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Koopman-based predictions
For Ω ⊂ Rn and F : Ω → Ω, consider the dynamical system

xi+1 = F (xi), x0 ∈ Ω.

Goal: Predict the dynamics of an observable along the flow, i.e., φ(xi), i ∈ N
▶ Obvious way: Predict xi and evaluate φ(xi)
▶ Alternatively: Koopman operator K acting on observables φ : Ω → R:

(Kφ)(x0) = φ(x+(x0)) = φ(F (x0))

Central properties: K linear and (Kiφ)(x0) = φ(xi(x0)).

Predict observations from previous ones: φ(x+) = Kφ(x)

Rowley, Mezić, Bagheri, Schlatter, Henningson, J. Fluid Mech. 2009
Mezić JNLS 2005, Annu. Rev. Fluid Mech 2013
Brunton, Budišić, Kaiser, Kutz, SIAM Rev. 2022
Lusch, Kutz, Brunton, Nature comm. 2018
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Illustration of the Koopman scheme

observable φ Kφ

(Kφ)(x0)

Koopman

evaluation

initial state x0

x+(x0) φ(x+(x0))

DS

evaluation

Old idea: Koopman 1931
Today: Powerful tools to approximate K based on data: Extended Dynamic Mode Decomposition

Successfully applied in fluid dynamics, epidemiology, neuroscience, video processing and molecular
dynamics [Schmid ’10], [Tu et al. ’14], [Brunton, Kutz et al. ’16] [Noé et al. ’15]
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Wake behind a cylinder

v̇ + (v · ∇)v = −∇p+ 1

Re
∇2v

div v = 0

Click
Dynamic mode decomposition: data-driven modeling of complex systems, Kutz, Brunton, Brunton, Proctor, SIAM 2016
Thanks to Emilia Krendelsberger and Karl Worthmann (TU Ilmenau)
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Koopman eigenfunctions
Let φ : Ω → R and λ ∈ C satisfy

Kφ = λφ.
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Model reduction

True
r = 3 r = 11 r = 21

26.09.2025 · Manuel Schaller 7 / 33 TUC
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Consequences of linearity
Eigenfunctions and Koopman mode decomposition: Let φ : Ω → R satisfy

Kφ = λφ.

▶ Long-term predictions

φ(xk) = (Kkφ)(x0) = λkφ(x0).

▶ Invariant sets: : If φ(x0) = 0, then

φ(F (x0)) = (Kφ)(x0) = λφ(x0) = 0 ⇝ S0 = {x : φ(x) = 0} invariant
▶ Conserved quantities: λ = 1, i.e.,

φ(xk) = (Kkφ)(x) = φ(x0) = c ∀x ∈ Sc = {x : φ(x) = c}.
▶ Multiple eigenvalues: If φ1 and φ2 eigenfunctions with the same eigenvalue λ:

φ1(xk)

φ2(xk)
=
λkφ1(x0)

λkφ2(x0)
=
φ1(x0)

φ2(x0)
= c invariant.
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More applications
Folding kinetics of a 35-amino acid protein

dXt = ∇V (Xt)dt+ σ(Xt)dWt

Kuramoto-Sivashinsky: Chaotic flames

∂tx+∇2x+∇4x+ |∇x|2 = 0.
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Wu, Nüske, Paul, Klus, Koltai, Noé. The Journal of Chemical Physics 2016
Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024
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Stochastic Differential Equations

Consider the SDE

dXt = f(Xt)dt+ σ(Xt)dWt.

Suitable assumptions: solution (Xt)t≥0 exists and is Markov process.

By

ρt(x,A) = P(Xt ∈ A |X0 = x)

we denote the associated transition probability. Here, one defines

(Kφ)(x0) = E[φ(Xt) |X0 = x0] =

∫
φ(y) ρt(x

0, dy).

In the deterministic case, ρt(x0, A) = δx(t;x0)(A) such that (Kφ)(x0) = φ(x(t;x0)).
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Extended Dynamic Mode Decomposition (EDMD)2
Consider data points x0, .., xd−1 ∈ Ω, a dictionary V := span{{ψj}Nj=1} with ψj : Ω → R,

X :=





ψ1(x0)

:
ψN (x0)



∣∣∣∣∣∣
. . .

