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Neural Networks

Neural Networks

Recently, neural networks have been widely applied to science and
scientific computing:

Solving PDEs
Learning operators from data
Inverse Problem/Inverse Design
e.g. protein folding, modeling quantum systems, predicting materials
properties, etc.

At its heart, a neural network learns a function f : X → Y from data

For example X = Rd and Y = R
X and Y are Banach spaces in operator learning

Fundamental problems:

How efficient are neural networks?
How do neural networks compare with classical methods?
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Neural Networks

Neural Networks

Consider an affine map AW,b : Rn → Rk

AW,b(x) = Wx + b. (1)

Let σ : R → R be an activation function

When applied to a vector, σ is applied component-wise

A deep neural network with width W , depth L, and activation
function σ mapping Rd to Rk is a composition

AWL,bL ◦ σ ◦ AWL−1,bL−1
◦ σ ◦ · · · ◦ σ ◦ AW1,b1 ◦ σ ◦ AW0,b0 (2)

Here AW1,b1 , ....,AWL−1,bL−1
: RW → RW

We denote the set of these by ΥW ,L
σ (Rd ,Rk)

ΥW ,L
σ (Rd ) if k = 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 5 / 67



Neural Networks

Neural Networks

Consider an affine map AW,b : Rn → Rk

AW,b(x) = Wx + b. (1)

Let σ : R → R be an activation function

When applied to a vector, σ is applied component-wise

A deep neural network with width W , depth L, and activation
function σ mapping Rd to Rk is a composition

AWL,bL ◦ σ ◦ AWL−1,bL−1
◦ σ ◦ · · · ◦ σ ◦ AW1,b1 ◦ σ ◦ AW0,b0 (2)

Here AW1,b1 , ....,AWL−1,bL−1
: RW → RW

We denote the set of these by ΥW ,L
σ (Rd ,Rk)

ΥW ,L
σ (Rd ) if k = 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 5 / 67



Neural Networks

Neural Networks

Consider an affine map AW,b : Rn → Rk

AW,b(x) = Wx + b. (1)

Let σ : R → R be an activation function

When applied to a vector, σ is applied component-wise

A deep neural network with width W , depth L, and activation
function σ mapping Rd to Rk is a composition

AWL,bL ◦ σ ◦ AWL−1,bL−1
◦ σ ◦ · · · ◦ σ ◦ AW1,b1 ◦ σ ◦ AW0,b0 (2)

Here AW1,b1 , ....,AWL−1,bL−1
: RW → RW

We denote the set of these by ΥW ,L
σ (Rd ,Rk)

ΥW ,L
σ (Rd ) if k = 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 5 / 67



Neural Networks

Neural Networks

Consider an affine map AW,b : Rn → Rk

AW,b(x) = Wx + b. (1)

Let σ : R → R be an activation function

When applied to a vector, σ is applied component-wise

A deep neural network with width W , depth L, and activation
function σ mapping Rd to Rk is a composition

AWL,bL ◦ σ ◦ AWL−1,bL−1
◦ σ ◦ · · · ◦ σ ◦ AW1,b1 ◦ σ ◦ AW0,b0 (2)

Here AW1,b1 , ....,AWL−1,bL−1
: RW → RW

We denote the set of these by ΥW ,L
σ (Rd ,Rk)

ΥW ,L
σ (Rd ) if k = 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 5 / 67



Neural Networks

Shallow Neural Networks

Shallow neural networks with width n and activation function σ:

Σσ
n(Rd) :=

{
n∑

i=1

aiσ(ωi · x + bi ), ai , bi ∈ R, ωi ∈ Rd

}
(3)

Examples of activation functions:

Sigmoidal: σ(x) = 1/(1 + e−x)
ReLU: σ(x) = max(0, x)
ReLUk : σ(x) = max(0, x)k
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Neural Networks

Universal Approximation

Let Ω ⊂ Rd be a compact set

Are neural networks dense in C (Ω)?

Yes,
⋃

n≥1 Σ
σ
n(Rd) is dense if σ ∈ C (R) is not a polynomial1

Yes,
⋃

W≥1 Υ
W ,L
σ (Rd) is dense for any L ≥ 1 if σ ∈ C (R) is not a

polynomial2

Yes,
⋃

L≥1 Υ
W ,L
σ (Rd) is dense3 if W ≥ d + 1 and σ is the ReLU

What about approximation rates?

Need assumptions on the target function

1Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251–257, Kurt Hornik. “Some new results on neural network
approximation”. In: Neural networks 6.8 (1993), pp. 1069–1072.

2Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. “Multilayer
feedforward networks with a nonpolynomial activation function can approximate any function”.
In: Neural Networks 6.6 (1993), pp. 861–867.

3Boris Hanin. “Universal function approximation by deep neural nets with bounded width
and relu activations”. In: Mathematics 7.10 (2019), p. 992.
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Neural Networks

Sobolev and Besov Spaces6

We consider the Sobolev spaces W s(Lq(Ω)), defined (for integer s) by

∥f ∥W s(Lq(Ω)) = ∥f ∥Lq(Ω) + ∥f (s)∥Lq(Ω) (4)

The Lq-norm is

∥f ∥Lq(Ω) =

(∫
Ω

|f (x)|qdx
)1/q

(5)

Can also be defined4 for non-integer s
Can also consider more general spaces like Besov, Triebel-Lizorkin, etc5

4Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. “Hitchhiker’s guide to the
fractional Sobolev spaces”. In: Bulletin des sciences mathématiques 136.5 (2012), pp. 521–573.

5Ronald A DeVore and Robert C Sharpley. “Besov spaces on domains in Rd”. In:
Transactions of the American Mathematical Society 335.2 (1993), pp. 843–864, Hans Triebel.
Theory of function spaces III. Springer, 2006.

6Lawrence C Evans. Partial differential equations. Vol. 19. American Mathematical Soc.,
2010.
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Neural Networks

Neural Network Approximation

How efficiently can neural networks approximate functions from
Sobolev and Besov spaces?

