varepsilon > 0$, there is $d_0 \in \mathbb{N}$ such that for all $d \geq d_0$

$$\mathbb{P}(\|C_{\mathbb{H}}^t - \hat{C}_{\mathbb{H}}^{d,t}\|_{HS} > \varepsilon) \le \frac{\mathbb{E}_0(t) + R(d)}{d\varepsilon^2},$$

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024 Mollenhauer, Klus, Schütte, Koltai, Journal of Machine Learning Research, 2022.

$$\mathbb{E}\left[\|\widehat{C}_{\mathbb{H}}^{d,t} - C_{\mathbb{H}}^{t}\|_{HS}^{2}\right] = \frac{1}{d}\left[\mathbb{E}_{0}(t) + 2\underbrace{\sum_{k=1}^{d-1} \frac{d-k}{d} \cdot \mathbb{E}\left[\langle C_{z_{k}} - C_{\mathbb{H}}^{t}, C_{z_{0}} - C_{\mathbb{H}}^{t}\rangle_{HS}\right]}_{R(d)}\right],$$

¹Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

²Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

$$\mathbb{E}\left[\|\widehat{C}_{\mathbb{H}}^{d,t} - C_{\mathbb{H}}^{t}\|_{HS}^{2}\right] = \frac{1}{d}\left[\mathbb{E}_{0}(t) + 2\underbrace{\sum_{k=1}^{d-1} \frac{d-k}{d} \cdot \mathbb{E}\left[\langle C_{z_{k}} - C_{\mathbb{H}}^{t}, C_{z_{0}} - C_{\mathbb{H}}^{t}\rangle_{HS}\right]}_{R(d)}\right],$$

For i.i.d. sampling, $R(d) \equiv 0$.

¹Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

²Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

$$\mathbb{E}\left[\|\widehat{C}_{\mathbb{H}}^{d,t} - C_{\mathbb{H}}^{t}\|_{HS}^{2}\right] = \frac{1}{d}\left[\mathbb{E}_{0}(t) + 2\sum_{k=1}^{d-1} \frac{d-k}{d} \cdot \mathbb{E}\left[\langle C_{z_{k}} - C_{\mathbb{H}}^{t}, C_{z_{0}} - C_{\mathbb{H}}^{t}\rangle_{HS}\right]\right],$$

For i.i.d. sampling, $R(d) \equiv 0$.

For ergodic sampling, if 1 is an isolated eigenvalue of \mathcal{K} , then with $\mathcal{K}_0 = \mathcal{K}|_{\mathbb{L}^{\perp}}$

$$R(d) \le 8\mathbb{E}_0(t) \| (I - \mathcal{K}_0)^{-2} \|$$

¹Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

²Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

$$\mathbb{E}\left[\|\widehat{C}_{\mathbb{H}}^{d,t} - C_{\mathbb{H}}^{t}\|_{HS}^{2}\right] = \frac{1}{d}\left[\mathbb{E}_{0}(t) + 2\underbrace{\sum_{k=1}^{d-1} \frac{d-k}{d} \cdot \mathbb{E}\left[\langle C_{z_{k}} - C_{\mathbb{H}}^{t}, C_{z_{0}} - C_{\mathbb{H}}^{t}\rangle_{HS}\right]}_{R(d)}\right],$$

For i.i.d. sampling, $R(d) \equiv 0$.

For ergodic sampling, if 1 is an isolated eigenvalue of \mathcal{K} , then with $\mathcal{K}_0 = \mathcal{K}|_{\mathbb{1}^\perp}$

$$R(d) \le 8\mathbb{E}_0(t) \| (I - \mathcal{K}_0)^{-2} \|$$

Similar variance representations for arbitrary dictionaries²

¹Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024

²Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024

Transfering this to Koopman operator We have $C_{\mathbb{H}}^t = \mathcal{EKE}^*$,

Transfering this to Koopman operator

We have $C_{\mathbb{H}}^t=\mathcal{EKE}^*$, but $\mathcal{E}^{-1},\mathcal{E}^{-*}$ are unbounded.