∣∣∣∣∣∣



ψ1(xd−1)

:
ψN (xd−1)




 , Y :=





ψ1(x

+(x0)))
:

ψN (x+(x0))



∣∣∣∣∣∣
. . .

∣∣∣∣∣∣



ψ1(x

+(xd−1)
:

ψN (x+(xd−1))




 .

Data-based surrogate of the projected Koopman operator:

PVK|V ≈ argminK∈RN×N ∥Y −KX∥22

2Williams et al., Journal of Nonlinear Science, 2015
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Data-based surrogate of the projected Koopman operator:

PVK|V ≈ argminK∈RN×N ∥Y −KX∥22 =: Kd

Approximation error can be split up into two sources:
▶ Projection: K − PVK|V due to finite dictionary V := span{(ψj)

N
j=1}

▶ Estimation: PVK|V −Kd due to finite data points x0, .., xd−1 ∈ Ω

2Williams et al., Journal of Nonlinear Science, 2015
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Consider data points x0, .., xd−1 ∈ Ω, a dictionary V := span{{ψj}Nj=1} with ψj : Ω → R,

X :=





ψ1(x0)

:
ψN (x0)



∣∣∣∣∣∣
. . .

∣∣∣∣∣∣



ψ1(xd−1)

:
ψN (xd−1)




 , Y :=





ψ1(x

+(x0)))
:

ψN (x+(x0))



∣∣∣∣∣∣
. . .

∣∣∣∣∣∣



ψ1(x

+(xd−1)
:

ψN (x+(xd−1))




 .

Data-based surrogate of the projected Koopman operator:

PVK|V ≈ argminK∈RN×N ∥Y −KX∥22 =: Kd

Approximation error can be split up into two sources:
▶ Projection: K − PVK|V due to finite dictionary V := span{(ψj)

N
j=1}

▶ Estimation: PVK|V −Kd due to finite data points x0, .., xd−1 ∈ Ω

Convergence in infinite-data and infinite-dictionary limit3

3Korda, Mezić, Journal of Nonlinear Science, 2018
2Williams et al., Journal of Nonlinear Science, 2015
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Sampling strategies
Data x0, . . . , xd−1 ∈ Ω with successor states y0, . . . , yd−1 ∈ Ω from either
1) i.i.d. sampling: X0 = xj drawn i.i.d. w.r.t. µ, yj = X∆t.

2) sampling from a long trajectory: xk = Xk∆t, yk = X(k+1)∆t.

Assume there is an invariant probability measure µ on Ω, i.e.,
∫
ρt(x,A) dµ(x) ≡ µ(A)

and that (Xt)t≥0 is ergodic, i.e. for all t > 0

ρt(x,A) = 1 ∀x ∈ A ⇒ µ(A) ∈ {0, 1}
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Theorem
For i.i.d. sampling w.r.t. µ, we have with φ :=

∑N
i=1 ψ

2
i ∈ L2

µ

P
(
∥PVK|V −Kd∥F ≤ ε

)
≳ 1−

∥φ∥2L2
µ

dε2
.

If φ ∈ L∞
µ (Ω),

P
(
∥PVK|V −Kd∥F ≤ ε

)
≳ 1− exp

(
− dε2

∥φ∥2
L∞
µ

)
,

For ergodic sampling, assume λ = 1 is an isolated eigenvalue of K. Then

P
(
∥PVK|V −Kd∥F ≤ ε

)
≳ 1− 1

dε2
.