Minimax rates for deep networks:

sup
∥f ∥Ws (Lq )≤1

inf
fW ,L∈ΥW ,L

σ (Rd )
∥f − fW ,L∥Lp (6)

Number of parameters P = O(W 2L)

Minimax rates for shallow networks:

sup
∥f ∥Ws (Lq )≤1

inf
fn∈Σσ

n (Rd )
∥f − fn∥Lp (7)

Need the compact embedding condition: s/d > 1/q − 1/p.
The non-linear regime q < p is of particular interest
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Neural Networks

The non-linear regime

Suppose that d = 1, s = 1, and q = ∞
Then W s(Lq) is the class of Lipschitz functions

|f (x)− f (y)| ≤ C |x − y | (8)

If instead q = 1, W s(Lq) is (almost) the class of BV functions

n∑
i=1

|f (xi )− f (xi−1)| ≤ C (9)

for x0 < x1 < · · · < xn.
Allows jump discontinuities!

Approximate in Lp to error ϵ:
each jump must be captured to resolution ϵp

Approximation in Lp for p > q requires sharper resolution of
discontinuities

Requires non-linear methods of approximation
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Shallow Network Approximation Smooth activation functions and polynomials

Smooth activation functions

Suppose that σ ∈ C∞(R)
Then we have

xσ′(b) = lim
h→0

σ(hx + b)− σ(b)

h
∈ Σσ

2 (R) (10)

xnσ(n)(b) = lim
h→0

∑n
j=0(−1)n−j

(n
j

)
σ(jhx + b)

h
∈ Σσ

n+1(R) (11)

These limits are uniform for x ∈ Ω (compact)

If σ is not a polynomial, then σ(n)(b) ̸= 0 for some b for any n ≥ 0

We conclude that Pn(R) ⊂ Σσ
n+1(R)
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Shallow Network Approximation Smooth activation functions and polynomials

Smooth activation functions (d > 1)

Lemma

There exist ω1, ..., ωN with N = O(nd−1) directions, such that every
polynomial p ∈ Pn(Rd) can be written

p(x) =
N∑
i=1

pi (ωi · x) (12)

for some pi ∈ Pn(R).

Hence, we conclude that Pn(Rd) ⊂ Σσ
N(Rd) with N = O(nd)

Thus, approximation by Σσ
N(Rd) is at least as good as with Pn(Rd)

Same technique used to prove density7

7Kurt Hornik. “Some new results on neural network approximation”. In: Neural networks 6.8
(1993), pp. 1069–1072, Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
“Multilayer feedforward networks with a nonpolynomial activation function can approximate any
function”. In: Neural Networks 6.6 (1993), pp. 861–867.
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(1993), pp. 1069–1072, Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken.
“Multilayer feedforward networks with a nonpolynomial activation function can approximate any
function”. In: Neural Networks 6.6 (1993), pp. 861–867.
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Shallow Network Approximation Smooth activation functions and polynomials

Rates for smooth activation functions

This argument gives the approximation rate8:

inf
fn∈Σσ

n (Rd )
∥f − fn∥Lp ≤ C∥f ∥W s (Lq)n

− s
d +( 1

q−
1
p )+ . (13)

Lower bounds:
For general smooth activation functions9:

sup
∥f ∥Ws (Lq )≤1

inf
fn∈Σσ

n (Rd )
∥f − fn∥Lp ≥ Cn−

s
d−1 (14)

For the sigmoid activation function10:

sup
∥f ∥Ws (Lq )≤1

inf
fn∈Σσ

n (Rd )
∥f − fn∥Lp ≥ C (n log n)−

s
d (15)

8Hrushikesh N Mhaskar. “Neural networks for optimal approximation of smooth and analytic
functions”. In: Neural Computation 8.1 (1996), pp. 164–177.

9Vitaly E Maiorov. “On best approximation by ridge functions”. In: Journal of
Approximation Theory 99.1 (1999), pp. 68–94, Vitaly Maiorov and Allan Pinkus. “Lower bounds
for approximation by MLP neural networks”. In: Neurocomputing 25.1-3 (1999), pp. 81–91.

10Vitaly E Maiorov and Ron Meir. “On the near optimality of the stochastic approximation of
smooth functions by neural networks”. In: Advances in Computational Mathematics 13.1
(2000), pp. 79–103.J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 15 / 67
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Shallow Network Approximation General activation functions and Barron’s space
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Shallow Network Approximation General activation functions and Barron’s space

More general activation functions

Consider the Heaviside activation:

σ0(x) =

{
1 x > 0

0 x ≤ 0.
(16)

Observe that for r ∈ [0, 1]

e irx = 1 + i

∫ x

0
re irtdt = 1 + i

∫ 1

0
re irtσ0(x − t)dt. (17)

The complex exponential can be written as an integral in terms of σ0!
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Shallow Network Approximation General activation functions and Barron’s space

Barron’s space

Suppose that f satisfies Barron’s condition11:

|f |B :=

∫
Rd

|ξ||f̂ (ξ)|dξ < ∞. (18)

Then, using Fourier inversion we get for |x | ≤ 1

f (x) =
1

2π

∫
Rd

f̂ (ξ)e iξ·xdξ

=
1

2π

∫
Rd

f̂ (ξ)dξ + i

∫
Rd

f̂ (ξ)

∫ 1

0

|ξ|e i|ξ|tσ0

(
ξ

|ξ|
· x − t

)
dtdξ

= C (f ) + i

∫
Rd

f̂ (ξ)

∫ 1

0

|ξ|e i|ξ|tσ0

(
ξ

|ξ|
· x − t

)
dtdξ

(19)

Integral representation of f or continuous shallow network

11Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945.
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Shallow Network Approximation General activation functions and Barron’s space

Barron’s argument

Total mass of the integral:∫
Rd

|f̂ (ξ)|
∫ −1

0
|ξ||e i |ξ|t |dtdξ ≤

∫
Rd

|ξ||f̂ (ξ)|dξ = |f |B. (20)

Next step12: approximate the continuous shallow network by an
element of Σσ0

n (Rd)

12Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945, Lee K Jones.
“A simple lemma on greedy approximation in Hilbert space and convergence rates for projection
pursuit regression and neural network training”. In: The Annals of Statistics 20.1 (1992),
pp. 608–613.
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Shallow Network Approximation General activation functions and Barron’s space

Convex Hulls of Dictionaries

Let X be a Banach space

Let D ⊂ X be collection of functions (called a dictionary)

Assume that D is bounded, i.e. |D| := supd∈D ∥d∥X < ∞
Let B = B1(D) be the symmetric closed convex hull of D, i.e.