Transfering this to Koopman operator

We have $C_{\mathbb{H}}^t = \bar{\mathcal{E}}\mathcal{K}\mathcal{E}^*$, but $\mathcal{E}^{-1}, \mathcal{E}^{-*}$ are unbounded.

Remedy: Mercer basis of eigenfunctions of trace class operator $\mathcal{C}_{\mathbb{H}} = \mathcal{E}\mathcal{E}^*$ (f_j, λ_j) , $\lambda_j \to 0$ with

$$(f_j)$$
 is ONB of $\mathbb H$ and $(e_j)=(\lambda_j^{-1/2}f_j)$ is ONB of L^2_μ

ZIIIS TECHNISCHE UNIVERSITÄT RICHT EIL TURBUNG CHEMNITZ

Transfering this to Koopman operator

We have $C_{\mathbb{H}}^t = \mathcal{EKE}^*$, but $\mathcal{E}^{-1}, \mathcal{E}^{-*}$ are unbounded.

Remedy: Mercer basis of eigenfunctions of trace class operator $\mathcal{C}_{\mathbb{H}} = \mathcal{E}\mathcal{E}^*$ (f_j, λ_j) , $\lambda_j \to 0$ with

$$(f_j)$$
 is ONB of $\mathbb H$ and $(e_j)=(\lambda_j^{-1/2}f_j)$ is ONB of L^2_μ

Then, for $\psi \in \mathbb{H}$,

$$\mathcal{K}\psi = \sum_{j=1}^{\infty} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j = \underbrace{\sum_{j=1}^{N} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j}_{=:\mathcal{K}_N \psi} + \sum_{j=N+1}^{\infty} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j$$

Transfering this to Koopman operator

We have $C_{\mathbb{H}}^t = \mathcal{EKE}^*$, but $\mathcal{E}^{-1}, \mathcal{E}^{-*}$ are unbounded.

Remedy: Mercer basis of eigenfunctions of trace class operator $\mathcal{C}_{\mathbb{H}} = \mathcal{E}\mathcal{E}^*$ (f_j, λ_j) , $\lambda_j \to 0$ with

$$(f_j)$$
 is ONB of $\mathbb H$ and $(e_j)=(\lambda_j^{-1/2}f_j)$ is ONB of L^2_μ

Then, for $\psi \in \mathbb{H}$,

$$\mathcal{K}\psi = \sum_{j=1}^{\infty} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j = \underbrace{\sum_{j=1}^{N} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j}_{=:\mathcal{K}_N \psi} + \sum_{j=N+1}^{\infty} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j$$

and we approximate with $\hat{e}_j=(\hat{\lambda}_j^{-1/2}\hat{f}_j)$ are eigenfunctions of $\hat{C}_{\mathbb{H}}^d=\frac{1}{d}\sum_{k=0}^{m-1}C_{x_k,x_k}$

$$\mathcal{K}_{N}\psi = \sum_{j=1}^{N} \langle C_{\mathbb{H}}^{t}\psi, e_{j}\rangle_{\mathbb{H}}e_{j} \approx \sum_{j=1}^{N} \langle \hat{C}_{\mathbb{H}}^{t,d}\psi, \hat{e}_{j}\rangle_{\mathbb{H}}e_{j} =: \hat{\mathcal{K}}_{N}^{d}\psi$$

Transfering this to Koopman operator

We have $C_{\mathbb{H}}^t = \mathcal{EKE}^*$, but $\mathcal{E}^{-1}, \mathcal{E}^{-*}$ are unbounded.