λ = 1 is never isolated for deterministic systems: Condition related to the spectral measure

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024.
Nüske, Peitz, Philipp, S., Worthmann, Journal of Nonlinear Science, 2023
Kostic et al., NeurIPS, 2022/2023
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Back to examples

10 1 100 101m/mf
101

102

103

104

E(
m

)

Estimation Errors
RMSE Data
Quantile Data
RMSE Predict
Quantile Predict

(m 1/2)

2 3 4 5 6 7 8 9
10k

2 3 4 5 6

2

5

1

2

5

10

2

N = 500, Δt = 2s
N = 1000, Δt = 1s
N = 2000, Δt = 0.5s
slope -1.0
slope -2.0

number of samples [m]

||
K
ₘ
 -

 K
||

/|
|K

||
Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024
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Intuition: Monte-Carlo Integration
We may write the projected Koopman operator via1

PVK|V = C−1A with Ci,j = ⟨ψi, ψj⟩L2(Ω), Ai,j = ⟨ψi,Kψj⟩L2(Ω)

Data-driven approximation:
Kd =

1Klus, Nüske, et al., Physica D, 2018
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Intuition: Monte-Carlo Integration
We may write the projected Koopman operator via1

PVK|V = C−1A with Ci,j = ⟨ψi, ψj⟩L2(Ω), Ai,j = ⟨ψi,Kψj⟩L2(Ω)

Data-driven approximation:
Kd = (XX⊤)−1XY ⊤ = C−1

d Ad

with

(Cd)i,j =
1
d

d−1∑

k=0

ψi(xk)ψj(xk), (Ad)i,j =
1
d

d−1∑

k=0

ψi(xk) · (Kψj)(xk)

as

X :=

((
ψ1(x0)

:
ψN (x0)

)∣∣∣∣ . . .
∣∣∣∣
(
ψ1(xd−1)

:
ψN (xd−1)

))
, Y :=

((
ψ1(x

+(x0)))
:

ψN (x+(x0))

)∣∣∣∣ . . .
∣∣∣∣
(
ψ1(x

+(xd−1))
:

ψN (x+(xd−1))

))
.

1Klus, Nüske, et al., Physica D, 2018
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Intuition continued
It’s all about 1

d

∑d−1
k=1 ψi(xk)ψj(xk)−

∫
ψiψj

Step 1: Estimate variance:
1. i.i.d. sampling σ2

d,i,j =
1
dσ

2
i,j

2. ergodic sampling σ2
d,i,j =

1
d

(
σ2
∞,i,j︸ ︷︷ ︸

asymptotic variance

− Rdi,j︸︷︷︸
remainder term

)

Step 2: Apply concentration inequality (Chebychev, Hoeffding...)

Decay of 1
d ·remainder term: Ergodic theory and mixing conditions.

Approximation error:
▶ Projection: K − PVK|V due to finite dictionary V := span{(ψj)

N
j=1}

▶ Estimation: PVK|V −Kd due to finite data points x0, .., xd−1 ∈ Ω

Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024
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Kernel Extended Dynamic Mode Decomposition
A Reproducing Kernel Hilbert Space H is a
▶ Hilbert space of functions f : Ω → R
▶ with s.p.d. kernel k : Ω× Ω → R with k(x, ·) ∈ H for all x ∈ Ω and

∀φ ∈ H : φ(x) = ⟨φ, k(x, ·)⟩ reproducing property

Dictionary: For data points X = {x1 . . . , xd} ⊂ Ω set VX := span{k(x1, ·), k(x2, ·), . . . , k(xd, ·)} ⊂ H

X =

 k(x0, x0) . . . k(x0, xd−1)
...

. . .
...

k(xd−1, x0) . . . k(xd−1, xd−1)

 , Y =

 k(x0, x0
+) . . . k(x0, x

+
d−1)

...
. . .

...
k(xd−1, x

+
0 ) . . . k(xd−1, x

+
d−1)

 .
kEDMD approximant

Kd = (XX⊤)−1X⊤Y = X−1X−1XY = X−1Y

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024
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Representation of the Koopman operator
Compatibility assumptions such that H d

↪→ L2
µ(Ω)

Central concept: Mercer integral operator E : L2
µ(Ω) → H

Eψ =

∫
k(x, ·)ψ(x) dµ(x).

with

⟨Eψ, η⟩ =
∫
ψ(x)⟨k(x, ·), η⟩ dµ(x) =

∫
ψ(x)η(x) dµ(x) = ⟨ψ, η⟩µ ∀ψ ∈ L2

µ(Ω), η ∈ H

Adjoint E∗ : H → L2
µ(Ω) is the compact inclusion operator from H into L2

µ(Ω)