B1(D) :=


n∑

j=1

ajhj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

 (21)

Here the closure is taken with respect to the norm on X

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 20 / 67



Shallow Network Approximation General activation functions and Barron’s space

Convex Hulls of Dictionaries

Let X be a Banach space

Let D ⊂ X be collection of functions (called a dictionary)

Assume that D is bounded, i.e. |D| := supd∈D ∥d∥X < ∞

Let B = B1(D) be the symmetric closed convex hull of D, i.e.

B1(D) :=


n∑

j=1

ajhj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

 (21)

Here the closure is taken with respect to the norm on X

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 20 / 67



Shallow Network Approximation General activation functions and Barron’s space

Convex Hulls of Dictionaries

Let X be a Banach space

Let D ⊂ X be collection of functions (called a dictionary)

Assume that D is bounded, i.e. |D| := supd∈D ∥d∥X < ∞
Let B = B1(D) be the symmetric closed convex hull of D, i.e.

B1(D) :=


n∑

j=1

ajhj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

 (21)

Here the closure is taken with respect to the norm on X

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 20 / 67



Shallow Network Approximation General activation functions and Barron’s space

Convex Dictionary Spaces

Since B1(D) is convex, it is the unit ball of the norm

∥f ∥K1(D) = inf{r > 0 : f ∈ rB1(D)} (22)

This is called the guage of the set B1(D)
If D is bounded, the associated space

K1(D) := {f ∈ L2(Ω) : ∥f ∥K1(D) < ∞}

is a Banach space13

Also called variation space14 with respect to D
13Jonathan W Siegel and Jinchao Xu. “Characterization of the variation spaces corresponding

to shallow neural networks”. In: Constructive Approximation 57.3 (2023), pp. 1109–1132.
14Vera Kurková and Marcello Sanguineti. “Bounds on rates of variable-basis and

neural-network approximation”. In: IEEE Transactions on Information Theory 47.6 (2001),
pp. 2659–2665.
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Shallow Network Approximation General activation functions and Barron’s space

Non-linear Dictionary Approximation

Suppose we want to approximate f ∈ K1(D)

Consider approximation from the set

Σn(D) :=

{
n∑

i=1

aidi , di ∈ D

}
(23)

This corresponds to non-linear dictionary approximation (note the
elements di in general depend upon the element f to be approximated)

Key question: How efficiently can this be done?

Where error is measured in the norm of X
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Shallow Network Approximation General activation functions and Barron’s space

Neural Network Dictionaries

Consider the dictionary

D0 := {σ0(ω · x + b) : ω ∈ Rd , b ∈ R} ⊂ Lp (24)

The integral representation implies that

∥f ∥K1(D0) ≤ C∥f ∥B (25)

Further, we have
Σn(D0) = Σσ0

n (Rd) (26)

This special case is exactly our shallow network approximation
problem
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Shallow Network Approximation Approximation rates for convex hulls

1 Neural Networks

2 Shallow Network Approximation
Smooth activation functions and polynomials
General activation functions and Barron’s space
Approximation rates for convex hulls
Lower Bounds

3 Deep ReLU Network Approximation
Upper Bounds
Approximating Multiplication
Bit Extraction
Lower Bounds
Stability
Symmetry-Preserving Neural Networks
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Shallow Network Approximation Approximation rates for convex hulls

Non-linear Dictionary Approximation of Convex Hulls

What approximation rates can be achieved for Σn(D) on B1(D) with
respect to X?

Suppose that X is a Hilbert space, D ⊂ X is a bounded dictionary

If f ∈ B1(D), then f =
∑N

i=1 aidi with ai ≥ 0 and
∑

ai = 1.

Define a random variable F with values in X by

P(F = di ) = ai .

Note that we have E(F ) = f .

Construct an approximant fn by sampling:

Let F1, ...,Fn be independent copies of F and consider the random
variable

F̃n =
1

n

n∑
i=1

Fi .
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Shallow Network Approximation Approximation rates for convex hulls

Non-linear Dictionary Approximation of Convex Hulls

We clearly have E(F̃n) = f and

E(∥F̃n − f ∥2
X ) ≤ E(∥F̃n − f ∥2

X ) ≤
1

n2

n∑
i=1

E(∥Fi∥2
X ), (27)

since we are in a Hilbert space.

This argument also works in more general type-2 Banach spaces X ,
e.g. in Lp(Ω) for 2 ≤ p < ∞

Since ∥Fi∥X is bounded by supd∈D ∥d∥X , there must exist a
realization fn ∈ Σn(D) such that15

∥fn − f ∥X ≤ 1√
n
sup
d∈D

∥d∥X . (28)

15Gilles Pisier. “Remarques sur un résultat non publié de B. Maurey”. In: Séminaire Analyse
fonctionnelle (dit “Maurey-Schwartz”) (1981), pp. 1–12.
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Shallow Network Approximation Approximation rates for convex hulls

Consequences for Neural Networks

Applying this to neural network approximation16:

inf
fn∈Σ

σ0
n (Rd )

∥f − fn∥Lp ≤ C∥f ∥K1(D0)n
− 1

2 ≤ C |f |Bn−
1
2 . (29)

for 2 ≤ p < ∞.

Dimension independent approximation rate!

General sigmoidal activation function σ
Sigmoidal means limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1
Thus σ(Rt) → σ0(t) as R → ∞
Get same approximation rates with σ
Same result holds for even more general activation functions17

16Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945, Lee K Jones.
“A simple lemma on greedy approximation in Hilbert space and convergence rates for projection
pursuit regression and neural network training”. In: The Annals of Statistics 20.1 (1992),
pp. 608–613.

17Jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general
activation functions”. In: Neural Networks 128 (2020), pp. 313–321.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 27 / 67



Shallow Network Approximation Approximation rates for convex hulls

Consequences for Neural Networks

Applying this to neural network approximation16:

inf
fn∈Σ

σ0
n (Rd )

∥f − fn∥Lp ≤ C∥f ∥K1(D0)n
− 1

2 ≤ C |f |Bn−
1
2 . (29)

for 2 ≤ p < ∞.
Dimension independent approximation rate!

General sigmoidal activation function σ
Sigmoidal means limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1
Thus σ(Rt) → σ0(t) as R → ∞
Get same approximation rates with σ
Same result holds for even more general activation functions17

16Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945, Lee K Jones.
“A simple lemma on greedy approximation in Hilbert space and convergence rates for projection
pursuit regression and neural network training”. In: The Annals of Statistics 20.1 (1992),
pp. 608–613.

17Jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general
activation functions”. In: Neural Networks 128 (2020), pp. 313–321.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 27 / 67



Shallow Network Approximation Approximation rates for convex hulls

Consequences for Neural Networks

Applying this to neural network approximation16:

inf
fn∈Σ

σ0
n (Rd )

∥f − fn∥Lp ≤ C∥f ∥K1(D0)n
− 1

2 ≤ C |f |Bn−
1
2 . (29)

for 2 ≤ p < ∞.
Dimension independent approximation rate!

General sigmoidal activation function σ
Sigmoidal means limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1

Thus σ(Rt) → σ0(t) as R → ∞
Get same approximation rates with σ
Same result holds for even more general activation functions17

16Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945, Lee K Jones.
“A simple lemma on greedy approximation in Hilbert space and convergence rates for projection
pursuit regression and neural network training”. In: The Annals of Statistics 20.1 (1992),
pp. 608–613.

17Jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general
activation functions”. In: Neural Networks 128 (2020), pp. 313–321.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 27 / 67



Shallow Network Approximation Approximation rates for convex hulls

Consequences for Neural Networks

Applying this to neural network approximation16:

inf
fn∈Σ

σ0
n (Rd )

∥f − fn∥Lp ≤ C∥f ∥K1(D0)n
− 1

2 ≤ C |f |Bn−
1
2 . (29)

for 2 ≤ p < ∞.
Dimension independent approximation rate!

General sigmoidal activation function σ
Sigmoidal means limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1
Thus σ(Rt) → σ0(t) as R → ∞

Get same approximation rates with σ
Same result holds for even more general activation functions17

16Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945, Lee K Jones.
“A simple lemma on greedy approximation in Hilbert space and convergence rates for projection
pursuit regression and neural network training”. In: The Annals of Statistics 20.1 (1992),
pp. 608–613.

17Jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general
activation functions”. In: Neural Networks 128 (2020), pp. 313–321.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 27 / 67



Shallow Network Approximation Approximation rates for convex hulls

Consequences for Neural Networks

Applying this to neural network approximation16:

inf
fn∈Σ

σ0
n (Rd )

∥f − fn∥Lp ≤ C∥f ∥K1(D0)n
− 1

2 ≤ C |f |Bn−
1
2 . (29)

for 2 ≤ p < ∞.
Dimension independent approximation rate!

General sigmoidal activation function σ
Sigmoidal means limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1
Thus σ(Rt) → σ0(t) as R → ∞
Get same approximation rates with σ

Same result holds for even more general activation functions17

16Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3 (1993), pp. 930–945, Lee K Jones.
“A simple lemma on greedy approximation in Hilbert space and convergence rates for projection
pursuit regression and neural network training”. In: The Annals of Statistics 20.1 (1992),
pp. 608–613.

17Jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general
activation functions”. In: Neural Networks 128 (2020), pp. 313–321.
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Shallow Network Approximation Approximation rates for convex hulls

Consequences for Sobolev space approximation

Using the Cauchy-Schwartz inequality, it follows that

|f |B =

∫
Rd

|ξ|
(1 + |ξ|)s

(1 + |ξ|)s |f̂ (ξ)|dξ

≤ C (d , ϵ)∥f ∥W s(L2)

(30)

for s = d/2 + 1 + ϵ.

This gives

inf
fn∈Σσ

n (Rd )
∥f − fn∥Lp ≤ C∥f ∥W s(L2)n

− 1
2 (31)

for any s > d/2 + 1
for 2 ≤ p < ∞
for any sigmoidal activation function
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Shallow Network Approximation Approximation rates for convex hulls

Further improvements

Embedding W s(L2) ⊂ B ⊂ K1(D0) (s = d/2 + 1 + ϵ) can be
improved to

W s(L2) ⊂ K1(D0) (32)

for s = (d + 1)/2

Proved using the Radon transform18

18Tong Mao, Jonathan W Siegel, and Jinchao Xu. “Approximation Rates for Shallow ReLUk

Neural Networks on Sobolev Spaces via the Radon Transform”. In: arXiv preprint
arXiv:2408.10996 (2024), Rahul Parhi and Robert D Nowak. “Banach space representer
theorems for neural networks and ridge splines”. In: Journal of Machine Learning Research
22.43 (2021), pp. 1–40.
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Shallow Network Approximation Approximation rates for convex hulls

Further improvements

Barron’s approximation rates can be improved to19

inf
fn∈Σ

σ0
n (Rd )

∥f − fn∥L∞ ≤ C∥f ∥K1(D0)n
− 1

2
− 1

2d (33)

Can also be extended to ReLUk activation function20

19Limin Ma, Jonathan W Siegel, and Jinchao Xu. “Uniform approximation rates and metric
entropy of shallow neural networks”. In: Research in the Mathematical Sciences 9.3 (2022),
p. 46, Yuly Makovoz. “Random approximants and neural networks”. In: Journal of
Approximation Theory 85.1 (1996), pp. 98–109.

20Jonathan W Siegel and Jinchao Xu. “Sharp bounds on the approximation rates, metric
entropy, and n-widths of shallow neural networks”. In: Foundations of Computational
Mathematics 24.2 (2024), pp. 481–537, Jonathan W Siegel. “Optimal approximation of zonoids
and uniform approximation by shallow neural networks”. In: Constructive Approximation
(2025), pp. 1–29.
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Shallow Network Approximation Lower Bounds

1 Neural Networks

2 Shallow Network Approximation
Smooth activation functions and polynomials
General activation functions and Barron’s space
Approximation rates for convex hulls
Lower Bounds

3 Deep ReLU Network Approximation
Upper Bounds
Approximating Multiplication
Bit Extraction
Lower Bounds
Stability
Symmetry-Preserving Neural Networks
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Shallow Network Approximation Lower Bounds

Shallow ReLUk network approximation

Putting these results together, we get

inf
fn∈Σ

σk
n (Rd )

∥f − fn∥Lp ≤ C∥f ∥W s(Lp)n
− s

d (34)

Here σk(x) = max(0, x)k (when k = 0 any sigmoidal activation
function if p < ∞)
s ≤ d