Remedy: Mercer basis of eigenfunctions of trace class operator $\mathcal{C}_{\mathbb{H}}=\mathcal{E}\mathcal{E}^*$ (f_j,λ_j) , $\lambda_j\to 0$ with

$$(f_j)$$
 is ONB of $\mathbb H$ and $(e_j)=(\lambda_j^{-1/2}f_j)$ is ONB of L^2_μ

Then, for $\psi \in \mathbb{H}$,

$$\mathcal{K}\psi = \sum_{j=1}^{\infty} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j = \underbrace{\sum_{j=1}^{N} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j}_{=:\mathcal{K}_N \psi} + \sum_{j=N+1}^{\infty} \langle \mathcal{K}\psi, e_j \rangle_{\mu} e_j$$

and we approximate with $\hat{e}_j=(\hat{\lambda}_j^{-1/2}\hat{f}_j)$ are eigenfunctions of $\hat{C}_{\mathbb{H}}^d=\frac{1}{d}\sum_{k=0}^{m-1}C_{x_k,x_k}$

$$\mathcal{K}_{N}\psi = \sum_{j=1}^{N} \langle C_{\mathbb{H}}^{t}\psi, e_{j}\rangle_{\mathbb{H}}e_{j} \approx \sum_{j=1}^{N} \langle \hat{C}_{\mathbb{H}}^{t,d}\psi, \hat{e}_{j}\rangle_{\mathbb{H}}e_{j} =: \hat{\mathcal{K}}_{N}^{d}\psi$$

Back to kEDMD: \hat{K}_N^d corresponds to K_d via $K_d = X^{-1}Y \approx X_N^{\dagger}Y$ with a rank-N truncation of X.

Main result: Estimation error

Theorem

Let $N \in \mathbb{N}$ and assume the gap condition

$$\gamma_N := \min_{j=1,\dots,N} \frac{\lambda_j - \lambda_{j+1}}{2} > 0.$$

Then, for each error bound $\varepsilon \in (0, \delta_N)$ and probabilistic tolerance $\delta \in (0, 1)$ and

$$d \ge \max\{N, \frac{\mathbb{E}_0(t) + R(d)}{\varepsilon^2 \delta}\}$$

we have with probability at least $1 - \delta$

$$\|\mathcal{K}_N - \hat{\mathcal{K}}_N^m\|_{\mathbb{H} \to L^2_{\mu}(\Omega)} \lesssim \left(\frac{1}{\sqrt{\lambda_N}} + \frac{N+1}{\gamma_N \lambda_N}\right) \varepsilon.$$

Invariance of the RKHS: Projection error

Corollary

Assume in addition that $\|\mathcal{K}_{\mathbb{H}}\| < \infty$. Then for $N \in \mathbb{N}$, $\varepsilon > 0$, $\delta \in (0,1)$, there is $m_0 \in \mathbb{N}$ such that for all $d \geq d_0$

$$\|\mathcal{K} - \hat{\mathcal{K}}_N^d\|_{\mathbb{H} \to L^2_{\mu}(\Omega)} \lesssim \left[\frac{1}{\sqrt{\lambda_N}} + \frac{N+1}{\gamma_N \lambda_N} \right] \varepsilon + \sqrt{\lambda_{N+1}} \|K\|_{\mathbb{H} \to \mathbb{H}}.$$

From L^2 to L^{∞} bounds

With $P_{V_{\mathcal{X}}}$ \mathbb{H} -orthogonal projection onto $V_{\mathcal{X}} = \operatorname{span}\{k(x_i,\cdot), i=0,\ldots,d-1\}$

$$\mathcal{K} \approx K_d := P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \quad \leadsto \quad \text{matrix representation} \quad K_X^{-1} K_{X,X^+}$$

with

$$(K_X)_{ij} = k(x_i, x_j), \qquad (K_{X,X^+})_{ij} = k(x_i, F(x_j)).$$

Wendland, Advances in Computational Mathematics 1995

From L^2 to L^{∞} bounds

With $P_{V_{\mathcal{X}}}$ \mathbb{H} -orthogonal projection onto $V_{\mathcal{X}} = \operatorname{span}\{k(x_i,\cdot), i=0,\ldots,d-1\}$

$$\mathcal{K} \approx K_d := P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \quad \leadsto \quad \text{matrix representation} \quad K_X^{-1} K_{X,X^+}$$

