

The discrepancy principle for stochastically sampled data

<u>Tim Jahn¹</u> Bastian von Harrach² Roland Potthast³

We consider the ill-posed linear equation Kx = y in infinite dimensional Hilbert spaces. We assume that we have noisy but multiple measurements $y_1, ..., y_n$ of the true value y. Furthermore, assuming that the noisy measurements are unbiased and independently and identically distributed according to an unknown distribution, the natural approach would be to use $(y_1 + ... + y_n)/n$ as an approximation to y with the estimated error σ/n , where σ is an estimation of the standard deviation of one measurement. We show that this approach together with a deterministic regularisation method indeed yields convergence to the true solution x (in probability, but in gerneral not in L^2), when the number of measurements tends to infinity. Especially we show that using the discrepancy principle to determine the regularisation parameter leads, in a certain sense, to optimal convergence rates.

¹Goethe-Universität Frankfurt, Institut für Mathematik jahn@math.uni-frankfurt.de

²Goethe-Universität Frankfurt, Institut für Mathematik harrach@math.uni-frankfurt.de

³Deutscher Wetterdienst Roland.Potthast@dwd.de