2 + k + 1
2

2 ≤ p ≤ ∞
Extends and improves a variety of existing results21

21Ronald A DeVore, Konstantin I Oskolkov, and Pencho P Petrushev. “Approximation by
feed-forward neural networks”. In: Annals of Numerical Mathematics 4 (1996), pp. 261–288,
Pencho P Petrushev. “Approximation by ridge functions and neural networks”. In: SIAM
Journal on Mathematical Analysis 30.1 (1998), pp. 155–189, Francis Bach. “Breaking the curse
of dimensionality with convex neural networks”. In: The Journal of Machine Learning Research
18.1 (2017), pp. 629–681, Yunfei Yang and Ding-Xuan Zhou. “Nonparametric regression using
over-parameterized shallow ReLU neural networks”. In: Journal of Machine Learning Research
25 (2024), pp. 1–35, Yunfei Yang and Ding-Xuan Zhou. “Optimal rates of approximation by
shallow ReLUkneural networks and applications to nonparametric regression”. In: Constructive
Approximation (2024), pp. 1–32.
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Shallow Network Approximation Lower Bounds

Lower Bounds

We can also prove nearly matching lower bounds22:

sup
∥f ∥Ws (Lp)≤1

inf
fn∈Σ

σk
n (Rd )

∥f − fn∥Lp ≥ C (n log(n))−
s
d (35)

22Tong Mao, Jonathan W Siegel, and Jinchao Xu. “Approximation Rates for Shallow ReLUk

Neural Networks on Sobolev Spaces via the Radon Transform”. In: arXiv preprint
arXiv:2408.10996 (2024).
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Shallow Network Approximation Lower Bounds

VC-dimension

Let F be a class of functions

A set of points x1, ..., xN is shattered by F if for any ϵ1, ..., ϵN ∈ {±1}
there exists an f ∈ F such that

sign(f (xi )) = ϵi (36)

The VC-dimension of F is the largest N such that F shatters a set of
N points

Degree d polynomials have VC-dimension d + 1
Linear functions on Rd have VC-dimension d + 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 34 / 67



Shallow Network Approximation Lower Bounds

VC-dimension

Let F be a class of functions

A set of points x1, ..., xN is shattered by F if for any ϵ1, ..., ϵN ∈ {±1}
there exists an f ∈ F such that

sign(f (xi )) = ϵi (36)

The VC-dimension of F is the largest N such that F shatters a set of
N points

Degree d polynomials have VC-dimension d + 1
Linear functions on Rd have VC-dimension d + 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 34 / 67



Shallow Network Approximation Lower Bounds

VC-dimension

Let F be a class of functions

A set of points x1, ..., xN is shattered by F if for any ϵ1, ..., ϵN ∈ {±1}
there exists an f ∈ F such that

sign(f (xi )) = ϵi (36)

The VC-dimension of F is the largest N such that F shatters a set of
N points

Degree d polynomials have VC-dimension d + 1
Linear functions on Rd have VC-dimension d + 1

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 34 / 67



Shallow Network Approximation Lower Bounds

Lower Bounds in terms of VC-dim

Suppose that F has VC-dimension less than N

Consider a grid of N points {0, 1/n, 2/n, ..., (n − 1)/n}d (n = N1/d)

We can interpolate the values cϵiN
−s/d by a function

∥f ∥W s(L∞(Ω)) ≤ 1

Here ϵi represent arbitrary signs at the grid points

VC-dimension bound implies that there exist ϵi which cannot be
matched

So we get

sup
∥f ∥Ws (L∞(Ω))≤1

inf
g∈F

∥f − g∥L∞(Ω) ≥ cN−s/d (37)

Can also derive lower bounds23 in Lp

23Jonathan W Siegel. “Optimal approximation rates for deep ReLU neural networks on
Sobolev and Besov spaces”. In: Journal of Machine Learning Research 24.357 (2023), pp. 1–52.
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Shallow Network Approximation Lower Bounds

VC-dimension of shallow networks

VC-dimension of Σσk
n (Rd) is24

dVC (Σ
σk
n (Rd)) ≂ n d = 1

n ≲ dVC (Σ
σk
n (Rd)) ≲ n log(n) d = 2, 3

dVC (Σ
σk
n (Rd)) ≂ n log(n) n ≥ 4.

(38)

Lower bounds for shallow ReLUk networks follow

24Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural network approximation”. In:
Acta Numerica 30 (2021), pp. 327–444.
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Shallow Network Approximation Lower Bounds

Open Problems

What happens with p < 2 and σ is ReLUk?

What happens for larger values of s?

What happens in the non-linear regime q < p?

Can we obtain sharp (or nearly sharp) rates for other classes of
activation functions?

What are the right logarithmic factors in the lower bound?

Can we determine approximation spaces for shallow networks:

|f |A(σ,α,p) := sup
n≥1

nα
(

inf
fn∈Σσ

n (Rd )
∥f − fn∥Lp

)
(39)

For d = 1 and σ the ReLUk this is variable knot spline approximation
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Deep ReLU Network Approximation

1 Neural Networks

2 Shallow Network Approximation
Smooth activation functions and polynomials
General activation functions and Barron’s space
Approximation rates for convex hulls
Lower Bounds

3 Deep ReLU Network Approximation
Upper Bounds
Approximating Multiplication
Bit Extraction
Lower Bounds
Stability
Symmetry-Preserving Neural Networks
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Deep ReLU Network Approximation

Deep Neural Network Approximation of Sobolev Functions

Given a Sobolev class W s(Lq(Ω)) and an error norm Lp(Ω), what are
the optimal rates of approximation by deep networks:

sup
∥f ∥Ws (Lq (Ω))≤1

inf
fL∈ΥW ,L

σ (Rd )
∥f − fL∥Lp(Ω) (40)

General activation function σ:

There exist finite size neural networks which are dense in C (Ω)!25

What about the ReLU activation function?

25Dmitry Yarotsky. “Elementary superexpressive activations”. In: International conference on
machine learning. PMLR. 2021, pp. 11932–11940, Shijun Zhang, Zuowei Shen, and
Haizhao Yang. “Deep network approximation: Achieving arbitrary accuracy with fixed number
of neurons”. In: Journal of Machine Learning Research 23.276 (2022), pp. 1–60.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 39 / 67



Deep ReLU Network Approximation

Deep Neural Network Approximation of Sobolev Functions

Given a Sobolev class W s(Lq(Ω)) and an error norm Lp(Ω), what are
the optimal rates of approximation by deep networks:

sup
∥f ∥Ws (Lq (Ω))≤1

inf
fL∈ΥW ,L

σ (Rd )
∥f − fL∥Lp(Ω) (40)

General activation function σ:

There exist finite size neural networks which are dense in C (Ω)!25

What about the ReLU activation function?