with

$$(K_X)_{ij} = k(x_i, x_j), \qquad (K_{X,X^+})_{ij} = k(x_i, F(x_j)).$$

Here: compactly supported radially symmetric Wendland kernel:

$$\mathbb{H} \cong H^{\sigma(p)}(\Omega)$$
 $p \sim \mathsf{smoothness}$

Wendland, Advances in Computational Mathematics 1995

From L^2 to L^{∞} bounds

With $P_{V_{\mathcal{X}}}$ \mathbb{H} -orthogonal projection onto $V_{\mathcal{X}} = \operatorname{span}\{k(x_i,\cdot), i=0,\ldots,d-1\}$

$$\mathcal{K} \approx K_d := P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \quad \leadsto \quad \text{matrix representation} \quad K_X^{-1} K_{X,X^+}$$

with

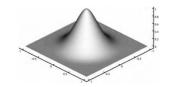
$$(K_X)_{ij} = k(x_i, x_j), \qquad (K_{X,X^+})_{ij} = k(x_i, F(x_j)).$$

Here: compactly supported radially symmetric Wendland kernel:

$$\mathbb{H} \cong H^{\sigma(p)}(\Omega)$$
 $p \sim \mathsf{smoothness}$

Projection error $P_{V_X} - I$ controlled by fill distance

$$h_{\mathcal{X}} := \sup_{x \in \Omega} \min_{1 \le i \le d} ||x - x_i||_2$$



Wendland, Advances in Computational Mathematics 1995

Error bound on $\mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}}$

Theorem²

If flow is in C^m , then, for $\sigma(p) \leq m$, $\mathcal{K}H^{\sigma(p)}(\Omega) \subset H^{\sigma(p)}(\Omega)$, and, for $f \in H^{\sigma(p)}(\Omega)$,

$$\|\mathcal{K}f - K_d f\|_{\infty} \lesssim h_{\mathcal{X}}^{p+1/2} \|f\|_{H^{\sigma(p)}(\Omega)}.$$

²Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

Error bound on $\mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}}$

Theorem²

If flow is in C^m , then, for $\sigma(p) \leq m$, $\mathcal{K}H^{\sigma(p)}(\Omega) \subset H^{\sigma(p)}(\Omega)$, and, for $f \in H^{\sigma(p)}(\Omega)$,

$$\|\mathcal{K}f - K_d f\|_{\infty} \lesssim h_{\mathcal{X}}^{p+1/2} \|f\|_{H^{\sigma(p)}(\Omega)}.$$

$$\left\| \mathcal{K} - K_d \right\|_{\mathbb{H} \to C_b} = \left\| \mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \right\|_{\mathbb{H} \to C_b} \lesssim (1 + \|\mathcal{K}\|_{\mathbb{H} \to \mathbb{H}}) \|I - P_{V_{\mathcal{X}}}\|_{\mathbb{H} \to C_b}$$

²Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

Error bound on $\mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}}$

Theorem²

If flow is in C^m , then, for $\sigma(p) \leq m$, $\mathcal{K}H^{\sigma(p)}(\Omega) \subset H^{\sigma(p)}(\Omega)$, and, for $f \in H^{\sigma(p)}(\Omega)$,

$$\|\mathcal{K}f - K_d f\|_{\infty} \lesssim h_{\mathcal{X}}^{p+1/2} \|f\|_{H^{\sigma(p)}(\Omega)}.$$

$$\left\| \mathcal{K} - K_d \right\|_{\mathbb{H} \to C_b} = \left\| \mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \right\|_{\mathbb{H} \to C_b} \lesssim (1 + \|\mathcal{K}\|_{\mathbb{H} \to \mathbb{H}}) \|I - P_{V_{\mathcal{X}}}\|_{\mathbb{H} \to C_b}$$

Theorem (Wendland 1995)

There are $C, h_0 > 0$ such that for every set $\mathcal{X} = \{x_i\}_{i=1}^d \subset \Omega$ with $h_{\mathcal{X}} \leq h_0$ and all $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$,

$$||I - P_{V_{\mathcal{X}}}||_{\mathbb{H}_{\Phi_{n-k}} \to C_b(\Omega)} \le Ch_{\mathcal{X}}^{k+1/2}.$$

²Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

$$\left\| \mathcal{K} - K_d \right\|_{\mathbb{H} \to C_b} = \left\| \mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \right\|_{\mathbb{H} \to C_b} \lesssim \left(1 + \left\| \mathcal{K} \right\|_{\mathbb{H} \to \mathbb{H}} \right) \left\| I - P_{V_{\mathcal{X}}} \right\|_{\mathbb{H} \to C_b}$$

³Gonzalez et al. ICLR 2025.

⁴Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

$$\left\| \mathcal{K} - K_d \right\|_{\mathbb{H} \to C_b} = \left\| \mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}} \right\|_{\mathbb{H} \to C_b} \lesssim \left(1 + \left\| \mathcal{K} \right\|_{\mathbb{H} \to \mathbb{H}} \right) \left\| I - P_{V_{\mathcal{X}}} \right\|_{\mathbb{H} \to C_b}$$

Theorem³

Let $\mathbb H$ be a Gaussian RKHS on $\Omega=\mathbb R^{n_x}$. Then $\mathcal K\mathbb H\subset\mathbb H$ if and only if the flow is affine-linear, i.e., $x(t;x^0)=A(t)x^0+b(t)$.

³Gonzalez et al. ICLR 2025.

⁴Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

$$\|\mathcal{K} - K_d\|_{\mathbb{H} \to C_b} = \|\mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}}\|_{\mathbb{H} \to C_b} \lesssim (1 + \|\mathcal{K}\|_{\mathbb{H} \to \mathbb{H}}) \|I - P_{V_{\mathcal{X}}}\|_{\mathbb{H} \to C_b}$$

Theorem³

Let $\mathbb H$ be a Gaussian RKHS on $\Omega=\mathbb R^{n_x}$. Then $\mathcal K\mathbb H\subset\mathbb H$ if and only if the flow is affine-linear, i.e., $x(t;x^0)=A(t)x^0+b(t)$.

Proposition⁴

The Koopman operator on RKHS is always closed.

³Gonzalez et al. ICLR 2025.

⁴Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

$$\|\mathcal{K} - K_d\|_{\mathbb{H} \to C_b} = \|\mathcal{K} - P_{V_{\mathcal{X}}} \mathcal{K} P_{V_{\mathcal{X}}}\|_{\mathbb{H} \to C_b} \lesssim (1 + \|\mathcal{K}\|_{\mathbb{H} \to \mathbb{H}}) \|I - P_{V_{\mathcal{X}}}\|_{\mathbb{H} \to C_b}$$

Theorem³

Let $\mathbb H$ be a Gaussian RKHS on $\Omega=\mathbb R^{n_x}$. Then $\mathcal K\mathbb H\subset\mathbb H$ if and only if the flow is affine-linear, i.e., $x(t;x^0)=A(t)x^0+b(t)$.

Proposition⁴

The Koopman operator on RKHS is always closed. In particular, $\mathcal{KH} \subset \mathbb{H}$ implies $|\mathcal{K}| < \infty$.

³Gonzalez et al. ICLR 2025.

⁴Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

Koopman is closed

Adjoint-like property:

$$\langle \mathcal{K}\varphi, k(x, \cdot) \rangle = \varphi(F(x)) = (\mathcal{K}\varphi)(x) = \langle \varphi, k(F(x), \cdot) \rangle$$

⁵Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

Koopman is closed

Adjoint-like property:

$$\langle \mathcal{K}\varphi, k(x,\cdot) \rangle = \varphi(F(x)) = (\mathcal{K}\varphi)(x) = \langle \varphi, k(F(x),\cdot) \rangle$$

Let $f, f_n \in \mathbb{H}$ and $g \in \mathbb{H}$ such that $||f_n - f|| \to 0$ and $||\mathcal{K}f_n - g|| \to 0$ as $n \to \infty$. To show: $g = \mathcal{K}f$.

