

New convergence rates for variational Lavrentiev regularization of nonlinear monotone ill-posed problems

Robert Plato¹

We consider nonlinear ill-posed equations Fu = f in Hilbert spaces \mathcal{H} , where the operator $F : \mathcal{H} \to \mathcal{H}$ is monotone on a closed convex subset $\mathcal{M} \subset \mathcal{H}$. For given data $f^{\delta} \in \mathcal{H}, ||f^{\delta} - f|| \leq \delta$, a standard approach is Lavrentiev regularization $Fv_{\alpha}^{\delta} + \alpha v_{\alpha}^{\delta} = f^{\delta}$, with $\alpha > 0$ small and appropriately chosen, and $v_{\alpha}^{\delta} \in \mathcal{M}$ has to be determined. However, in practical applications like parameter estimation problems, solvability of the regularized equation on the monotonicity set \mathcal{M} cannot be guaranteed, in general. We thus consider a regularized variational inequality instead, i.e., determine $u_{\alpha}^{\delta} \in \mathcal{M}$ satisfying

$$\langle Fu_{\alpha}^{\delta} + \alpha u_{\alpha}^{\delta} - f^{\delta}, w - u_{\alpha}^{\delta} \rangle \ge 0 \quad \text{for each } w \in \mathcal{M}.$$

In this talk we present new estimates of the error $u_{\alpha}^{\delta} - u_{*}$ for suitable choices of $\alpha = \alpha(\delta)$, if the solution $u_{*} \in \mathcal{M}$ of Fu = f is source-representable. This is joint work with B. Hofmann (TU Chemnitz).

References:

[1] Plato, R., and Hofmann, B: Convergence rates of a penalized variational inequality method for nonlinear monotone ill-posed equations in Hilbert spaces, *arXiv:1806.00743*, June 2018.

¹Universität Siegen, Department Mathematik plato@mathematik.uni-siegen.de