25Dmitry Yarotsky. “Elementary superexpressive activations”. In: International conference on
machine learning. PMLR. 2021, pp. 11932–11940, Shijun Zhang, Zuowei Shen, and
Haizhao Yang. “Deep network approximation: Achieving arbitrary accuracy with fixed number
of neurons”. In: Journal of Machine Learning Research 23.276 (2022), pp. 1–60.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 39 / 67



Deep ReLU Network Approximation

Deep Neural Network Approximation of Sobolev Functions

Given a Sobolev class W s(Lq(Ω)) and an error norm Lp(Ω), what are
the optimal rates of approximation by deep networks:

sup
∥f ∥Ws (Lq (Ω))≤1

inf
fL∈ΥW ,L

σ (Rd )
∥f − fL∥Lp(Ω) (40)

General activation function σ:

There exist finite size neural networks which are dense in C (Ω)!25

What about the ReLU activation function?

25Dmitry Yarotsky. “Elementary superexpressive activations”. In: International conference on
machine learning. PMLR. 2021, pp. 11932–11940, Shijun Zhang, Zuowei Shen, and
Haizhao Yang. “Deep network approximation: Achieving arbitrary accuracy with fixed number
of neurons”. In: Journal of Machine Learning Research 23.276 (2022), pp. 1–60.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 39 / 67



Deep ReLU Network Approximation

What types of functions are in ΥW ,L(Rd)

All functions f ∈ ΥW ,L(Rd) are continuous and piecewise linear

The number of pieces can be exponential in the depth L

Number of parameters scales like W 2L

Classical piecewise linear finite element functions can be represented26

If L ≥ log2(d + 1), get all continuous piecewise linear functions

26Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. “ReLU Deep Neural Networks and
Linear Finite Elements”. In: Journal of Computational Mathematics 38.3 (2020), pp. 502–527.
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Deep ReLU Network Approximation Upper Bounds

1 Neural Networks
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Deep ReLU Network Approximation Upper Bounds

Superconvergence

A fascinating result discovered by Yarotsky and Shen, Yang, Zhang27:

Theorem

Suppose that p = q = ∞ and 0 < s ≤ 1. Then W s(L∞(Ω)) is the class of
s-Hölder continuous functions. Then for sufficiently large W (depending
upon d)

inf
fL∈ΥW ,L(Rd )

∥f − fL∥L∞(Ω) ≤ C∥f ∥W s(L∞(Ω))L
−2s/d . (41)

This is sharp for deep ReLU networks

Classical methods (even nonlinear) can only get a rate of convergence
N−s/d

N is the number of parameters

27Dmitry Yarotsky. “Optimal approximation of continuous functions by very deep ReLU
networks”. In: arXiv preprint arXiv:1802.03620 (2018), Zuowei Shen, Haizhao Yang, and
Shijun Zhang. “Optimal approximation rate of ReLU networks in terms of width and depth”. In:
Journal de Mathématiques Pures et Appliquées 157 (2022), pp. 101–135.
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Deep ReLU Network Approximation Upper Bounds

Extensions

Yarotsky’s superconvergence result has been generalized28 to s > 1

Optimal approximation rates when both depth and width vary29

Results for Sobolev spaces W s(Lq) with q < ∞ have been obtained
using interpolation30

What is the optimal rate for all pairs s, p, q for which we have a
(compact) embedding?

Do we get superconvergence when q < p ≤ ∞?
Are these rates optimal for all s, q, p?

28Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. “Deep network approximation
for smooth functions”. In: SIAM Journal on Mathematical Analysis 53.5 (2021), pp. 5465–5506.

29Zuowei Shen, Haizhao Yang, and Shijun Zhang. “Optimal approximation rate of ReLU
networks in terms of width and depth”. In: Journal de Mathématiques Pures et Appliquées 157
(2022), pp. 101–135.

30Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural network approximation”. In:
Acta Numerica 30 (2021), pp. 327–444.
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(2022), pp. 101–135.

30Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural network approximation”. In:
Acta Numerica 30 (2021), pp. 327–444.
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Deep ReLU Network Approximation Approximating Multiplication
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Deep ReLU Network Approximation Approximating Multiplication

Approximating Multiplication32

How can we approximate a product (x , y) → xy?

Consider the hat function:

ϕ(x) = max(0, 1− |2x − 1|) (42)

Let ϕ◦k := ϕ ◦ ϕ ◦ ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
k times

We have the formula31:

x2 = x −
∞∑
k=1

1

22k
ϕ◦k x ∈ [0, 1] (43)

31Matus Telgarsky. “Representation benefits of deep feedforward networks”. In: arXiv
preprint arXiv:1509.08101 (2015).

32Dmitry Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural
Networks 94 (2017), pp. 103–114.
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Deep ReLU Network Approximation Approximating Multiplication

Approximating Multiplication33

Truncate this expansion at level k to approximate x2

Use polarization identity

xy =
1

4
[(x + y)2 − (x − y)2] (44)

Proposition

Let k ≥ 1. Then there exists a network fk ∈ Υ13,6k+3(R2) such that for all
x , y ∈ [−1, 1] we have

|fk(x , y)− xy | ≤ 6 · 4−k . (45)

33Dmitry Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural
Networks 94 (2017), pp. 103–114.
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Deep ReLU Network Approximation Bit Extraction
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Deep ReLU Network Approximation Bit Extraction

Bit Extraction

The key to superconvergence is the bit-extraction technique34

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Superconvergence proved by combining bit-extraction with a
piecewise polynomial approximation35 on a regular grid

34Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

35Dmitry Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural
Networks 94 (2017), pp. 103–114.
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Deep ReLU Network Approximation Bit Extraction

Bit Extraction (cont.)