⁵Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

Koopman is closed

Adjoint-like property:

$$\langle \mathcal{K}\varphi, k(x,\cdot) \rangle = \varphi(F(x)) = (\mathcal{K}\varphi)(x) = \langle \varphi, k(F(x),\cdot) \rangle$$

Let $f, f_n \in \mathbb{H}$ and $g \in \mathbb{H}$ such that $\|f_n - f\| \to 0$ and $\|\mathcal{K}f_n - g\| \to 0$ as $n \to \infty$. To show: $g = \mathcal{K}f$.

$$g(x) = \langle g, k(x, \cdot) \rangle = \lim_{n \to \infty} \langle \mathcal{K}f_n, k(x, \cdot) \rangle = \lim_{n \to \infty} \langle f_n, k(F(x), \cdot) \rangle = \langle f, k(F(x), \cdot) \rangle = \langle \mathcal{K}f, k(x, \cdot) \rangle$$

⁵Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

TECHNISCHE UNIVERSITÄT BICGIN GLA TURBUPTINGET EUROPAG CHEMNITZ

Koopman is closed

Adjoint-like property:

$$\langle \mathcal{K}\varphi, k(x,\cdot) \rangle = \varphi(F(x)) = (\mathcal{K}\varphi)(x) = \langle \varphi, k(F(x), \cdot) \rangle$$

Let $f, f_n \in \mathbb{H}$ and $g \in \mathbb{H}$ such that $\|f_n - f\| \to 0$ and $\|\mathcal{K}f_n - g\| \to 0$ as $n \to \infty$. To show: $g = \mathcal{K}f$.

$$g(x) = \langle g, k(x, \cdot) \rangle = \lim_{n \to \infty} \langle \mathcal{K}f_n, k(x, \cdot) \rangle = \lim_{n \to \infty} \langle f_n, k(F(x), \cdot) \rangle = \langle f, k(F(x), \cdot) \rangle = \langle \mathcal{K}f, k(x, \cdot) \rangle$$

Corollary⁵

If flow F is in C^m , then for Wendland kernels with $\mathbb{H}=H^{\sigma(p)}(\Omega)$, $\sigma(p)\leq m$,

$$\|\mathcal{K}\|_{\mathbb{H}\to\mathbb{H}}<\infty$$

Sketch of the proof: Chain rule, as $\mathcal{K}\varphi = \varphi \circ F$.

⁵Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

TECHNISCHE UNIVERSITÄT BIOGROUNDOMPTIMAT ERROMA CHEMNITZ

EDMD for control systems

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

Assuming $u \in L^{\infty}$, for fixed $\Delta t > 0$, we may define $x^+ = F(x,u) := \varphi(\Delta t; x,u)$.

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

Assuming $u \in L^{\infty}$, for fixed $\Delta t > 0$, we may define $x^+ = F(x, u) := \varphi(\Delta t; x, u)$.

Linear surrogate model (eDMDc) $\psi^+ = \psi(x^+) = \mathcal{K}\psi + \mathcal{B}u$ [Proctor et al. '16] [Korda, Mezić '18]

30 / 33 TUC

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

Assuming $u \in L^{\infty}$, for fixed $\Delta t > 0$, we may define $x^+ = F(x, u) := \varphi(\Delta t; x, u)$.

Linear surrogate model (eDMDc) $\psi^+ = \psi(x^+) = \mathcal{K}\psi + \mathcal{B}u$ [Proctor et al. '16] [Korda, Mezić '18]

But: Even if $\dot{x} = f(x, u) = Ax + Bu$

30 / 33 TUC

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

Assuming $u \in L^{\infty}$, for fixed $\Delta t > 0$, we may define $x^+ = F(x, u) := \varphi(\Delta t; x, u)$.