E∗η = η, η ∈ H.
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Koopman through the lens of the Mercer operator

Set
CtH = EKE∗

such that
⟨η, CtHψ⟩ = ⟨η,Kψ⟩µ

L2
µ L2

µ

H H

K

EE∗

Ct
H

Setting CH = EE∗

(E∗)−1KE∗ = (EE∗)−1EE∗(E∗)−1KE∗ = C−1
H EKE∗ = C−1

H CtH

Strategy: Approximate C−1
H , CtH and transfer to Koopman operator

Caution: E−1, E−∗ are unbounded

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024
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Empirical estimator for Ct
H

We compute

CtHψ = EKE∗ψ =

∫
(Kψ)(x)k(x, ·) dµ(x) =

∫ ∫
ψ(y)k(x, ·)︸ ︷︷ ︸

=:Cxyψ

ρt(x, dy)dµ(x).

Empirical estimator of time-lagged cross-covariance:

Ĉd,tH :=
1

d

d−1∑

k=0

Cxk,yk with matrix rep.
1

d
(Y )ij = k(xi, yj)

Empirical estimator of kernel covariance:

CH = E∗E =

∫
Cxx dµ(x) ≈

1

d

d−1∑

i=0

Cxk,xk
=: ĈdH with matrix rep.

1

d
(X)ij = k(xi, xj)
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Finite-data error bound

Theorem
For all ε > 0, there is d0 ∈ N such that for all d ≥ d0

P(∥CtH − Ĉd,tH ∥HS > ε) ≤ E0(t) +R(d)

dε2
,

Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024
Mollenhauer, Klus, Schütte, Koltai, Journal of Machine Learning Research, 2022.
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Main tool: Variance representations1

E
[
∥Ĉd,tH − CtH∥2HS

]
=

1

d

[
E0(t) + 2

d−1∑

k=1

d−k
d · E

[
⟨Czk − CtH, Cz0 − CtH⟩HS

]

︸ ︷︷ ︸
R(d)

]
,

For i.i.d. sampling, R(d) ≡ 0.

For ergodic sampling, if 1 is an isolated eigenvalue of K, then with K0 = K|1⊥

R(d) ≤ 8E0(t)∥(I −K0)
−2∥

Similar variance representations for arbitrary dictionaries2

2Philipp, S., Boshoff, Peitz, Nüske, Worthmann, arXiv:2402.02494, 2024
1Philipp, S., Worthmann, Peitz, Nüske, Applied and Computational Harmonic Analysis, 2024
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Transfering this to Koopman operator
We have CtH = EKE∗,

but E−1, E−∗ are unbounded.
Remedy: Mercer basis of eigenfunctions of trace class operator CH = EE∗ (fj , λj), λj → 0 with

(fj) is ONB of H and (ej) = (λ
−1/2
j fj) is ONB of L2

µ

Then, for ψ ∈ H,

Kψ =

∞∑

j=1

⟨Kψ, ej⟩µej =
N∑

j=1

⟨Kψ, ej⟩µej
︸ ︷︷ ︸

=:KNψ

+

∞∑

j=N+1

⟨Kψ, ej⟩µej

and we approximate with êj = (λ̂
−1/2
j f̂j) are eigenfunctions of ĈdH = 1

d

∑m−1
k=0 Cxk,xk

KNψ =
N∑

j=1

⟨CtHψ, ej⟩Hej ≈
N∑

j=1

⟨Ĉt,dH ψ, êj⟩Hej =: K̂dNψ

Back to kEDMD: K̂d
N corresponds toKd viaKd = X−1Y ≈ X†

NY with a rank-N truncation ofX .
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Main result: Estimation error

Theorem
Let N ∈ N and assume the gap condition

γN := min
j=1,...,N

λj − λj+1

2
> 0.