Divide {0, 1, ...,N − 1} into O(
√
N) sub-intervals of I1, ..., In of length

O(
√
N)
Ij = {kj , kj + 1, ..., kj+1 − 1}

Two piecewise linear functions:
Map Ij to kj
Map Ij to bj = 0.xkj ...xkj+1−1

Requires O(
√
N) layers

Construct network which maps
i
k

0.x1x2 · · · xn
z

→


i − 1
k

0.x2 · · · xn
z + x1χ(i = k)

 (46)

Can be done with a constant size network
Compose this O(

√
N) times
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Deep ReLU Network Approximation Bit Extraction

Efficient Representation of Sparse Vectors36

Approximation in non-linear regime (q < p) requires adaptivity or
sparsity

Proposition

Let M ≥ 1 and N ≥ 1 and x ∈ ZN be an N-dimensional vector satisfying

∥x∥ℓ1 ≤ M. (47)

Then if N ≥ M, there exists a neural network g ∈ Υ17,L(R,R) with depth

L ≤ C
√

M(1 + log(N/M)) which satisfies g(i) = xi for i = 1, ...,N.

Further, if N < M, then there exists a neural network g ∈ Υ17,L(R,R) with depth

L ≤ C
√

N(1 + log(M/N)) which satisfies g(i) = xi for i = 1, ...,N.

36Jonathan W Siegel. “Optimal approximation rates for deep ReLU neural networks on
Sobolev and Besov spaces”. In: Journal of Machine Learning Research 24.357 (2023), pp. 1–52.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 50 / 67



Deep ReLU Network Approximation Bit Extraction

Efficient Representation of Sparse Vectors36

Approximation in non-linear regime (q < p) requires adaptivity or
sparsity

Proposition

Let M ≥ 1 and N ≥ 1 and x ∈ ZN be an N-dimensional vector satisfying

∥x∥ℓ1 ≤ M. (47)

Then if N ≥ M, there exists a neural network g ∈ Υ17,L(R,R) with depth

L ≤ C
√

M(1 + log(N/M)) which satisfies g(i) = xi for i = 1, ...,N.

Further, if N < M, then there exists a neural network g ∈ Υ17,L(R,R) with depth

L ≤ C
√

N(1 + log(M/N)) which satisfies g(i) = xi for i = 1, ...,N.

36Jonathan W Siegel. “Optimal approximation rates for deep ReLU neural networks on
Sobolev and Besov spaces”. In: Journal of Machine Learning Research 24.357 (2023), pp. 1–52.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 50 / 67



Deep ReLU Network Approximation Bit Extraction

Main Result: Upper Bounds37

Theorem

Let Ω = [0, 1]d be the unit cube and let 0 < s < ∞ and 1 ≤ q ≤ p ≤ ∞.
Assume that 1/q − 1/p < s/d, which guarantees that we have the
compact Sobolev embedding

W s(Lq(Ω)) ⊂⊂ Lp(Ω). (48)

Then there exists an absolute constant K < ∞ and such that

inf
fL∈ΥKd,L(Rd )

∥f − fL∥Lp(Ω) ≲ ∥f ∥W s(Lq(Ω))L
−2s/d . (49)

Same super-convergence phenomenon for all Sobolev spaces and all
error norms if we have compact embedding

37Jonathan W Siegel. “Optimal approximation rates for deep ReLU neural networks on
Sobolev and Besov spaces”. In: Journal of Machine Learning Research 24.357 (2023), pp. 1–52.
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Deep ReLU Network Approximation Lower Bounds

VC-dimension of deep ReLU networks

The VC-dimension of ΥW ,L(Rd) is bounded by38

C min(W 2 log(WL)L2,P2) ≤ CP2 (50)

Bound is attained for deep narrow networks

Implies that superconvergence is optimal

approximation rate is lower bounded by P−2s/d

38Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. “Nearly-tight
VC-dimension and pseudodimension bounds for piecewise linear neural networks”. In: Journal of
Machine Learning Research 20.63 (2019), pp. 1–17, Paul Goldberg and Mark Jerrum.
“Bounding the Vapnik-Chervonenkis dimension of concept classes parameterized by real
numbers”. In: Proceedings of the sixth annual conference on Computational learning theory.
1993, pp. 361–369.
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Deep ReLU Network Approximation Stability
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Deep ReLU Network Approximation Stability

Fundamental Lower Bound: Metric Entropy

Definition (Kolmogorov)

Let X be a Banach space and B ⊂ X . The metric entropy numbers of B,
ϵn(B)X are given by

ϵn(B)X = inf{ϵ : B is covered by 2n balls of radius ϵ}. (51)

Roughly speaking, ϵn(B)K measures how accurately elements of B can be specified with n
bits.

Gives a fundamental lower bound on the rates of stable approximation39

If compact Sobolev embedding holds, then40

ϵn(Bs(Lq(Ω)))Lp(Ω) ≂ n−s/d (52)

39Albert Cohen, Ronald Devore, Guergana Petrova, and Przemyslaw Wojtaszczyk. “Optimal
stable nonlinear approximation”. In: Foundations of Computational Mathematics (2021),
pp. 1–42.

40M Š Birman and MZ Solomjak. “Piecewise-polynomial approximations of functions of the
classes Wα

p ”. In: Mathematics of the USSR-Sbornik 2.3 (1967), p. 295.
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40M Š Birman and MZ Solomjak. “Piecewise-polynomial approximations of functions of the
classes Wα

p ”. In: Mathematics of the USSR-Sbornik 2.3 (1967), p. 295.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 55 / 67



Deep ReLU Network Approximation Stability

Fundamental Lower Bound: Metric Entropy

Definition (Kolmogorov)

Let X be a Banach space and B ⊂ X . The metric entropy numbers of B,
ϵn(B)X are given by

ϵn(B)X = inf{ϵ : B is covered by 2n balls of radius ϵ}. (51)

Roughly speaking, ϵn(B)K measures how accurately elements of B can be specified with n
bits.

Gives a fundamental lower bound on the rates of stable approximation39

If compact Sobolev embedding holds, then40

ϵn(Bs(Lq(Ω)))Lp(Ω) ≂ n−s/d (52)

39Albert Cohen, Ronald Devore, Guergana Petrova, and Przemyslaw Wojtaszczyk. “Optimal
stable nonlinear approximation”. In: Foundations of Computational Mathematics (2021),
pp. 1–42.

40M Š Birman and MZ Solomjak. “Piecewise-polynomial approximations of functions of the
classes Wα

p ”. In: Mathematics of the USSR-Sbornik 2.3 (1967), p. 295.