Linear surrogate model (eDMDc) $\psi^+ = \psi(x^+) = \mathcal{K}\psi + \mathcal{B}u$ [Proctor et al. '16] [Korda, Mezić '18]

But: Even if $\dot{x} = f(x, u) = Ax + Bu \rightarrow x(t) = e^{tA}x^0 + \int_0^t e^{(t-s)A}Bu(s) ds$:

30 / 33 TUC

Z III S TECHNISCHE UNIVERSITÄT BIORI GLA TURBURTUMAT ELBORAS CHEMNITZ

EDMD for control systems

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

Assuming $u \in L^{\infty}$, for fixed $\Delta t > 0$, we may define $x^+ = F(x,u) := \varphi(\Delta t; x,u)$.

Linear surrogate model (eDMDc) $\psi^+=\psi(x^+)=\mathcal{K}\psi+\mathcal{B}u$ [Proctor et al. '16] [Korda, Mezić '18]

But: Even if $\dot{x} = f(x, u) = Ax + Bu \rightsquigarrow x(t) = e^{tA}x^0 + \int_0^t e^{(t-s)A}Bu(s) ds$:

$$\psi^{+} = \psi(x(\Delta t, u, x^{0})) = \psi\left(e^{\Delta t A}x^{0} + \int_{0}^{\Delta t} e^{(\Delta t - s)A}Bu(s)\right).$$

Consider the control-affine system

$$\dot{x}(t) = f(x(t), u(t)) = g_0(x(t)) + \sum_{i=1}^{n_c} g_i(x(t))u_i(t)$$

Aim: Find $u = \mu(x)$ such that above system $\dot{x} = f(x, \mu(x))$ is stable towards x^* .

Assuming $u \in L^{\infty}$, for fixed $\Delta t > 0$, we may define $x^+ = F(x, u) := \varphi(\Delta t; x, u)$.

Linear surrogate model (eDMDc) $\psi^+=\psi(x^+)=\mathcal{K}\psi+\mathcal{B}u$ [Proctor et al. '16] [Korda, Mezić '18]

But: Even if $\dot{x}=f(x,u)=Ax+Bu\leadsto x(t)=e^{tA}x^0+\int_0^t e^{(t-s)A}Bu(s)\,\mathrm{d}s$:

$$\psi^{+} = \psi(x(\Delta t, u, x^{0})) = \psi\left(e^{\Delta t A}x^{0} + \int_{0}^{\Delta t} e^{(\Delta t - s)A}Bu(s)\right).$$

No linearity to be expected for nonlinear liftings.

Bilinear surrogate model [Williams et al. '16, Surana '16, Peitz et al. '20]

Let $u \in \mathbb{R}^{n_u}$ and consider the Koopman operator

$$(\mathcal{K}_u^t \varphi)(x^0) = \varphi(x(t; x^0, u))$$

Bilinear surrogate model [Williams et al. '16, Surana '16, Peitz et al. '20]

Let $u \in \mathbb{R}^{n_u}$ and consider the Koopman operator

$$(\mathcal{K}_u^t \varphi)(x^0) = \varphi(x(t; x^0, u))$$

Strongly continuous semigroup (in L^2 or C):

$$(\mathcal{K}^{t+s}\varphi)(x^0) = \varphi(x(t+s;x^0)) = \varphi(x(t;x(s;x^0))) = (\mathcal{K}^t\varphi)(x(s;x^0)) = (\mathcal{K}^t\mathcal{K}^s\varphi)(x^0)$$

Bilinear surrogate model [Williams et al. '16, Surana '16, Peitz et al. '20]

Let $u \in \mathbb{R}^{n_u}$ and consider the Koopman operator

$$(\mathcal{K}_u^t \varphi)(x^0) = \varphi(x(t; x^0, u))$$

Strongly continuous semigroup (in L^2 or C):

$$(\mathcal{K}^{t+s}\varphi)(x^0) = \varphi(x(t+s;x^0)) = \varphi(x(t;x(s;x^0))) = (\mathcal{K}^t\varphi)(x(s;x^0)) = (\mathcal{K}^t\mathcal{K}^s\varphi)(x^0)$$