Then, for each error bound ε ∈ (0, δN ) and probabilistic tolerance δ ∈ (0, 1) and

d ≥ max{N, E0(t) +R(d)

ε2δ
}

we have with probability at least 1− δ

∥KN − K̂mN∥H→L2
µ(Ω) ≲

(
1√
λN

+
N + 1

γNλN

)
ε.

26.09.2025 · Manuel Schaller 24 / 33 TUC

TUC


Data-Driven Methods in Control
Workshop and Summer School on Applied Analysis 2025

Invariance of the RKHS: Projection error

Corollary
Assume in addition that ∥KH∥ <∞. Then for N ∈ N, ε > 0, δ ∈ (0, 1), there ism0 ∈ N such that for all
d ≥ d0

∥K − K̂dN∥H→L2
µ(Ω) ≲

[
1√
λN

+
N + 1

γNλN

]
ε+

√
λN+1 ∥K∥H→H.
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From L2 to L∞ bounds
With PVX H-orthogonal projection onto VX = span{k(xi, ·), i = 0, . . . , d− 1}

K ≈ Kd := PVXKPVX ⇝ matrix representation K−1
X KX,X+

with

(KX)ij = k(xi, xj), (KX,X+)ij = k(xi, F (xj)).

Here: compactly supported radially symmetric Wendland kernel:

H ∼= Hσ(p)(Ω) p ∼ smoothness

Projection error PVX − I controlled by fill distance

hX := sup
x∈Ω

min
1≤i≤d

∥x− xi∥2

Wendland, Advances in Computational Mathematics 1995
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Error bound on K − PVXKPVX

Theorem2

If flow is in Cm, then, for σ(p) ≤ m, KHσ(p)(Ω) ⊂ Hσ(p)(Ω), and, for f ∈ Hσ(p)(Ω),

∥Kf −Kdf∥∞ ≲ hp+1/2
X ∥f∥Hσ(p)(Ω).

∥∥K −Kd

∥∥
H→Cb

=
∥∥K − PVXKPVX

∥∥
H→Cb

≲ (1 + ∥K∥H→H)∥I − PVX ∥H→Cb

Theorem (Wendland 1995)
There are C, h0 > 0 such that for every set X = {xi}di=1 ⊂ Ω with hX ≤ h0 and all α ∈ Nd0 , |α| ≤ k,

∥I − PVX ∥HΦn,k
→Cb(Ω) ≤ Ch

k+1/2
X .

2Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025
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Proof pt. 2

∥∥K −Kd

∥∥
H→Cb

=
∥∥K − PVXKPVX

∥∥
H→Cb

≲ (1 + ∥K∥H→H)∥I − PVX ∥H→Cb

Theorem3

Let H be a Gaussian RKHS on Ω = Rnx . Then KH ⊂ H if and only if the flow is affine-linear, i.e.,
x(t;x0) = A(t)x0 + b(t).

Proposition4

The Koopman operator on RKHS is always closed. In particular, KH ⊂ H implies ∥K∥ <∞.

3Gonzalez et al. ICLR 2025.
4Köhne, Philipp, S., Schiela, Worthmann, SIADS 2025
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Koopman is closed
Adjoint-like property:

⟨Kφ, k(x, ·)⟩ = φ(F (x)) = (Kφ)(x) = ⟨φ, k(F (x), ·)⟩

Let f, fn ∈ H and g ∈ H such that ∥fn − f∥ → 0 and ∥Kfn − g∥ → 0 as n→ ∞. To show: g = Kf .

g(x) = ⟨g, k(x, ·)⟩ = lim
n→∞

⟨Kfn, k(x, ·)⟩ = lim
n→∞

⟨fn, k(F (x), ·))⟩ = ⟨f, k(F (x), ·)⟩ = ⟨Kf, k(x, ·)⟩

Corollary5

If flow F is in Cm, then for Wendland kernels with H = Hσ(p)(Ω), σ(p) ≤ m,

∥K∥H→H <∞

Sketch of the proof: Chain rule, as Kφ = φ ◦ F .
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EDMD for control systems
Consider the control-affine system

ẋ(t) = f(x(t), u(t)) = g0(x(t)) +

nc∑

i=1

gi(x(t))ui(t)

Aim: Find u = µ(x) such that above system ẋ = f(x, µ(x)) is stable towards x∗.