J. W. Siegel (TAMU) Neural Network Approximation Sept 24, 2025 55 / 67



Deep ReLU Network Approximation Symmetry-Preserving Neural Networks
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Deep ReLU Network Approximation Symmetry-Preserving Neural Networks

Deep Learning for Science

Recently, neural networks have been widely applied to scientific
problems

e.g. protein folding41, modeling quantum systems42, predicting
materials properties, etc.

41John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko,
et al. “Highly accurate protein structure prediction with AlphaFold”. In: Nature 596.7873
(2021), pp. 583–589.

42Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body problem with
artificial neural networks”. In: Science 355.6325 (2017), pp. 602–606.
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Deep ReLU Network Approximation Symmetry-Preserving Neural Networks

Symmetries and Continuity

Nature’s laws typically satisfy known symmetries:

Translations (left action of Rd)
Rotations (left action of SO(d))
Orthogonal transformations (left action of O(d))
Identical particles (right action of Sn)
Lorentz transformations (left action of O(3, 1))
etc.

We would like to build these symmetries into the neural network

Field of geometric deep learning
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Deep ReLU Network Approximation Symmetry-Preserving Neural Networks

Action of Permutations

Consider point cloud inputs

X = [x1, x2, ..., xn] ∈ Rd×n

The points xi are the positions of indistinguishable particles

The order of the xi ’s doesn’t matter
Can view the input as the set {x1, ..., xn} of positions

The permutation action of σ ∈ Sn on Rd×n given by

σ · X = [xσ−1(1), ..., xσ−1(n)] (53)

We want our neural network function f to be invariant:

f (σ · X ) = f (X ) (54)
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Invariant Neural Networks

There are numerous ways to obtain invariant neural networks:
Methods based on transforming the input and averaging

Canonicalization or Weighted Frames43

Specialized architectures which parameterize invariant functions
Deep Sets44 or Transformers45 for permutations

43Omri Puny, Matan Atzmon, Edward J Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu,
and Yaron Lipman. “Frame Averaging for Invariant and Equivariant Network Design”. In:
International Conference on Learning Representations, Nadav Dym, Hannah Lawrence, and
Jonathan W. Siegel. “Equivariant Frames and the Impossibility of Continuous
Canonicalization”. In: Proceedings of the 41st International Conference on Machine Learning.
Ed. by Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp. Vol. 235. Proceedings of Machine Learning Research.
PMLR, 21–27 Jul 2024, pp. 12228–12267.

44Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in neural information
processing systems 30 (2017).

45Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances
in neural information processing systems 30 (2017).
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Deep Sets

The Deep Sets architecture is given by46:

fθ(X ) = ρ

(
n∑

i=1

Φ(xi )

)
(55)

X = (x1, ..., xn) ∈ Rd×n is an input point cloud
Φ : Rd → RN and ρ : RN → R are multilayer-perceptrons
θ are the parameters of both Φ and ρ

Deep Sets parameterizes permutation invariant functions

Key Questions:

Universality: Can all (continuous) permutation invariant functions be
approximated?
Approximation Rates: How efficiently can they be approximated?

46Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in neural information
processing systems 30 (2017).
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Universality of Deep Sets47

Theorem

Let Ω = [0, 1]d . Then for sufficiently large N the following holds. For any
permutation invariant continuous function f : Ωn → R and ϵ > 0, there
are continuous functions ρ : RN → R and Φ : Rd → RN such that∣∣∣∣∣f (X )− ρ

(
n∑

i=1

Φ(xi )

)∣∣∣∣∣ < ϵ (56)

for all X = (x1, ..., xn) ∈ Ω.

47Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in neural information
processing systems 30 (2017), Nadav Dym and Steven J Gortler. “Low-dimensional invariant
embeddings for universal geometric learning”. In: Foundations of Computational Mathematics
25.2 (2025), pp. 375–415, Edward Wagstaff, Fabian B Fuchs, Martin Engelcke,
Michael A Osborne, and Ingmar Posner. “Universal approximation of functions on sets”. In:
Journal of Machine Learning Research 23.151 (2022), pp. 1–56.
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Embedding Dimension Bounds

How large does the embedding dimension N need to be for
universality?

Upper bounds:

N = n when d = 148

N = 2nd + 1 for d > 149

Lower Bounds:

When d = 1, N = n is necessary50

48Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in neural information
processing systems 30 (2017).

49Nadav Dym and Steven J Gortler. “Low-dimensional invariant embeddings for universal
geometric learning”. In: Foundations of Computational Mathematics (2024), pp. 1–41.

50Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and
Ingmar Posner. “Universal approximation of functions on sets”. In: Journal of Machine Learning
Research 23.151 (2022), pp. 1–56.
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Approximation Rates for Deep Sets

How large do the networks ρ and Φ have to be?

Can we get quantitative approximation rates?
How do these rates compare with non-invariant architectures, i.e.,
standard MLPs?

Need additional assumptions on the target function f :

Assume that f is Lipschitz, i.e.,

|f (x)− f (y)| ≤ |x − y | or |∇f (x)| ≤ 1 (57)

for x ∈ Ωn.

Existing methods for universal approximation:

Lack control on the functions ρ and Φ in terms of f and thus do not
lead to rates
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Approximation Rates for Deep Sets

Using a different method, we can prove:

Theorem

Let d , n ≥ 2, Ω = [0, 1]d , f : Ωn → R a Lipschitz permutation invariant
function, and 0 < ϵ ≤ 1. Then for N = 2nd + 1 there exist ReLU neural
networks Φ : Rd → RN and ρ : RN → R with a total number of
parameters P ≤ Cϵ−dn/2(1 + | log ϵ|), such that∣∣∣∣∣f (X )− ρ

(
n∑

i=1

Φ(xi )

)∣∣∣∣∣ ≤ ϵ (58)

for every X = (x1, ..., xn) ∈ Ωn.
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Comparison between Deep Sets and MLP

For Deep Sets the problem dimension is D = nd

For a Lipschitz function f to achieve accuracy ϵ we need

P = O(ϵ−D/2) parameters with a general MLP
P = O(ϵ−D/2(1 + | log ϵ|)) parameters with Deep Sets if f is
permutation invariant

Up to a logarithmic factor, Deep Sets requires the same number of
parameters

There is no loss of expressivity when using Deep Sets!
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Open Problems

Determine minimal embedding dimension for universality

Analyze invariant architectures for rotations and orthogonal
transformations

How can we properly analyze transformers?

etc.
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