Then, the densely defined generator

$$\mathcal{L}_u \varphi := \lim_{t \to 0} \frac{\mathcal{K}_u^t \varphi - \varphi}{t} = \frac{\mathrm{d}}{\mathrm{d}t} \varphi(x(t;\cdot,u))_{|_{t=0}} = \nabla \varphi \cdot \left(g_0 + \sum_{i=0}^{t} g_i u_i\right)$$

Philipp, S., Worthmann, Peitz, Nüske, Journal of Nonlinear Science 2023, 2025

Bilinear surrogate model [Williams et al. '16, Surana '16, Peitz et al. '20]

Let $u \in \mathbb{R}^{n_u}$ and consider the Koopman operator

$$(\mathcal{K}_u^t \varphi)(x^0) = \varphi(x(t; x^0, u))$$

Strongly continuous semigroup (in L^2 or C):

$$(\mathcal{K}^{t+s}\varphi)(x^0) = \varphi(x(t+s;x^0)) = \varphi(x(t;x(s;x^0))) = (\mathcal{K}^t\varphi)(x(s;x^0)) = (\mathcal{K}^t\mathcal{K}^s\varphi)(x^0)$$

Then, the densely defined generator

$$\mathcal{L}_u \varphi := \lim_{t \to 0} \frac{\mathcal{K}_u^t \varphi - \varphi}{t} = \frac{\mathrm{d}}{\mathrm{d}t} \varphi(x(t;\cdot,u))_{|_{t=0}} = \nabla \varphi \cdot \left(g_0 + \sum_{i=0}^{t} g_i u_i\right)$$

hence $\mathcal{L}_u = \mathcal{L}_0 + \sum_{i=1}^{n_c} u_i (\mathcal{L}_{e_i} - \mathcal{L}_0)$, such that

$$\dot{\varphi} = \mathcal{L}_u \varphi = \mathcal{L}_0 + \sum_{i=1}^{n_c} u_i (\mathcal{L}_{e_i} - \mathcal{L}_0) \varphi$$

Philipp, S., Worthmann, Peitz, Nüske, Journal of Nonlinear Science 2023, 2025

EDMD-based exponentially stabilizing controller

Approximately bilinear system

$$\varphi^+ = \mathcal{K}\varphi + u^{\top}\mathcal{B}\varphi + \mathcal{O}(\Delta t^2)$$

Strässer, S., Worthmann, Berberich, Allgöwer, IEEE TAC 2025 Strässer, Worthmann, Mézic, Berberich, S. Allgöwer, submitted 2025

EDMD-based exponentially stabilizing controller

Approximately bilinear system

$$\varphi^+ = \mathcal{K}\varphi + u^{\top}\mathcal{B}\varphi + \mathcal{O}(\Delta t^2)$$

$$\mu(x) = (I - L_w(\Lambda^{-1} \otimes \hat{\Phi}(x)))^{-1} L P^{-1} \hat{\Phi}(x)$$

ensuring exponential stability (with probability $1-\delta$) for all initial conditions in the safe operating region

$$\hat{x} \in \{x \in \mathbb{R}^n \mid \hat{\Phi}(x)^{\top} P^{-1} \hat{\Phi}(x) \le 1\},$$

where $P, L, L_w, \Lambda, \ldots$ solve two Linear Matrix Inequalities.

Strässer, S., Worthmann, Berberich, Allgöwer, IEEE TAC 2025 Strässer, Worthmann, Mézic, Berberich, S. Allgöwer, submitted 2025

EDMD-based exponentially stabilizing controller

Nonlinear inverted pendulum

$$\dot{x}_1(t) = x_2(t),$$

$$\dot{x}_2(t) = \frac{g}{l}\sin(x_1(t)) - \frac{b}{ml^2}x_2(t) + \frac{1}{ml^2}u(t)$$

with mass m, length l, rotational friction coefficient b, and gravitational constant g.

Nonlinear system

$$\dot{x}_1(t) = \rho x_1(t),$$

$$\dot{x}_2(t) = \lambda (x_2(t) - x_1(t)^2) + u(t)$$

with $\rho, \lambda \in \mathbb{R}$