Assuming u ∈ L∞, for fixed ∆t > 0, we may define x+ = F (x, u) := φ(∆t;x, u).

Linear surrogate model (eDMDc) ψ+ = ψ(x+) = Kψ + Bu [Proctor et al. ’16] [Korda, Mezić ’18]

But: Even if ẋ = f(x, u) = Ax+Bu⇝ x(t) = etAx0 +
∫ t
0
e(t−s)ABu(s) ds:

ψ+ = ψ(x(∆t, u, x0)) = ψ

(
e∆tAx0 +

∫ ∆t

0

e(∆t−s)ABu(s)

)
.

No linearity to be expected for nonlinear liftings.
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But: Even if ẋ = f(x, u) = Ax+Bu⇝ x(t) = etAx0 +
∫ t
0
e(t−s)ABu(s) ds:

ψ+ = ψ(x(∆t, u, x0)) = ψ

(
e∆tAx0 +

∫ ∆t

0

e(∆t−s)ABu(s)

)
.

No linearity to be expected for nonlinear liftings.

26.09.2025 · Manuel Schaller 30 / 33 TUC

TUC


Data-Driven Methods in Control
Workshop and Summer School on Applied Analysis 2025

EDMD for control systems
Consider the control-affine system
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Assuming u ∈ L∞, for fixed ∆t > 0, we may define x+ = F (x, u) := φ(∆t;x, u).

Linear surrogate model (eDMDc) ψ+ = ψ(x+) = Kψ + Bu [Proctor et al. ’16] [Korda, Mezić ’18]
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ẋ(t) = f(x(t), u(t)) = g0(x(t)) +

nc∑

i=1

gi(x(t))ui(t)

Aim: Find u = µ(x) such that above system ẋ = f(x, µ(x)) is stable towards x∗.
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Bilinear surrogates
Bilinear surrogate model [Williams et al. ’16, Surana ’16, Peitz et al. ’20]
Let u ∈ Rnu and consider the Koopman operator

(Ktuφ)(x0) = φ(x(t;x0, u))

Strongly continuous semigroup (in L2 or C):

(Kt+sφ)(x0) = φ(x(t+ s;x0)) = φ(x(t;x(s;x0))) = (Ktφ)(x(s;x0)) = (KtKsφ)(x0)
Then, the densely defined generator

Luφ := lim
t→0

Ktuφ− φ

t
=

d

dt
φ(x(t; ·, u))|t=0

= ∇φ ·
(
g0 +

∑
giui

)

hence Lu = L0 +
∑nc

i=1 ui(Lei − L0), such that

φ̇ = Luφ = L0 +

nc∑

i=1

ui(Lei − L0)φ

Philipp, S., Worthmann, Peitz, Nüske, Journal of Nonlinear Science 2023, 2025
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EDMD-based exponentially stabilizing controller

Approximately bilinear system

φ+ = Kφ+ u⊤Bφ+O(∆t2)

↪→ LMI-based tools from robust control to design state-feedback controller

µ(x) = (I − Lw(Λ
−1 ⊗ Φ̂(x)))−1LP−1Φ̂(x)

ensuring exponential stability (with probability 1− δ) for all initial conditions in the safe operating region

x̂ ∈ {x ∈ Rn | Φ̂(x)⊤P−1Φ̂(x) ≤ 1},

where P,L, Lw,Λ, . . . solve two Linear Matrix Inequalities.

Strässer, S., Worthmann, Berberich, Allgöwer, IEEE TAC 2025
Strässer, Worthmann, Mézic, Berberich, S. Allgöwer, submitted 2025
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EDMD-based exponentially stabilizing controller
Nonlinear inverted pendulum

ẋ1(t) = x2(t),

ẋ2(t) =
g

l
sin(x1(t))−

b

ml2
x2(t) +

1

ml2
u(t)

with massm, length l, rotational friction coefficient b, and
gravitational constant g.

Nonlinear system

ẋ1(t) = ρx1(t),

ẋ2(t) = λ(x2(t)− x1(t)
2) + u(t)

with ρ, λ ∈ R

9
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Fig. 3. Region containing all x with �̂(x) 2 �� ( ), safe operating region XSOR ( ), and closed-loop trajectories for the controller µ
( ) corresponding to the experiment in Section 5.1, and, for comparison, closed-loop trajectories for the controller µLQR ( ).

5.1. Nonlinear inverted pendulum
The inverted pendulum is a classical example for dynamical systems, which is often used as a benchmark

in nonlinear data-driven control, cf. [38]–[42]. This dynamical system can be modeled by

ẋ1(t) = x2(t),

ẋ2(t) =
g

l
sin(x1(t)) �

b

ml2
x2(t) +

1

ml2
u(t)

with mass m, length l, rotational friction coefficient b, and gravitational constant g = 9.81 m/s.
Our experiments are performed with m = 1, l = 1, and b = 0.01. Further, we define the sets X = [�2, 10]2

and U = [�10, 10] whereof we uniformly sample d = 6000 data points with sampling period �t = 0.01 s.
We use the observable functions �̂(x) =

⇥
x1 x2 sin(x1)

⇤>, where the sine function is inferred by some
prior knowledge on the underlying nonlinear system. We use the proposed certified learning architecture
SafEDMD in Algorithm 1, where Theorem 3.1 yields a data-driven surrogate model as in (12) with certified
learning error bounds with probabilistic tolerance � = 0.05 and cx = cu = 3 ⇥ 10�4 by linear regression.

To illustrate the obtained certificates, we apply the robust controller design in Section 4 guaranteeing
safe operation and closed-loop exponential stability of the nonlinear system via Theorem 4.1. In order
to apply the proposed design scheme, we predefine the outer bound �� on the safe operating region
following the approach in [18, Procedure 7]. In particular, we first solve (15) for Q̃z = �I , S̃z = 0, and
arbitrary R̃z > 0 without considering the second liner matrix inequality (16). This leads to a matrix P
which relates the measured data and the chosen observables to infer a likely behavior of the closed-loop
system, such that the safe operating region is maximized according to the underlying system dynamics.
Then, we incorporate this information in the actual controller design by defining �� via Qz = � P�1

kP�1k2
,

Sz = 0, and Rz > 0. Designing the nonlinear state-feedback controller (17) via Theorem 4.1 leads to the
operation region depicted in Fig. 3, for which we can safely and reliably apply the control law µ to the
true nonlinear system. The closed-loop trajectories of the nonlinear system highlight that the system is
indeed stabilized by our controller inside of the obtained region.

Next, we compare the learned surrogate model using SafEDMD to the state-of-the-art Koopman learning
in the literature. In particular, we compare with the learned system model using EDMDc and a linear
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Fig. 4. Safe operating region XSOR ( ) and closed-loop trajectories for the controller µ ( ) corresponding to the experiment in Section 5.2,
and, for comparison, closed-loop trajectories for the controller µLQR ( ).

6. CONCLUSION

In conclusion, this paper introduced SafEDMD, a certified learning architecture tailored to data-driven
control of nonlinear dynamical systems. Leveraging the analytical foundation of the Koopman operator,
we showed that SafEDMD enables a rigorous and certified derivation of error bounds crucial for robust
controller design. Unlike existing methods, the proposed architecture handles the Koopman operator directly
via sampled data, eliminating the need for hard-to-obtain time-derivative data. SafEDMD offers a promising
direction for the certified control of unknown nonlinear systems, demonstrating its superiority in scenarios
where existing methods fail. This research not only tailors the capabilities of bilinear EDMD for control
tasks but also establishes a new paradigm in the field of learning and control of data-driven surrogate
models with rigorous stability certificates, addressing a critical aspect in safety-critical applications.

Interesting future work includes the integration of deep NNs as the observable function to exploit the
superior robustness and scalability of EDMD-based approaches compared to state-of-the-art reinforcement
learning methods (compare [43]).
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